
IEEE TRANSACTION ON ELECTRON DEVICES 1

Redundancy and analogue slicing for precise
in-memory machine learning - Part II: Applications

and benchmark
Giacomo Pedretti, Member, IEEE, Piergiulio Mannocci, Student Member, IEEE, Can Li, Zhong Sun, John

Paul Strachan, and Daniele Ielmini, Fellow, IEEE

Abstract—In-memory computing (IMC) is attracting interest
for accelerating data-intensive computing tasks, such as artificial
intelligence (AI), machine learning (ML) and scientific calculus.
IMC is typically conducted in the analogue domain in crosspoint
arrays of resistive random access memory (RRAM) devices or
memristors. However, the precision of analogue operations can
be hindered by various sources of noise, such as the non-linearity
of the circuit components and the programming variations due
to stuck devices and stochastic switching. Here we demonstrate
high-precision IMC by a custom program-verify algorithm that
uses redundancy to limit the impact of stuck devices and analogue
slicing to encode the analogue programming error in a separate
memory cell. The Pagerank problem, consisting of the calculation
of the principal eigenvector, is shown as a reference problem,
adopting a fully-integrated RRAM circuit. We extend these
results to also include a convolutional neural network (CNN).
We demonstrate a computing accuracy of 6.7 equivalent number
of bits (ENOB). Finally, we compare our results to the solution
of the same problem by an SRAM-based IMC, showcasing an
advantage for the RRAM implementation in terms of energy
efficiency and scaling.

Index Terms—In-memory computing, memristor, RRAM,
pagerank, memory reliability, neural networks

I. INTRODUCTION

SEVERAL modern computing workloads, such as artificial
intelligence (AI) and scientific computing algorithms, re-

quire processing a large amount of information in parallel. The
von Neumann architecture [1], which forms the fundation for
most computing system, is rather inefficient for data-intensive
computing since the memory and compute units are separated,
thus causing a large amount of time and energy for data
movement [2]. Several advancements in computing systems
have attempted to mitigate this memory bottleneck, such as
implementing large scale parallel architectures (such as in
graphic processing units, GPU) or customized systems (such as
in the tensor processing unit, TPU) [3]. On the other hand, in-
memory computing (IMC) [4] can radically change the com-
puting architecture to perform parallel algebraic operations

G. Pedretti is with Politecnico di Milano, Milano, Italy and Hewlett Packard
Labs, Milpitas, CA, USA.

P. Mannocci and D. Ielmini are with Politecnico di Milano, Milano, Italy
C. Li is with the University of Hong Kong (HKU), Hong Kong SAR, China

and Hewlett Packard Labs, Milipitas, CA, USA
Z. Sun is with Peking University (PKU), Beijing, China and Politecnico di

Milano, Milano, Italy
J. P. Strachan is with Hewlett Packard Labs, Milpitas (CA), USA
Correspondance should be addressed to giacomo.pedretti@polimi.it, john-

paul.strachan@hpe.com and daniele.ielmini@polimi.it.

directly within the memory, usually consisting of emerging
non-volatile memories (NVM) such as resistive switching
memories (RRAM) [5], or memristors. RRAM can be arranged
in compact crosspoint arrays [6] and be programmed in an
analogue fashion to represent an N ×N matrix G of arbitrary
entries directly within the memory. Then, by applying a volt-
age vector V as input on the columns and grounding the rows,
the current flowing in each row is given by Ij =

∑i=N
i=0 GijVi,

where Vi is the applied voltage vector, Gij is the conductance
matrix, and Ij is the output current. This is equivalent to per-
forming matrix vector multiplication (MVM), which has been
demonstrated for neural networks operations [7]–[9], image
processing [10], [11], optimization [12]–[14] and the iterative
solution of linear equations [15], [16]. Analogue in-memory
circuits to solve linear equations in one step have also been
recently proposed [17]–[19]. Integrated systems comprising
conventional CMOS sensing/routing circuitry and memristors
for accelerating computing tasks, have already been developed
[20]–[22] demonstrating experimentally the superiority of such
systems. Nevertheless, fine tuning of analogue conductance in
memristors is still an open challenge [23]. In fact, memristor
suffers from different types of variability which is due to the
structure of the device itself, where physical properties of the
material, such as its defect configuration, are used to obtain
different conductance levels, and are inevitably stochastic.
Several device and system level techniques have been proposed
to reduce memory variability such as redundancy [24], bit-
slicing [25] and mixed precision representation [15], [26].

