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Abstract

Airborne wind energy systems aim to generate renewable energy by means of the aerodynamic lift produced by a wing
tethered to the ground and controlled to fly crosswind paths. The problem of maximizing the average power developed
by the generator, in presence of limited information on wind speed and direction, is considered. At constant tether speed
operation, the power is related to the traction force generated by the wing. First, a study of the traction force is presented
for a general path parametrization. In particular, the sensitivity of the traction force on the path parameters is analyzed.
Then, the results of this analysis are exploited to design an algorithm to maximize the force, hence the power, in real-
time. The algorithm uses only the measured traction force on the tether and it is able to adapt the system’s operation
to maximize the average force with uncertain and time-varying wind. The influence of inaccurate sensor readings and
turbulent wind are also discussed. The presented algorithm is not dependent on a specific hardware setup and can act as
an extension of existing control structures. Both numerical simulations and experimental results are presented to highlight
the effectiveness of the approach.

1 Introduction
Airborne wind energy (AWE) systems [1] aim to harness wind energy beyond the altitude of traditional wind mills, in 
stronger and more steady winds, using tethered wings. The tethers are used to transfer the energy down to the ground. In 
particular, depending on the system layout, the traction force applied by the wing on the tethers is used to drive generators 
on the ground, or the energy from on-board generators is transferred via an electrified t ether t o t he g round u nit. To 
increase the power output, the wings are controlled to fly roughly perpendicular to the wind direction [2], in so-called 
crosswind paths. In the recent past, an increasing number of research groups in academia and industry started to develop 
new concepts of AWE systems, see e.g. [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The automatic control of the tethered 
wings plays a major role for the efficiency and thus also economics of such energy g enerators. The goal is to control the 
wing in order to fly a crosswind path under constraints such as actuator or wing position limitations, while maximizing the 
generated power. In order to maximize the power output, the wing should fly on a path that yields the highest traction force 
for the given wind condition. This problem has been studied by several research groups, see [11, 15, 16, 17, 18, 19, 20]. 
Most of these approaches employ an optimal path, computed off-line for specific wind conditions based on a  nonlinear 
point-mass model. An automatic controller is then designed to follow this optimal reference trajectory. Yet, the offline 
generated optimal trajectories are subject to model-plant mismatch, hence they may be sub-optimal or even infeasible 
in practice. Moreover, when on-line optimization is used, like in Model Predictive Control approaches, the solution of 
a complex nonlinear optimization problems is required in real-time, which can be difficult and u nreliable. Finally, the 
mentioned approaches assume that the wind speed and direction at the wing’s location are known in order to employ the 
computed optimal path. However, the wind field changes over distance and time and it is difficult to estimate with only a 
few measurement points, like those available with ground anemometers.
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In order to tackle these issues, in this paper we propose a model-free optimization approach, for the real-time adap-
tation of the flown paths, assuming no exact knowledge of the wind conditions. At first, we analyze the influence of the
crosswind path on the traction force, in order to asses the most important aspects of the flown trajectory for the sake of
power generation. The results indicate that the location of the path with respect to the wind direction and vertical profile
has much greater importance than its shape. Then, we introduce a real-time optimization algorithm aimed to improve
and adapt the location, rather than the shape, of a given flown crosswind path using only the measurements of the wing’s
position relative to the ground and of the traction forces, i.e. no knowledge of the wind direction or profile. Additionally,
we investigate the effects of erroneous sensor readings and turbulent wind on the performance of the adaptation, showing
that the first do not affect the algorithm but the latter can slow down the convergence. We present the promising results
obtained by applying the approach in numerical simulations as well as in real-world experiments.

The paper is organized as follows. We explain the system under consideration and elaborate the problem formulation
in Section 2. Then, we present a study of the traction force of a tethered wing for a flown path in Section 3. Based on
this analysis, the proposed algorithm to maximize the traction force is described in Section 4. In Section 5 the influence
of sensor noise and wind turbulences on the algorithm are discussed. In Section 6 numerical simulations and results from
tests flights with a small scale prototype are presented.

