Speech Audio Splicing Detection and Localization
Exploiting Reverberation Cues

Davide Capoferri, Clara Borrelli, Paolo Bestagini, Fabio Antonacci, Augusto Sarti, Stefano Tubaro
Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

Abstract—Manipulating speech audio recordings through
splicing is a task within everyone’s reach. Indeed, it is very easy
to collect through social media multiple audio recordings from
well-known public figures (e.g., actors, politicians, etc.). These can
be cut into smaller excerpts that can be concatenated in order
to generate new audio content. As a fake speech from a famous
person can be used for fake news spreading and negatively impact
on the society, the ability of detecting whether a speech recording
has been manipulated is a task of great interest in the forensics
community. In this work, we focus on speech audio splicing
detection and localization. We leverage the idea that distinct
recordings may be acquired in different environments, which
are typically characterized by distinctive reverberation cues.
Exploiting this property, our method estimates inconsistencies
in the reverberation time throughout a speech recording. If
reverberation inconsistencies are detected, the audio track is
tagged as manipulated and the splicing point time instant is
estimated.

I. INTRODUCTION

In the last few years, the massive presence of social media in
everybody’s life has strongly impacted the way people commu-
nicate and news circulate. Unfortunately, one negative aspect
of this change has been the increased popularity of fake news
spreading. This phenomenon is so diffused, that fake news
occasionally break the social media wall and find their way
to the mainstream media as well. This has a greatly negative
impact on society, as misinformation and hoaxes are often
subtly carved to damage people or to obtain some financial or
political gain through opinion formation campaigns.

One of the reasons fake news are not always immediately
recognized as such is that they often come with videos that
make the news look more realistic. Indeed, videos are often
considered a strong evidence, as it is common sense to assume
that they are hard to be manipulated. However, multiple
techniques to realistically edit videos and audio tracks actually
exist. These are not always particularly complex to be used.

Considering videos, it is possible to change or swap the
face of an actor through face2face [1], neural texture [2],
faceswap [3] or deepfake [4] technology. These techniques
require some computational power, but provide incredibly
realistic results. Considering audio, it is possible to apply
similar style transfer methods to turn one voice into another
[5], [6]. However, audio speech editing is also possible using
cheap yet convincing techniques. This is the case of audio
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splicing, i.e., composing a new speech by segmenting and
concatenating different recordings. After a fake speech and
video are produced, they can be put together by applying
audio-aware lip synthesis technologies [7], [8], thus becoming
a serious threat [9].

Within this context, we consider the problem of speech
audio splicing detection and localization. This is, given a
speech audio track, to understand whether it comes from a
single recording or it is a composition of two separate tracks.
If it is a composition, we also estimate the splicing point, i.e.,
at which sample in time the first original recording ends and
the second one starts.

Detecting speech audio splicing is not the same as detecting
a fake audio track generated through speech synthesis methods
(e.g., style transfer [5], [6], text-to-speech [10], etc.). In this
last scenario, fake speech tracks contain some global traces
due to the fake audio generative process. These traces can be
exploited by forensic detectors to distinguish real recordings
from synthetic audio excerpts [11], [12]. Conversely, all sam-
ples in a spliced audio track are pristine by definition, as they
come from original audio recordings. Therefore, a splicing
detector has to rely on different kinds of traces that highlight
the change from one recording to another.

As an example, in [13] the authors detect splicing by
searching for signal discontinuities that are enhanced through
high pass filtering. In [14], the authors focus on noise traces.
The rationale is that different recordings may contain different
amount of noise, thus noise level estimates can be used to
expose splicing. Another interesting approach is proposed in
[15]. Here the authors use a blind channel estimator to detect
microphone response footprints. Audio tracks showing more
than one microphone footprint are detected as spliced. In
[16], inconsistencies in Electrical Network Frequency (ENF)
traces are used to expose a splicing. As ENF traces are
subtle and might be hindered by high noise levels, in [17]
the authors propose to use spectral phase analysis to increase
noise robustness. More recently, the authors of [18] propose to
exploit acoustic channel impulse response and ambient noise
as environmental signature for an audio recording. If this
signature changes in time, audio splicing is detected.

Similarly to state of the art work, we also make the
assumption that spliced audio excerpts may come from dif-
ferent recordings, which can be characterized by different
environmental traces. In particular, motivated by [19], we
exploit reverberation time as forensic trace. This measures the



degree of reverberation characteristic of an audio signal prop-
agating within an environment. Given a suspect audio track,
our method estimates the reverberation time across different
temporal windows and searches for possible inconsistencies.
If reverberation time suddenly changes from an instant to
another, the audio track is detected as spliced.