In a companion paper [27] we proposed a technique combin-
ing the benefits of redundancy and mixed precision techniques,
encoding the error after programming in a separate memory
block, a procedure we dubbed analogue slicing (AS). Here,
we apply redundancy and AS to the solution of the Pagerank
algorithm [28] iteratively executed on an integrated circuit
(IC) [22] comprising three 64 × 64 memristor arrays and
sensing/routing circuitry. After demonstrating the beneficial
effect of redundancy and analogue slicing, with an error ap-
proaching the noise floor of our system, we extend the results
to convolutional neural network (CNN) inference [22] and
then benchmark our results in comparison to commercial static
random access memory (SRAM) [29]. The results suggest
the need for such programming strategies to increase the
accuracy of IMC, and offers a technology-agnostic solution for
mitigating conductance inherited variations.In fact the same
procedure can be used with other types of resistive memories,

IEEE TRANSACTION ON ELECTRON DEVICES 2

Fig. 1. Effect of redundancy. (a) MAE in computing eigenvector as function
of cycles for different M . Note that the MAE saturates after a few cycles due
to the inherent speed of convergence of power iteration (b) Cosine similarity
as function of M . MAE and cosine similarity shows that even with M = 2
the error can be notably reduced
Correlation between the correct ranking (top) and measured

ranking (bottom).

such as Phase Change Memories (PCM)

II. PROGRAMMING STRATEGIES EVALUATION

To evaluate the effect of redundancy and analogue slic-
ing (AS) on the PageRank solution, we selected the same
problem of the companion paper [27], which corresponds to
the PageRank of 32 web pages. The goal is to compute the
ranking of web pages from the most authoritative to the least
authoritative [18]. As previously reported, this can be done by
computing the principal eigenvector of a 32 × 32 stochastic
matrix [18] representing the graph problem. The stochastic
matrix is created by dividing each column of the boolean
link matrix representing connections between each webpage,
for the sum over the column itself. In this way the leading
eigenvalue is always known and equal to 1. The matrix was
programmed to the conductance of the memristors in the IC
as previously reported [27].

A. Effect of redundancy

Redundancy is a programming techniques which can be
useful both for decreasing the variability of the programmed
conductance, and to recover non-ideal states such as stuck
devices. In a PageRank solution a stuck device can change
completely the graph connection making the results unreliable.
Redundancy typically consists in programming multiple de-
vices with the same target conductance [24], however here we
used a previously developed redundancy aware program and
verify algorithm [27] where multiple devices are programmed
while comparing their average value to the target conduc-
tance. We programmed the PageRank problem with different

Fig. 2. Effect of AS. (a) MAE in computing eigenvector as function of cycles
for online MVM and offline MVM with or without AS technique. (b) Cosine
similarity for the 4 computing techniques. (c) Correlation between the correct
ranking (top) and measured ranking (bottom).

redundancy values M and Fig. 1a shows the measured mean
absolute error (MAE), namely:

MAE =

∑N
i=1 |xi − x′i|

N
(1)

where x is the ideal solution and x′ is the measured solution in
computing the eigenvector of the target matrix as a function of
iteration cycles for different M , the number of devices used to
represent a matrix entry. It is evident that a redundancy factor
of M = 2 is enough to recover the accuracy of the solution
by reducing the MAE. This can also be seen by the cosine
similarity distance plot of Fig. 1b, which is computed as:

cosim(x, x′) =
x · x′

||x||||x′||
(2)