2 System description and problem formulation
We consider an AWE generator that exploits aerodynamic lift to produce electrical energy. For an overview of such
systems, see e.g. [1]. The main components of the generator are the ground unit, the tether, and the wing. The tether is
used to anchor the wing to the ground unit, where realizations with one or multiple tethers are possible. The wing is flown
on a periodic path, sustained by the aerodynamic lift, which results in a traction force F on the tether. The electricity
is either generated on-board of the wing, with small propellers and on-board generators [3], or in the ground unit, by
unreeling the tether from drums connected to generators [5, 6, 7].

We define a right-handed inertial coordinate system (ex, ey, ez), fixed to the ground unit (see Fig. 1). The unit vectors
ex and ey are parallel to the ground and ez is vertical with respect to the ground and pointing upwards. The wing’s
position p is described by spherical coordinates consisting of the two angles φ and θ and the tether length r. Assuming a
straight tether, the azimuthal angle φ defines the angle between the projection of the tether on the ground and the ex axis,
while the elevation θ represents the angle between the tether and the ground plane (ex, ey). We assume that the incoming
wind is parallel to the ground, i.e. the (ex, ey)-plane, and its misalignment with respect to ex is denoted by φW , see
Fig. 1.
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Figure 1: The wing’s position p (black dot) is shown on a figure eight path. Note the arrows on the path, indicating an
"up-loop" flight pattern (i.e. the wing climbs up on the side of the path and dives in the middle). The wind window is
depicted with dotted lines. The average location of the path (circle) is denoted by (φc, θc). The prevalent wind direction
forms an angle φW with the fixed axis ex.

Due to boundary layer flow effects of the wind above the earth’s surface, the magnitude of the windW is a function of
the altitude z above the ground, the so-called wind shear effect. Common choices to model such a wind shear are the log
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or the power laws [21]. In this paper, we consider the latter, but the results hold for a general monotonically increasing
wind profile. In our coordinate system, the altitude is given by z = r sin θ and the power law is defined as

W (θ) = W0

(
r sin θ

Z0

)α
, (1)

where W0 is the reference wind speed at the reference altitude Z0 and α is the power law exponent, which depends on the
roughness of the surface [21]. In Fig. 2 an example of such a wind profile is given.
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Figure 2: Wind profile defined by the power law with W0 = 5 m s−1, Z0 = 4 m, and α = 0.1

In AWE systems, during power generation the tethered wing cannot fly upwind, surpassing its anchor point against
the wind. Thus, its motion is restricted on a quarter sphere defined by the tether length r, the ground plane (ex, ey), and a
vertical plane perpendicular to the prevalent direction of the wind field and containing the anchor point of the tether (see
Fig. 1, dotted lines). This quarter sphere is called “wind window”. The wing is assumed to fly periodic paths in the wind
window, under the action of a feedback controller K. Such a path can be described by a set of points in the (φ, θ)-plane.
The average position of the path is denoted by (φc, θc). The angular distances from such an average position to each point
on the path in φ and θ directions are denoted by φ∆ and θ∆, respectively. By introducing the continuous time variable t,
we can define the corresponding trajectory as the pair

φ(t) = φc + φ∆(t) , θ(t)=θc + θ∆(t)

with the trajectory period T to complete one closed path, i.e.

φ∆(t+ T ) = φ∆(t) , θ∆(t+ T )=θ∆(t) .

We define the left and right half paths as the points where φ∆(t) ≥ 0 and φ∆(t) < 0, respectively.
For systems with multiple tethers, the path has to be such that the tethers do not coil up during one full period and

therefore we will consider paths shaped like an eight, see e.g. [11], flying up-loops. This means the wing flies upwards
on the side and down in the center of the figure eight, see Fig. 1. For the remainder of this paper we will call one closed
path a ”loop” or ”path” to refer to a single flown figure eight. We assume that the path is symmetric w.r.t. a line in the
(φ, θ)-plane. The angle between this symmetry line and the line φ = φc is denoted with β, named the “inclination” of
the path. The range of φ∆ values is [−φmax∆ , φmax∆ ] with φmax∆ > 0. The maximal φ∆(t) value, φmax∆ , defines the lateral
span of the path, since it accounts for half of the total lateral span. Similarly, the range of θ∆ values is [−θmax∆ , θmax∆ ]
with θmax∆ > 0. The maximal θ∆(t) value, θmax∆ , defines the vertical span of the path. See Fig. 1 and 3 for a graphical
representation.