II. BACKGROUND AND PROBLEM STATEMENT
A. Reverberation model

Let us consider an indoor environment enclosed by walls.
An acoustic source (e.g., a speaker, a loudspeaker, etc.) and
a receiver (e.g., a listener, a microphone, etc.) are present in
the room. When the source emits an audio signal, the receiver
receives multiple delayed and attenuated copies of the signal.
Indeed, the microphone is hit by waves propagating directly
from the source to the receiver as well as waves reflected
by the ground, the walls and other surfaces. The propagation
of the signal from the source to the microphone within the
environment can be then well approximately by a Linear Time
Invariant (LTI) system. Therefore, the signal acquired at the
microphone can be modeled as

y(t) = a(t) + o) = [

— 00

o0

x(t — 7)h(7)dT, (1

where z(t) is the source signal, h(t) is the system impulse
response known as Room Impulse Response (RIR), and the
operator * represents convolution. As the RIR depends on the
environment geometry and the source and receiver position, it
contains valuable information about the recording setup.

Let us assume that x(¢) is a Dirac function, which can
be approximated as a short sound impulse emitted by an
omnidirectional point source. The recorded y(t) corresponds
to h(t), which is typically composed by a series of attenuated
and delayed pulses as shown in Fig. 1. A spherical wave
propagates from the source in all directions and the wave-
front that first reaches the receiver is the one that follows the
direct path from the source to the receiver. Therefore, the first
pulse of a RIR represents the direct signal propagation. This
direct signal is followed by weaker components, i.e., waves
that have been reflected by the room walls one or multiple
times before reaching the receiver. These reflections, called
early reflections, have lower intensity because of the increased
area of the spherical wave-front as time increases and because
of the sound-absorbing property of the walls or objects in
the room. As the number of reflections increases, the waves
continue to travel in all directions until all the energy has
been absorbed. The density of these later reflections increases
with time, while the intensity decreases. This decaying rever-
beration tail is often perceived by the listener as the room
reverberation.

To summarize in a compact fashion great part of the infor-
mation contained in a RIR about the reverberation properties
of the room, a parameter called Reverberation Time (RT) has
been proposed and broadly adopted. The RT is defined as the
time interval in which the sound pressure level is reduced by
a specific range expressed in dB. This range is typically set
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Fig. 1. Components of a typical room impulse response characterizing
acoustic propagation from a source to a receiver within a closed environment.

from 0 dB to 60 dB, in which case RT is also called Tgg. The
higher the T¢g, the longer the reverberation.

Teo can be analytically computed from a RIR. However,
when a signal recording is available, estimating the complete
RIR is a challenging task. Fortunately, it is possible to estimate
the RT directly from an audio recording with some approxi-
mations [20]. These methods work particularly well on signals
that exhibit small pauses from time to time. This condition is
typically fulfilled by speech signals, as no matter how fast a
person speaks, some pauses in between words are customarily
present. As shall be clear from Section III, we exploit this
property in our work.

B. Problem formulation

Formally, let us consider two audio recordings acquired with
a single microphone at sampling frequency F in two different
reverberant environments. These two discrete time signals are
defined as
n=20,1,...,N; — 1,

n=0,1,..,No—1,

Y1 (TL),
y2(n),

where N7 and N, are the length of y;(n) and yo(n), respec-
tively. A spliced audio track is obtained by concatenating in
time y1(n) and y2(n), thus it is defined as

yspliced(n) = [yl(o)’ ""yl(Nl - 1)’y2(0)7 "'7y2(N2 - 1)]

The resulting length of yspiicea(n) is N1 + Na.

Given a generic audio track, solving the splicing detection
problem means understanding whether the audio track is a
single recording as y1(n) or y2(n), or it is a composition of
two recordings as Yspiicea(n2). If this is the case, solving the
splicing localization problem means estimating the splicing
time instant, i.e., the sample index n where the two sequences
y1(n) and ya(n) meet (7 = N; in this example). In our work
we propose a method to solve both problems.

2

III. PROPOSED METHOD

The proposed method for speech audio splicing detection
and localization verifies the integrity of a suspect signal by
analyzing the acoustic properties of the reverberant room in
which the recording has been performed. If the reverberation
behavior of the environment shows a drastic change within the
recording, splicing attack is detected.
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Fig. 2. Pipeline of the proposed method. A signal s(n) is analyzed to estimate RT over time. Splicing is detected and localized through RT inconsistency

analysis. The role of each block of the pipeline is explained in the text.