These results are possible thanks to the RA-PV algorithm
presented in the companion paper [27], which can compensate
a stuck device by the conductance of the other M − 1
devices. For instance, a stuck on device can be compensated by
decreasing the conductance of the other devices, while a stuck
off device can be compensated by increasing the conductance
of other devices. Fig. 1c shows the comparison between the
correct solution (top) and the measured solution, namely the
identifier number of the first 10 ranked pages. Some relatively
small errors can still be seen, which are due to eigenvector
elements being approximately the same, thus resulting in
wrong ranking even in the presence of a high precision in
the mapped conductance values. We conclude that redundancy
is mainly useful to compensate major programming errors,
such as stuck devices, which is confirmed by the fact that
a redundancy M = 2 is generally sufficient to improve
the accuracy of the results. However, to further reduce the
variability-induced error, more precise encoding techniques
should be adopted.

IEEE TRANSACTION ON ELECTRON DEVICES 3

B. Effect of slicing

To further reduce the error, AS can be applied. Here, the first
crosspoint array is programmed to map a certain target matrix
Gp, resulting in the conductance matrix Gr, differing from
the target matrix by an error matrix Gε = Gp−Gr. The error
matrix is then multiplied by a suitable gain and programmed in
two separate crosspoints, representing the positive and negative
entries. The gain is chosen in such a way that Gε can cover
the full dynamic range of the conductance window. AS can
be combined with redundancy, to allow for the compensation
of major errors such as stuck devices.

Fig. 2a shows the MAE as function of iteration cycles for
M = 4 with and without slicing. Two different approaches
in conducting the MVM are compared, namely online compu-
tation, where the MVM is computed physically within the
crosspoint array, and offline computation, where the MVM
is computed ex situ based on the measured G and applied
voltages [9]. The difference between online and offline MVM
is that errors due to parasitic resistance, also known as IR
drops, and peripheral noise are suppressed in the case of offline
computation. The results show that AS effectively reduces
the MAE until the point where it hits the noise floor of our
system, corresponding to MAE = 0.09, which is mainly
caused by the peripheral readout circuit [27]. This means
that we reach the ultimate limit in programming precision,
thus programming the conductance to an even higher level of
accuracy would not be detectable by our system. The precision
may be further enhanced by employing mixed precision [15]
and other architectural [25] techniques. Fig. 2b shows the
cosine similarity of the computed eigenvectors compared to
the ideal values, confirming the increased accuracy by slicing.
Fig. 2c shows the comparison between the correct solution
(top) and the measured solution, demonstrating that the first
10 webpages are ranked correctly except for a flip between 7th

and 8th pages due to nearly identical eigenvector entries. These
results support the benefit of redundancy and AS techniques
in improving the accuracy of MVM.

C. Extension to CNN

To assess the generality of the proposed programming
techniques, we studied the effect on the accuracy of inference
in a CNN. Fig. 3a shows the schematic of a simple CNN
for the classification of the MNIST dataset [22]. The CNN
consists of a single convolutional layer with 7 kernels of
size 20 × 20, a max pooling layer of size 5 × 5 and a
112× 10 classification layer. The network was trained offline
and achieves an inference accuracy of 98.15% with software
floating-point precision. We programmed the trained weights
as conductance in two separate crosspoint arrays for the
convolutional and classification weights, respectively, without
any redundancy (R = 1) or AS. Fig. 3b shows the probability
distribution of the programmed conductance error, namely
Gerror = Gtarget − Gprog, where Gtarget is the target
weight and Gprog is the measured weight. The figure also
shows the normal fitting of the distribution, corresponding to
a mean value µ = 4 µS and a standard deviation σ = 8 µS.
The inference accuracy was experimentally evaluated online

Fig. 3. (a) Schematic illustration of the CNN used. After cropping the
MNIST dataset to 24 × 24 images, a convolutional layer is applied. Its
output is fed to a classification layer after a max pooling operation. (b)
Probability distribution of the programming error for the CNN weights fitted
with a normal distribution. (c) Inference accuracy for different programming
techniques.