The dynamics of the system can be generally described as

ẋ = f(x, u, φW ,W0, Z0, α) (2)
y = g(x, u) ,

3
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Figure 3: A generic inclined path with average position (φc, θc) plotted in the (φ-θ)-plane. The φ and θ coordinates are
depicted as seen from the ground unit and looking at the wing, note the orientation of the φ axis. A point on the left half
path is shown as a black dot. The angle β defines the inclination of the path, whose symmetry line is shown as dash-dotted
line.

where x denotes the states, u the control input, and y the measured output. The wind cannot be easily measured or
estimated, hence we assume that the wind direction φW and parameters W0, Z0, α are not precisely known. The control
input u is computed by the controller K, which is a discrete-time system with internal state z, input y, and parameters Θ.

K :

{
z(τ + 1) = hz(z(τ), y(τ),Θ(τ))
u(t) = hu(z(τ), y(τ),Θ(τ)), ∀t ∈ [τTs, (τ + 1)Ts)

,

where τ ∈ N is the discrete sampling instant and Ts the sampling time. The parameters Θ contain specifications of the
path to be flown by the wing, namely the average position of the path (φc, θc), its spans φmax∆ and θmax∆ , and inclination
β:

Θ
.
= (φc, θc, φ

max
∆ , θmax∆ , β) , (3)

It is assumed that the controller K is able to attain such specifications.
The average power P̄ produced by a AWE generator with generators on the ground during one full path with period

T is

P̄ =
1

T

∫ T

0

ṙ(t) F (t)dt ,

where ṙ is the reel-out speed of the tether and F (t) is the traction force at time t. As it is done in several previous work,
see e.g. [2, 12], we consider power production at a constant reel-out speed. Hence, we obtain:

P̄ = ṙ F̄ ,

where

F̄ =
1

T

∫ T

0

F (t)dt . (4)

Thus, in this framework the maximization of the average traction force implies maximization of the average power
produced during the path. This also holds for systems with on-board generation where turbines are installed on the wing,
since the obtained apparent wind speed is directly related to the traction force [2].

In the considered settings, F̄ is a function of the controller’s parameters Θ, i.e. our decision variables, and of the wind
field, described here by its direction φW and wind shear parameters W0, Z0, α, which are uncertain. Our aim is to find
the parameters Θ such that the average traction force (hence the average power) is maximal. The related optimization
problem can be formulated as

max
Θ

F̄ (Θ, φW ,W0, Z0, α) . (5)

The exact solution of (5) would require the precise knowledge of the wind profile and direction, which are not assumed
to be available here. In order to tackle this problem, we proceed in two steps. At first, we analyze the influence of Θ on the
average traction force; then, on the basis of such analysis we derive a real-time optimization/adaptation algorithm, to be
used on top of controller K, able to solve (5) by dealing with the uncertainty of the wind direction and profile, exploiting
the measure of the traction force acting on the tethers. For simplicity, in the following we assume the tether length r to be
constant, which is a special case of a constant reel-out speed.
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3 Sensitivity Analysis of Crosswind traction force
In this section, we will first investigate the properties of the average traction force for a flown path using a simplified
model. The advantage of such a model is that it allows one to carry out an analytical study of the traction force as a
function of the parameters Θ. The results of this first analysis are then compared to simulations of a dynamical non-linear
point-mass model of the system. The latter is derived from first principle equations and includes effects from gravity and
inertial forces.