To address this problem, we follow the pipeline depicted
in Fig. 2. First, we turn the signal into a time-frequency
representation. Then, we estimate the reverberation time on
sliding windows. Finally we search for inconsistencies among
estimated reverberation times along the recording. In the
following, we provide details about each proposed step.

A. Time Frequency transform

The goal of this step is to turn the input signal into a
representation that highlights regions useful for RT estimation.

Given a recorded signal s(n) sampled with sampling fre-
quency F,, we first divide it in J frames s;(n), j =
0,1,...,J — 1, using a rectangular window of length W with
overlap of P samples. The frame length W determines the
temporal resolution for RT estimation. Each frame is trans-
formed into a time-frequency representation through Short
Time Fourier Transform (STFT), thus obtaining

M-1
Sik,0) =" sj(n)w(n — UM = V))e 5k (3)

n=0
where £ = 0,1,....M — 1 is the frequency bin index,
1=0,1,...,L — 1 is the time sample index within the frame,

w(n) is a window of length M and V is the overlap be-
tween adjacent windows. For the sake of notational simplicity,
hereinafter we drop the frame index j whenever not strictly
necessary, keeping in mind that the following operations are
applied per-frame.

As not all spectral bands are relevant for RT estimation,
we adopt an octave band representation of a particular portion
of the spectrum. Specifically, we chose B significant octave
bands described by their lower (i.e., l;ni“, b=0,1,...,B—1)
and upper (i.e., f;"™, b = 0,1,...,B — 1) frequency limits.
Moreover, as phase information is not of interest in our
scenario, we compute the energy envelope curve for each band.
These two operations lead to
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An example of E(b,1) for one frame and band is shown in
Fig. 2.

B. Reverberation Time estimation

The goal of this step is to estimate a RT for each frame and
for each octave-band independently. The adopted algorithm is
divided in three steps.

In the first step, we identify and isolate Free Decay Regions
(FDRs). These are defined as the portions of the signal
where the sound stimulus has already finished and only the
reverberation effect is present. These regions can be detected
by looking for a persistent energy decrease in time, following
the approach introduced in [21]. In a nutshell, the algorithm
looks for E(b,l) portions that are monotonically decreasing
for at least L samples. We therefore obtain a set of I FDRs
for each frame and band. Each FDR is described by its start
time index [, ¢ = 0,1,...,] — 1 and stop time index
P i=0,1,...,I — 1. Two FDRs are shown in the example
of Fig. 2 superimposed to the related E(b,1).

In the second step, we apply a modified version of
Schroeder’s algorithm [22] to each detected FDR to estimate
the RT. To this purpose, we compute the energy decay curve,
which is the normalized cumulative sum of the energy envelop
E(b,1) in dB defined as

li(op
shawn)

Ci(b, l) =10 log 10 < 1P
23 B (b, A

with [ = § ... %P, For each band and FDR, we fit a line to
¢i(b,1) in the temporal dimension [ using a least-square fitting
procedure. The slope d;(b) of the fitted line can be used to
estimate the RT value as
—60/di(b)
O =5 ar—v)
To obtain a single RT estimate per band, we average the
estimated RT 7;(b) using the fitting mean square error e;(b)
as weight, thus obtaining

Zf:_()l ei(b)ri(b)
310 €ilb)
As the process is repeated for each frame, we end up with a

RT estimate per frame and band 7(j, b).

Finally, as RT estimates can be noisy due to the approxima-
tion process on short windows, we apply a cleaning operation.

#(b) = )



To reduce RT fluctuations over time, we apply a 1D median
filter of size R to 7(j,b), thus obtaining

7(j,b) = median{7(m,b),m € [j — | R/2],....,5 + | R/2]]}.
An example of 7(j,b) for one band is shown in Fig. 2,

where it is possible to see an increase in the estimated RT
approximately from the middle of the signal.

C. Splicing detection and localization

The goal of this step is to analyze RT estimates over time
and detect and localize an inconsistency, if present.

If audio splicing occurs at time index j,, we expect that
RT changes after jg, . Therefore, 7(j,b) values for j < jg
should be strongly different from 7(j,b) values for j > 7
within each band. To check whether this happens, we compare
RT estimates before and after each possible j value. If a
j providing noticeable RT differences exists, we detect and
localize the splicing.