Fig. 4. Simulated MAE as a function of discretization levels and correspond-
ing measured ENOB in hardware.

by applying 10000 test samples, resulting in a classification
accuracy of 94.25%, as also shown in Fig. 3c. The relatively
low accuracy can be explained by the insufficient precision of
the mapped weights which are affected by the programming
errors in Fig. 3b. To improve the precision, we simulated
MVM in a larger set of crosspoint arrays with a redundancy
M = 4, assuming the same distribution of Fig. 3b. Fig.
3c shows the simulation results, indicating that the inference
accuracy can be increased to 97% with a redundancy M = 4.
We also combined redundancy and analogue slicing, which
further improves the testing accuracy to 98.08%. Similarly
to the eigenvector calculation, these results indicate that both
redundancy and AS are generally needed to enable the MVM
computation precision to approach floating-point. The results
also demonstrate the universality of redundancy and AS pro-
gramming techniques across various IMC applications.

III. BENCHMARK WITH SRAM TECHNOLOGY

While redundancy and AS are promising solutions to im-
prove the precision of IMC, they come at the cost of a larger
circuit area and energy consumption. For instance, assuming a
redundancy factor M = 4 combined with AS, the number of

IEEE TRANSACTION ON ELECTRON DEVICES 4

Fig. 5. Area (a) and energy (b) breakdown among the circuit peripherals for
the memristor implementation with AS, R=4. Read circuit, Shift&Add and
DSP are shared between tiles belonging to a R/AS set, and account for the
majority of both area and energy consumption. (c) Tall tiled architecture for
implementing redundancy and AS with small circuitry overhead.

memory devices used to represent a matrix entry for PageRank
acceleration is 12. To assess the impact of the increased area
and energy on the performance of IMC, we conducted high-
level circuit simulations of our IMC hardware compared to an
SRAM implementation for the computation of PageRank. The
simulations were conducted by using a publicly available tool
[29], adapted to the case of eigenvector calculation.

First, we evaluated the equivalent number of bits (ENOB)
that is reached in our IMC system based on the error in
the PageRank calculation. To this purpose, we simulated the
solution of PageRank for an increasing number of discrete
levels of the input, output and matrix entries. Fig. 4 shows
the resulting MAE for Pagerank solution as a function of
the number of levels. The MAE in the figure reaches the
experimentally measured value MAE = 0.09 in Fig. 2
for 108 discrete levels, corresponding to ENOB = 6.7.
Note that the ENOB of the integrated analogue-to-digital
converter (ADC) in our IMC chip was less than 6, however
the effective precision was increased by means of a shift-
and-add MVM technique with 8 bit precision [25], thus the
overall precision is only limited by the memristor variation and
the peripheral noise rather than from design limitations. We
therefore compared out IMC system to an equivalent SRAM-
based computing with a precision of 7 bit.

Figure 5 shows the area (a) and energy (b) breakdown for
the memristive implementation of the accelerator. Notably, the
memory overhead is relatively small while vertical peripherals
responsibile for sensing the current and post-processing the
digital information such as the read circuit, shift and add unit
and DSP are responsible for most of the energy and area
occupation. For this reason, since 12 devices are needed to
represent the information for redundancy and AS, we adopted
a ’tall’ architecture as shown in Fig. 5(c) where the vertical
units (read circuit and DSP) are shared among sets of different
tiles. Each tile is then used to implement a redundant unit, so
that in a given set with shared-peripherals R tiles map the
MSB values, R tiles map the positive error matrix and R tiles

map the negative error matrix according to the AS schematic.
Note that only the energy consumption for calculating the
eigenvector was considered here, since the write operation is
infrequent and typically needed only if a new node (or page)
is added to the graph.

After optimizing the memristive IMC architecture, we esti-
mate its performance compared with SRAM implementation in
32 nm technology node [29], which roughly corresponds to the
dimension of our fabricated memristor, whose size is 40 nm.
The system is clocked at fCLK = 2GHz and a conductance
window from 1 to 100 µS is considered for RRAM arrays.
Note that the conductance could be optimized, as there exists
a trade-off between reducing the errors due to IR drops and
limiting the slow down due to charging the BL [23].