3.1 Analysis of the traction force with a simplified model
A simplified model to estimate the traction force of a tethered wing depending on its location has been introduced in [2]
and subsequently refined in several contributions, for a detailed derivation see e.g. [2, 22]. According to this model, for a
constant reeling speed and fixed values of W0, Z0, α, the traction force F is a function of the current location of the wing
and of the wind direction:

F (θ, φ, φW ) = C v(θ)m(φ− φW ) , (6)

where

C =
1

2
ρACLE

2
eq

(
1 +

1

E2
eq

) 3
2

(7)

v(θ) = W (θ)2 cos (θ)
2

m(φ− φW ) = cos (φ− φW )
2

and

Eeq =
CL
CD,eq

=
CL

CD +
CD,lAl

4A

. (8)

In (7)-(8), the air density is indicated by ρ, A is the wing reference area, CL is the wing’s lift coefficient, CD,eq is the
equivalent drag coefficient, accounting for the drag of the wing and the added drag by the cable. CD,l is the drag coefficient
of the cable and Al = nl r dl is the cable reference area, where nl is the number of lines holding the wing, r is the line
length, and dl is the line diameter. The values of CL and CD generally depend on the angle of attack and its derivative,
which influence the aerodynamics of the wing. However, these coefficients typically do not change much during energy
generation. Hence, we assume them to be constant for simplicity, as considered e.g. in [10]. For a given wind field, the
simplified model (6) provides us with a theoretical value of the traction force as a function of the wing’s location. Such a
theoretical value is obtained by neglecting all forces except for the aerodynamic ones and the cable tension.

By inspection, function m(φ−φW ) : (φW − π/2, φW + π/2) 7→ (0, 1] in (6)-(8) is quasi-concave with its maximum
at φ = φW . Function v(θ) : (0, π/2) 7→ R+ consists of two parts. The first part, the wind profile W (θ), is assumed to be
monotonically increasing, according to the wind shear model in (1), and the second part, cos (θ)2, is also a quasi-concave
function in the domain of v. By using the second-order condition for quasi-concave functions [23], it can be verified that
the product (see Fig. 4 for a typical example) is still quasi-concave and that the point (φ, θ) providing maximal traction
force for (6) is given by (φ, θ) = (φW , arctan (

√
α)).

Equations (6)-(8) allow us to carry out an analysis of the traction force as a function of the parameters Θ. By intro-
ducing the index k = 1, . . . , N , which identifies the samples of a discretized path with sampling time Ts, any sampled
position in the path can be expressed as (φc +φ∆(k), θc + θ∆(k)). The discrete form of the average traction force (4) can
be then written as

1

T

∫ T

0

F (t)dt ' 1

NTs

N∑
k=1

F (k)Ts =
1

N

N∑
k=1

F (k) .

The average traction force F̄ for one period of the path is thus given by

F̄ (Θ, φW , ) =
1

N

N∑
k=1

C v(θ(k))m(φ(k)− φW ) , (9)

with
θ(k) = θc + θ∆(k)
φ(k) = φc + φ∆(k)

.
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Figure 4: Quasi-concave function v(θ) with r = 30 m, W0 = 5 m s−1, Z0 = 4 m, and α = 0.1.

For the following analysis, we focus on the dependence of F̄ on φc, θc, φmax∆ , and θmax∆ only, and fix the inclination
β = 0 (see Fig. 3). Since the wing is assumed to fly within the wind window, we limit the analysis to the following ranges:

φc ∈ (φW − π/2, φW + π/2)

θc ∈ (0, π/2)

φmax∆ ∈ (0, π/2− (φc − φW )]

θmax∆ ∈ (0,min (θc, π/2− θc)]

In Fig. 5, the average traction force (9) as a function of φc − φW for three different values of θc is shown. Note that
the forces in all the plots have been normalized with the maximum force value of the sample in order to emphasize the
independence of the qualitative behavior on the wind: stronger winds influence only the numerical values, but the shape
of the curve remains unchanged. By changing the elevation of the path, θc, the value of F̄ changes according to the value
of v(θ) from (7) (see Fig. 5). In particular, as it can be inferred by the above-reported discussion on the concavity of the
force as a function of θ, there is a single value of θc that maximizes the traction force, and this value depends only on the
wind profile and not on the misalignment (φW − φc).
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Figure 5: Average traction force computed with the simplified model with the spans of the path φmax∆ = 0.3 rad and
θmax∆ = 0.1 rad. Solid: θc = 0.1 rad, dashed: θc = 0.3 rad, and dotted: θc = 0.5 rad.