More specifically, for each band, we compute the Absolute
Average Difference (AAD) between 7(j, b) samples to the left
and to the right of each index j. Formally, for the b-th band
we compute

J—1 J—1
7(m,b) — meb ®)

m=0 m=j

S| =

for j = Q,...,J — @ — 1, being () the minimum amount
of samples that grants significant statistics before and after
the candidate splicing time. To aggregate results over each
frequency band, we make use of a weighted average. Formally,
we compute the full-band AAD as

135 a(j,b)A®)
B Aw)

where A(b) is the signal energy in the b-th band. An example
of a(j) is shown in Fig. 2.

At this point, the full-band AAD a(j) should exhibit a
pronounced peak in correspondence of the splicing time index,
if splicing did occur (as shown in Fig. 2). We therefore search
for peaks that have a minimum prominence (10% in our
experiments), which measures how much a peak emerges from
the neighboring baseline of the signal. If peaks exist, we select
the highest one. The position j of this peak is considered the
candidate splicing point j’spl. The height of the peak @(j’spl) is
used as splicing detection confidence value. In other words,
we detect splicing if Ez(j'spl) > T', where T is a threshold that
can be tuned by observing a small training set of data.

a(j) = . 9

IV. EXPERIMENTAL RESULTS

In this section we first present the experimental setup
designed for the evaluation step, including the dataset created
for the task. Then, we present the metrics and the results for
the proposed method compared to some baselines.

A. Dataset

For the evaluation step we have created a dataset which
includes both pristine and spliced speech signals affected by
reverberations. As already mentioned in Section II-A, a rever-
berant audio signal can be obtained as the convolution between
a dry source signal acquired in an anechoic environment, and
a RIR for a specific room and source-receiver position.

As source signals we used part of the ACE dataset [23],
which includes 65 utterances from both male and female
speakers acquired in an anechoic room with variable length
between 15 s and 90 s.

For the RIRs, we decided to include both simulated ones
and RIRs acquired in real environments. To create synthetic
RIRs we used a Python toolbox called Pyroomacoustics
[24], which exploits the Image Source Model algorithm
[25] for RIR simulation. We considered 7 shoe box rooms
with volumes going from 54 m3 to 700 m? and Tgy €
{0.31,0.40,0.52,0.62,0.72,0.82,0.93} second. Moreover, for
each room two different source-receiver configurations have
been considered. This approach allows to quickly create a
large set of simulated environments but lacks in describing
the diffuse components, due to late reverberation and room
irregularities. For this reason, we decided to take into account
also real RIRs included in the ACE dataset. These signals
are relative to 7 rooms, with volumes varying approximately
from 47 m?® to 360 m>® and average reverberation time
Teo € {0.34,0.37,0.39,0.44,0.64,0.65,1.25} second. Also
in this case, two different microphone and source positions
have been considered.

By performing convolution between the considered RIRs
and the dry speech signals, we obtained a set of reverberant
speech signals, which have been further processed by adding
an additive white noise for 3 different Signal-to-Noise Ratio
(SNR) levels, namely SNR € {10 dB, 20 dB, 30 dB}.

For the creation of tampered examples, a subset of the
resulting speech signals have been concatenated in random
position, reproducing the slicing operation. This entire proce-
dure led to a total of approximately 20 000 audio recordings,
equally divided in spliced and not spliced instances. Signals
convoluted with real and simulated RIRs are always kept apart
to allow a separate analysis on the two datasets.

B. Setup

The parameters used for out algorithm are F, = 16 kHz,
W = 32000 samples (i.e., 2 s), P = 144 samples,
M = 800 samples (i.e., 0.05 s), V = % samples, B =
6, fmin e {88.4,176.8, 353.5, 707.1, 1414.2, 2828.2} Hz,
firx e {176.8, 353.5, 707.1, 1414.2, 2828.2, 5656.8} Hz,
L = 13 subframes (i.e., ~ 0.5 s), R = 7 subframes (i.c.,
~ 0.25 8), Q = 133 subframes (i.e., ~ 5 s).

The performance of our method for the detection task is
compared to three different baseline methods. They all share
the RT estimation step proposed in our method, but they use
different indicators to detect whether RT remains constant or
changes in time. The first one (bs/) makes use of the standard
deviation of the estimated RT. The second one (bs2) makes
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Fig. 3. ROC curves obtained with different ATgo values compared to all
baseline methods. Figures (a), (c) and (e) are relative to the ACE dataset.
Figures (b), (d) and (f) are relative the simulated dataset.

use of the difference between the maximum and minimum RT
estimates. The third one (bs3) makes use of the maximum
magnitude of the RT gradient in time. Whenever one of these
indicators exceeds a threshold, splicing is detected.