Fig. 6 shows a comparison of the area occupation (a),
latency (b), energy consumption (c) and energy efficiency eval-
uated in TOPS/W (d) for SRAM and RRAM implementations.
The benchmark indicates a 1.5×, 8× and 190× reduction
in area, improvements in latency and energy consumption,
respectively, resulting in an efficiency of 5 TOPS/W cor-
responding to a 10× increase compared to SRAM. While
higher efficiency has been already shown with memristive
IMC [21], these results suggest that even with an unreliable
memristive device, an efficiency larger than an equivalent
precision implementation with SRAM can be reached, in fact
accelerators based on SRAM still suffer from a relatively large
energy consumption due to the cost of retaining the data in
a volatile memory. Finally, we estimate the scaling behavior
of the accelerators by studying the efficiency as a function
of the number N of webpages in a PageRank problem, i.e.
the number of rows/columns of the matrix for the eigenvector
calculation. Fig. 7 shows a comparison of the efficiency as a
function of N for SRAM and RRAM implementation. SRAM
efficiency decreases with N almost linearly, due to increased
energy consumption and latency in accessing several memory
cells in parallel, while RRAM accuracy reaches a maximum
for N ∼ 200, corresponding to the maximum parallelism that
can be achieved. In fact, at a fixed number of eigenvector
calculations per unit time, the solution of a larger problem
results in increased throughput since typically the number
of equivalent operations required in digital systems scales
polynomially with the problem size. However, the dimension
of the problem can be scaled until a certain point where
implementing it directly on crosspoint array is not desirable
anymore due to increased overhead of peripherals. Thus, for
larger problems, an optimization of the architecture should be
performed [25].

IV. CONCLUSION

This work addresses the computational impact of the pro-
gramming strategies, namely redundancy and AS, in a fully
integrated circuit comprising CMOS routing/sensing peripher-
als with memristor arrays. Redundancy and AS were exper-
imentally shown to enable a near-optimal ranking in PageR-
ank problem and recover the inference accuracy in a CNN
close to that of floating point. Despite the overhead in area
and energy consumption, the memristive IMC outperforms

IEEE TRANSACTION ON ELECTRON DEVICES 5

Fig. 6. Area (a), latency (b), energy (c) and energy efficiency (d) for this work implementation with redundant and analogue sliced RRAM compared with a
same accuracy (i.e. 7bit) SRAM.

Fig. 7. Energy efficiency as function of the problem size N for computing
eigenvectors.

a commercial SRAM implementation. The results support
our novel redundancy and precision schemes developed in
the memristor matrix representations to enable algebraic and
artificial intelligence accelerators of high accuracy.

ACKNOWLEDGMENT

This work was supported in part by the European Research
Council (grant ERC-2014-CoG-648635-RESCUE and grant
ERC-2018-PoC- 842472-CIRCUS).

REFERENCES

[1] J. von Neumann, “First Draft of a Report on the EDVAC,” 1945.
[2] M. A. Zidan, J. P. Strachan, and W. D. Lu, “The future

of electronics based on memristive systems,” Nature Electronics,
vol. 1, no. 1, pp. 22–29, Jan. 2018. [Online]. Available:
http://www.nature.com/articles/s41928-017-0006-8

[3] N. P. Jouppi, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, C. Young, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, N. Patil, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Patterson, D. Le, C. Leary, Z. Liu,
K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, G. Agrawal, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
R. Bajwa, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, S. Bates,
H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
D. H. Yoon, S. Bhatia, and N. Boden, “In-Datacenter Performance
Analysis of a Tensor Processing Unit,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture - ISCA ’17.
Toronto, ON, Canada: ACM Press, 2017, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3079856.3080246

[4] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333–343, Jun.
2018. [Online]. Available: http://www.nature.com/articles/s41928-018-
0092-2