From (9), we can notice that the contribution of the left and right half-paths to the average traction force F̄ are not the
same if φc 6= φW . We therefore derive the average traction forces for each of the half-paths, and investigate the influence
of the parameters Θ on their difference. The average traction forces of the left and right half paths are:

F̄L =
1

NL

NL∑
k=1

{Cv(θ(k))m(φ(k)− φW )|φ(k) ≥ φc}

F̄R =
1

NR

NR∑
k=1

{Cv(θ(k))m(φ(k)− φW )|φ(k) < φc} ,

(10)

where F̄L stands for the average traction force of the left half and F̄R for the right half. NL and NR are the number of
samples on the left and right half paths, respectively.
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The traction force difference between the left and right half-paths, using (7) and (10), is given, after some manipula-
tions and assuming a sufficiently small sampling time, by

∆F̄ (Θ, φW ) = F̄L − F̄R ' −
C
2

sin(2(φc − φW ))B , (11)

where the positive term B is given by

B =
1

NL

NL∑
k=1

v(θ(k)) sin(2|φ∆(k)|) +
1

NR

NR∑
k=1

v(θ(k)) sin(2|φ∆(k)|)

From (11) it can be seen that the difference in traction force is zero only if φc = φW , i.e. the path is centered w.r.t.
the wind, and that it is monotonic for |φc − φW | ≤ π/4. Moreover, paths with an average position on the left of the
wind direction, as seen from the anchor point of the tether (i.e. φc − φW > 0), have a negative ∆F̄ , and vice-versa, see
Fig. 6 where the left-right difference in average traction force (11) as a function of φc − φW for different values of θc is
shown. This comes from the fact that the half-path farther away from the wind direction experiences a smaller fraction
of the incoming wind in tether direction, thus generating less traction force. In Fig. 7, a plot of ∆F̄ for different values
of the half-span φmax∆ is shown. By changing the span of the path, the magnitude of ∆F̄ changes. For larger spans, the
difference between the average traction force given by the left and right half-paths gets larger, since the average wind
conditions for the two halves differ more. The lateral span of the path has also an influence on the average traction force,
see Fig. 8, i.e. wider paths provide smaller average traction force. Thus, a path which has a higher traction force due to
its small span will also have a smaller magnitude in ∆F̄ (compare Figs. 7 and 8). Note that the value of θc has an effect
on the average traction force difference, too, but this is not as large as that of the span of the path in φ direction (compare
Figs. 6 and 7).

The span θmax∆ also has an influence on the average traction force F̄ and on the difference of left-right average traction
forces ∆F̄ as shown in Fig. 9 and Fig. 10, respectively. Comparing Figs. 7-10, it can be seen that the span φmax∆ has more
influence on the difference between left and right average traction forces whereas θmax∆ has more influence on the total
average traction force.
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Figure 6: Difference of average traction force ∆F̄ computed with the simplified model, with spans of the path φmax∆ =
0.3 rad and θmax∆ = 0.1 rad. Solid: θc = 0.1 rad, dashed: θc = 0.3 rad, and dotted: θc = 0.5 rad.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ϕc − ϕW (rad)

∆
F̄

(a
.u
.)

Figure 7: Difference of average traction forces ∆F̄ computed with the simplified model, with θc = 0.2, θmax∆ = 0.1 rad,
and different values of the lateral span. Solid: φmax∆ = 0.1, dashed: φmax∆ = 0.3, and dotted: φmax∆ = 0.5.
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Figure 8: Average traction force F̄ computed with the simplified model, with θc = 0.2, θmax∆ = 0.1 rad, and different
values of the lateral span φmax∆ . Solid: φmax∆ = 0.1, dashed: φmax∆ = 0.3,and dotted: φmax∆ = 0.5.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

ϕc − ϕW (rad)

∆
F̄

(a
.u
.)