C. Detection results

For the evaluation of the splicing detection task, we adopted
ROC curves, which show True Positive Rate (TPR) and False
Positive Rate (FPR) pairs for the different threshold values T'.

We first present ROC curves in a noiseless scenario for
different ATgg, i.e., the absolute value of the difference
between reverberation time before and after the splicing point.
The smaller the ATgg, the closer the RTs before and after
the splicing point. Therefore, a small ATgy depicts a more
challenging setup. Fig. 3 reports results for the two different
datasets against the baseline methods. We can observe that the
higher is ATgo, the better is the performance of the proposed
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Fig. 4. ROC curves for different SNR values compared to baseline bsl
(dashed)

method as expected. The proposed method always outperforms
all baselines, confirming that the use of a deeper statistical
analysis of reverberation times through AAD enables better
performance especially for low ATgy values. Finally, notice
that the achieved performance are better on ACE dataset for
high ATgg, whereas they look better on the simulated dataset
for smaller ATgy. This highlight the impact that diffusive
events that are present in ACE but not in the simulated data
impact on RT estimation.

To evaluate the impact of additive noise, we also report
ROC curves for different SNR values in Fig. 4 . In this case,
we set ATgo to the interval [0.25,0.5], and only show the
best baseline (i.e., bsI). Notice that, when the SNR decreases,
all methods lose effectiveness in detecting spliced recordings
as expected. Nonetheless, for SNR=30 dB detection is still
adequate, in particular for the ACE dataset.

From the above analysis, it is possible to select an appropri-
ate threshold value 7' according to the desired ratio between
TPR and FPR.

D. Localization results

Regarding the splicing localization task, a preliminary con-
sideration is necessary. The proposed method relies on RT,
which can only be estimated within FDRs. Therefore, we can
only tell whether a splicing occurs in-between two different
FDRs, but we cannot estimate the precise time instant. As a
consequence, the splicing point localization is affected by an
intrinsic error, determined by the distance between two suc-
cessive FDRs. We therefore evaluate splicing localization by
providing the correct localization rate defined as the fraction
of times we predict the splicing point up to an error of 5 s
with respect to the real splicing.

Tables I and II show localization rates obtained for the two
dataset and for different values of ATgo and SNR. Best results
are obtained for noiseless recordings and high values of ATg
as expected. In particular, we get 86% of correct localization
on the ACE dataset. As already observed for the detection task,
the algorithm tested on the ACE dataset gives better results
with respect to the simulated one. This is due to the fact that
simulated RIRs are an approximation of a real-world scenario.
Nonetheless, with real RIRs we achieve better results.



TABLE 1
LOCALIZATION RATES FOR ACE DATASET.
ATgo \ SNR 10dB 20dB 30dB oo dB

[0, 0.25) 0.029 0030 009 0202
[0.25, 0.5) 0.065 0231 0408  0.535
[0.5, 2) 0606 070 0836  0.861

TABLE II

LOCALIZATION RATES FOR SIMULATED DATASET.
ATgo \SNR 10dB 20dB 30dB oo dB
[0, 0.25) 0.085 0.182 0285  0.425
[0.25, 0.5) 0.196 0417 0574  0.680
[0.5, 2) 0257 0492 0626  0.744

When the noise component increases or the change in RT
values is less accentuated, localization performance degrades.
It is interesting to observe that on the ACE dataset the method
seems to suffer more from small values of ATgg than from
lower SNR values. We can assume that, when the difference
before and after the splicing in RT is noticeable enough, the
performance is still positive, despite the low SNR value.

V. CONCLUSIONS

In this paper, we faced the problem of speech audio splicing
detection and localization. The goal is to understand whether
a speech signal is original or it has been manipulated through
splicing. To solve this problem, we proposed a method that
exploits inconsistencies in reverberation time. Specifically, we
estimate the amount of reverberation in time from an audio
signal, and we verify whether reverberation time suddenly
changes. The proposed method has been validated on real and
simulated room impulse responses applied to male and female
speakers with different amount of additive noise.

The proposed method is tailored to speech signals as it
requires multiple free decay regions to be present in the record-
ing. Future work will be devoted to more robust reverberation
time estimation methods that can be applied also to other
kinds of signals. Moreover, an iterative procedure to detect
and localize more than one splicing point will be devised.
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