[5] D. Ielmini, “Resistive switching memories based on metal
oxides: mechanisms, reliability and scaling,” Semiconductor
Science and Technology, vol. 31, no. 6, p. 063002,
Jun. 2016. [Online]. Available: http://stacks.iop.org/0268-
1242/31/i=6/a=063002?key=crossref.ba6cab0bca4179e152c380f4045bc2b1

[6] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnology, vol. 8, no. 1, pp. 13–24, Jan. 2013.
[Online]. Available: http://www.nature.com/articles/nnano.2012.240

[7] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery,
N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and
J. P. Strachan, “Memristor-Based Analog Computation and Neural
Network Classification with a Dot Product Engine,” Advanced
Materials, vol. 30, no. 9, p. 1705914, Mar. 2018. [Online]. Available:
http://doi.wiley.com/10.1002/adma.201705914

[8] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang,
E. Montgomery, P. Lin, Z. Wang, W. Song, J. P. Strachan, M. Barnell,
Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, “Efficient and
self-adaptive in-situ learning in multilayer memristor neural networks,”
Nature Communications, vol. 9, no. 1, p. 2385, Dec. 2018. [Online].
Available: http://www.nature.com/articles/s41467-018-04484-2

[9] S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha,
B. Killeen, C. Cheng, Y. Jaoudi, and G. W. Burr, “Equivalent-accuracy
accelerated neural-network training using analogue memory,” Nature,
vol. 558, no. 7708, pp. 60–67, Jun. 2018. [Online]. Available:
http://www.nature.com/articles/s41586-018-0180-5

[10] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang,
W. Song, N. Dávila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang,
M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, and Q. Xia, “Analogue
signal and image processing with large memristor crossbars,” Nature
Electronics, vol. 1, no. 1, pp. 52–59, Jan. 2018. [Online]. Available:
http://www.nature.com/articles/s41928-017-0002-z

[11] P. M. Sheridan, F. Cai, C. Du, W. Ma, Z. Zhang, and W. D. Lu,
“Sparse coding with memristor networks,” Nature Nanotechnology,
vol. 12, no. 8, pp. 784–789, Aug. 2017. [Online]. Available:
http://www.nature.com/articles/nnano.2017.83

[12] M. R. Mahmoodi, H. Kim, Z. Fahimi, H. Nili, L. Sedov, V. Polishchuk,
and D. B. Strukov, “An Analog Neuro-Optimizer with Adaptable
Annealing Based on 64x64 0T1R Crossbar Circuit,” in 2019 IEEE
International Electron Devices Meeting (IEDM). San Francisco, CA:
IEEE, 2019, pp. 14.7.1–14.7.4.

[13] F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li, Z. Liu,
M. Foltin, S. Yu, Q. Xia, J. J. Yang, R. Beausoleil, W. D. Lu, and J. P.
Strachan, “Power-efficient combinatorial optimization using intrinsic
noise in memristor Hopfield neural networks,” Nature Electronics, Jul.
2020. [Online]. Available: http://www.nature.com/articles/s41928-020-
0436-6

[14] G. Pedretti, P. Mannocci, S. Hashemkhani, V. Milo, O. Melnic,
E. Chicca, and D. Ielmini, “A Spiking Recurrent Neural Network
With Phase-Change Memory Neurons and Synapses for the
Accelerated Solution of Constraint Satisfaction Problems,” IEEE
Journal on Exploratory Solid-State Computational Devices and
Circuits, vol. 6, no. 1, pp. 89–97, Jun. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9086758/

[15] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma,
C. Bekas, A. Curioni, and E. Eleftheriou, “Mixed-precision in-memory
computing,” Nature Electronics, vol. 1, no. 4, pp. 246–253, Apr. 2018.
[Online]. Available: http://www.nature.com/articles/s41928-018-0054-8