Figure 9: Difference of average traction force ∆F̄ computed with the simplified model, with θc = 0.2 and a lateral span
of the path φmax∆ = 0.3 rad. Solid: θmax∆ = 0.1 rad, dashed: θmax∆ = 0.3 rad, and dotted: θmax∆ = 0.5 rad.
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Figure 10: Average traction force F̄ computed with the simplified model, with θc = 0.2 and a lateral span of the path
φmax∆ = 0.3 rad. Solid: θmax∆ = 0.1 rad, dashed: θmax∆ = 0.3 rad, and dotted: θmax∆ = 0.5 rad.
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3.2 Analysis of the traction force with a dynamic model
In this section, we employ a dynamic model to asses, via numerical simulations, the considerations derived with the
simplified model, and to analyze also the effects of different path inclinations β. The dynamics f(x, u, φW ) are modeled
here by the widely used nonlinear point-mass model for a tethered wing, see e.g. [10, 11, 12, 16, 19, 20]. The dynamic
equations are derived from first principles and the wing is assumed to be a point with given mass. The tether is assumed
to be straight with a non-zero diameter. The aerodynamic drag of the tether and half of the tether mass are added to the
wing’s drag and mass, respectively. The aerodynamic forces are modeled with constant lift and drag coefficients, and
effects from gravity and inertial forces are included. The wing is assumed to be steered by a change of the roll angle ψ,
which is manipulated by a control system, and thus, referring to (2), we have u = ψ. The state x of this system is given
by x = (φ, θ, r, φ̇, θ̇, ṙ).

In order to carry out the simulations, the controller K is designed using the approach described in [24]. Such a
controller is able to make the wing fly on a symmetric figure eight path with the required spans and inclination, and with
the average position being a given reference location (φc, θc).

Consistently with Section 3.1, the average traction forces generated during the full path and the average traction force
generated on the left and right half paths are computed from the simulation results:

F̄ (Θ, φW ) =
1

N

N∑
k=1

F (k) (12)

F̄L =
1

NL

NL∑
k=1

{F (k) |φ(k) ≥ φc}

F̄R =
1

NR

NR∑
k=1

{F (k) |φ(k) < φc}

(13)

The traction force difference between the left and right half path is

∆F̄ (Θ, φW ) = F̄L − F̄R . (14)

As done before, we want to study how the average traction force and the difference in average traction force between
the left and right half paths change for different values of Θ, including this time also the inclination β, in the range
β ∈ [−π/2, π/2].

Comparing the traction force for various φc and θc with a symmetric horizontal path shape (i.e. β = 0) shows good
qualitative correspondence with the simplified model used in Section 3.1, see Fig. 11, thus indicating that gravity and
inertial forces do not have impact on the average forces. If the path is inclined, i.e. β 6= 0, the average traction force does
not increase more than 2 % for φc around the optimum of F̄ , see Fig. 12, but the values of ∆F̄ change significantly. In
fact, when the path is inclined, the traction force difference is not zero anymore for φc − φW = 0. A positive value of β
corresponds to a negative value of φc − φW such that ∆F̄ = 0 and vice versa, see Fig. 13. The effect of larger spans in
the presence of β 6= 0 is the same as the one observed in Section 3.1, e.g. a larger value of φmax∆ increases ∆F̄ for fixed
values of the other parameters. As expected from the analysis with the simplified model, stronger wind or different tether
length r do not affect the qualitative results.

3.3 Discussion
The results of the previous two sections show that there is a single optimal average location, denoted as (φ∗c , θ

∗
c ), yielding

the maximal average traction force for a given path shape. In particular, we have φ∗c = φW , while θ∗c depends on the
vertical wind profile. The average traction force is very sensitive on the average position of the path. A misalignment in
φc with respect to φ∗c of roughly 20◦ can lead to a decrease of average traction force of 15 %, while 50 % decrease of the
force is obtained for a misalignment of roughly 45◦, see Fig. 5. An average elevation θc 6= θ∗c can also reduce the traction
force by a significant amount, in the same order as for φc. As an example, with an error in both φc and θc of around 20◦

from the optimum, the traction force will be reduced by almost 30 %.
For horizontal paths (i.e. β = 0), the difference in average traction force, ∆F̄ , is zero for an average position φc = φW

and it is monotonically increasing for values of φc−φW between π/4 and−π/4. Moreover, the sign of ∆F̄ is the opposite
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Figure 11: Contour plots of the average traction force F̄ , as a function of φc − φW and θc, computed with the simplified
model a) and with the point-mass model b)
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Figure 12: Traction force F̄ computed with the point-mass model, as a function of φc−φW , with θc = 0.4. There are five
lines with values of β = {0, 0.3, 0.6, 0.9, 1.2} rad. The resulting shapes of the path are depicted underneath the traction
force curve; the corresponding y-axis, giving the values of θ for the flown path, is depicted on the right of the plot.
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Figure 13: Traction force difference ∆F̄ computed with the point-mass model for θc = 0.4, φmax∆ = 0.24, and different
inclinations β = 0 (solid), β = 0.3 (dashed), β = 0.6 (dot-dashed), and β = 0.9 (dotted).
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w.r.t. that of φc − φW , i.e. φc − φ∗c . Therefore, if β = 0 the value of ∆F̄ is a good indicator of the alignment of φc
with the wind direction φW . As seen in Fig. 12, the inclination has only a small influence on the traction force, changing
it less than 2 % in the interval around the optimum. However, the average traction force difference between the left and
right half paths is sensitive to changes in β. A positive value of β can decrease the magnitude of ∆F̄ on the right side of
the wind window up to 75 %, while increasing it on the left side by only around 20 %. Thus, with β 6= 0 the difference
in traction force ∆F̄ is not anymore zero for φc = φW , and its sign is not the opposite w.r.t the sign of the misalignment
φc − φW anymore (see Fig. 13).

As seen in Fig. 8, increasing the lateral span φmax∆ of the path by a factor of 5 decreases the average traction force
roughly by 10 %. A larger lateral span of the path scales up ∆F̄ , but also decreases the average traction force F̄ . This
could lead to the conclusion that the shorter the lateral span, the better it is in terms of system operation. This is only
partially true. First, a short span implies sharp turns that induce more drag, slowing the wing down, hence decreasing the
average traction force. However, this effect is not captured by the point-mass model considered here, thus leading to the
result that paths with very small span do not lose performance in terms of traction force. Second, for a short span it might
be difficult to infer something about the wind direction, due to the small value of ∆F̄ . As seen in Fig. 10, increasing the
vertical span θmax∆ of the path by a factor of 5 decreases the average traction force roughly by 15 % and also decreases the
magnitude of ∆F̄ . This shows that a small vertical span θmax∆ of the path is favorable. This has two advantages. First,
the wing does not need to overcome gravity to climb for a long distance and secondly it will stay closer to the targeted θc
position.

In conclusion, the analysis above shows that optimizing the average position (φc, θc) yields the largest increase of
average traction force (hence generated power). The shape of the path, in terms of lateral span and inclination, has only
a relatively small influence on the traction force. Moreover, even an optimal path, in terms of shape, has to be flown
at the optimal location in order not to lose a large fraction of the traction force. In the next section, we exploit these
considerations to derive an algorithm able to optimize in real-time the average path location and to adapt it in the presence
of changing wind direction φW , using only the measurements of traction force on the tethers.

4 Real-time optimization and adaptation algorithm
As seen in the previous section, the average location of a flown path has the largest influence on the generated traction
force among all of the considered parameters. Thus we aim to find the best average location in φ and θ for a given path
shape, in order to maximize the average power output of the AWE system. Since the inclination of a path has an adverse
effect on ∆F̄ and does not affect F̄ much, we only consider horizontal paths with β = 0. Moreover, an inclined path
can increase the difference between the maximal and minimal instantaneous traction force F (t) between the left and
right half-loops, leading to an asymmetric wear of the system’s components. Enforcing a horizontal path can be done in
practice with a suitable controller as in [24]. Motivated by these results, in the following we take only (φc, θc) as free
optimization variables out of the considered parameters Θ in (3), while we fix the half-span φmax∆ and the vertical span
θmax∆ to prescribed values and select β = 0.

Recall that we assume that the underlying controllerK accepts reference values for the average location where the path
should be flown. The algorithm we present next will then compute such reference values in order to solve the following
optimization problem:

max
θc,φc

F̄ (φc, θc, φW ,W0, Z0, α) . (15)

We assume that the parameters φW ,W0, Z0, α, specifying the wind direction and profile, are not known, hence the
optimization problem (15) is uncertain due to the lack of information on φW and the wind shear profile. On the other
hand, we assume that the traction force F is measured, as well as the position of the wing w.r.t. the ground unit. Hence
the values of F̄ and ∆F̄ for each flown path are measured.