IEEE TRANSACTION ON ELECTRON DEVICES 6

[16] M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner,
and W. D. Lu, “A general memristor-based partial differential equation
solver,” Nature Electronics, vol. 1, no. 7, pp. 411–420, Jul. 2018.
[Online]. Available: http://www.nature.com/articles/s41928-018-0100-6

[17] Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and
D. Ielmini, “Solving matrix equations in one step with cross-point
resistive arrays,” Proceedings of the National Academy of Sciences,
vol. 116, no. 10, pp. 4123–4128, Mar. 2019. [Online]. Available:
http://www.pnas.org/lookup/doi/10.1073/pnas.1815682116

[18] Z. Sun, E. Ambrosi, G. Pedretti, A. Bricalli, and D. Ielmini,
“In-Memory PageRank Accelerator With a Cross-Point Array of
Resistive Memories,” IEEE Transactions on Electron Devices,
vol. 67, no. 4, pp. 1466–1470, Apr. 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/8982173/

[19] Z. Sun, G. Pedretti, A. Bricalli, and D. Ielmini, “One-step regression
and classification with cross-point resistive memory arrays,” Science
Advances, vol. 6, no. 5, p. eaay2378, Jan. 2020. [Online]. Available:
https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.aay2378

[20] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang,
M. P. Flynn, and W. D. Lu, “A fully integrated reprogrammable
memristor–CMOS system for efficient multiply–accumulate operations,”
Nature Electronics, vol. 2, no. 7, pp. 290–299, Jul. 2019. [Online].
Available: http://www.nature.com/articles/s41928-019-0270-x

[21] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and
H. Qian, “Fully hardware-implemented memristor convolutional neural
network,” Nature, vol. 577, no. 7792, pp. 641–646, Jan. 2020. [Online].
Available: http://www.nature.com/articles/s41586-020-1942-4

[22] C. Li, J. Ignowski, X. Sheng, R. Wessel, B. Jaffe, J. Ingemi, C. Graves,
and J. P. Strachan, “CMOS-integrated nanoscale memristive crossbars
for CNN and optimization acceleration,” in 2020 IEEE International
Memory Workshop (IMW). Dresden, Germany: IEEE, May 2020, pp.
1–4. [Online]. Available: https://ieeexplore.ieee.org/document/9108112/

[23] D. Ielmini and G. Pedretti, “Device and Circuit Architectures
for In-Memory Computing,” Advanced Intelligent Systems,
vol. 2, no. 7, p. 2000040, Jul. 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000040

[24] I. Boybat, M. Le Gallo, S. R. Nandakumar, T. Moraitis, T. Parnell,
T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and E. Eleftheriou,
“Neuromorphic computing with multi-memristive synapses,” Nature
Communications, vol. 9, no. 1, p. 2514, Dec. 2018. [Online]. Available:
http://www.nature.com/articles/s41467-018-04933-y

[25] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar,
“ISAAC: A Convolutional Neural Network Accelerator with In-
Situ Analog Arithmetic in Crossbars,” in 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA).
Seoul, South Korea: IEEE, Jun. 2016, pp. 14–26. [Online]. Available:
http://ieeexplore.ieee.org/document/7551379/

[26] C. Mackin, H. Tsai, S. Ambrogio, P. Narayanan, A. Chen, and
G. W. Burr, “Weight Programming in DNN Analog Hardware
Accelerators in the Presence of NVM Variability,” Advanced Electronic
Materials, vol. 5, no. 9, p. 1900026, Sep. 2019. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201900026

[27] G. Pedretti, P. Mannocci, C. Li, Z. Sun, J.-P. Strachan, and D. Ielmini,
“Redundancy and analog slicing for precise in-memory machine learning
- part i: Programming techniques,” Nov. 2021.

[28] Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, and D. Ielmini,
“In-Memory Eigenvector Computation in Time O (1),” Advanced
Intelligent Systems, p. 2000042, May 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000042

[29] P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A Circuit-Level Macro
Model for Benchmarking Neuro-Inspired Architectures in Online
Learning,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 12, pp. 3067–3080, Dec. 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8246561/