The analysis presented in the previous section indicates that we can reformulate the optimization problem (15) as

max
θc

[
max
φc

F̄ (φc, θc, φW ,W0, Z0, α)

]
, (16)

i.e. (16) can be maximized separately in φc and θc, since the value of φc that maximizes the average traction force, for
given θc, depends only on φW and not on θc itself and, vice-versa, the optimal value θ∗c does not depend on φc. Also, note
that for horizontal paths we have, irrespective of θc,
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arg max
φc

F̄ (φc, θc, φW ,W0, Z0, α) = arg min
φc

|∆F̄ (φc, θc, φW ,W0, Z0, α)|

as it can be derived from (9) and (11) and from the results in Section 3.2. Therefore, the problem (15) can be solved by
addressing two subsequent optimization problems independently. We will first exploit the measure of ∆F̄ to find the best
location in φ, i.e. to compute arg minφc |∆F̄ (φc, θc, φW ,W0, Z0, α)|, and then the measure of F̄ to find the best location
in θ, i.e. solving (16) with the previously found optimal φc. The advantage of using the differences in average traction
forces to find the optimal φc, instead of using only F̄ , is that a single value of ∆F̄ , i.e. a single flown path, gives already
an indication on the sign of the misalignment φc − φW , hence on the search direction for φc. By using only F̄ , the values
obtained by two paths with different φc would be needed to estimate the search direction, which would take at least twice
as long. Thus, the adaptation in φ direction is sped up by looking at the traction force difference ∆F̄ instead of the total
average traction force F̄ only.

4.1 Algorithm Outline
We present a short outline of an algorithm able to adapt the average position of a path, such that it converges to the
optimum. The algorithm iterates over subsequent complete paths flown by the wing, and exploits the values of F̄ and
∆F̄ measured in the current and past paths. See Algorithm 1. A more detailed algorithm that can be used in practice,

Algorithm 1: Optimization/Adaptation

1 while true do
2 if one complete loop flown then
3 calculate ∆F̄ and F̄
4 if |∆F̄ | > ∆F̄min then
5 min

φc

|∆F̄ |

6 update φc
7 else
8 max

θc
F̄

9 update θc
10 end
11 end
12 end

and has been tested during real-world experiments, is given in the Appendix. The algorithm uses a coordinate search
approach, see e.g. [25], to solve the two subsequent optimization problems, since no gradient information is available.
The algorithm first checks if the absolute value of the traction force difference, ∆F̄ , is smaller than some margin, ∆F̄min.
The latter is used as a stopping criterion for the φ direction adaptation. If this condition is not met, the Algorithm adapts
the value of φc in order to reduce the absolute value of the force difference, |∆F̄ |. Otherwise, the algorithm searches for
the best vertical position θc, without changing φc. Apart from other minor tolerances (see the Appendix for details), the
scalar ∆F̄min is the only tuning parameter in our real-time optimization approach. If ∆F̄min is very small, the algorithm
will tend to spend most its time correcting the azimuthal position of the loop and the θc position would improve slowly.
Vice versa, if ∆F̄min is large, most time is spent in correcting the average elevation position of the flown path.

5 Effects of Measurement Errors and Turbulence
The algorithm introduced in the previous section exploits the measurements of the tether force and wing position, and its
performance will clearly depend on the accuracy of the related sensors, as well as on the intensity of wind turbulence. It
is therefore of interest to study the effects of such phenomena.

First, we start with the description of the expected sensor errors, followed by an analysis of how much these errors
affect the adaptation algorithm. Secondly, we will present the effects of added turbulence on the wind profile, and intro-
duce measures to counteract its effects. We carry out these analyses mainly with the simplified traction force model used
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in section 3.1. We will also rely on simulation results employing the point-mass model of the wing to highlight specific
effects, using a standard turbulence model which is common in wind turbine analysis.

5.1 Sensor Errors
For this analysis we assume that line angle sensors, measuring the orientation of the tethers with respect to the ground
unit, are used to estimate the position of the wing. Moreover, an on-board inertial measurement unit can additionally
be used to improve position data [26]. The line angle sensors are assumed to be optical encoders measuring the angle
between the tethers and the ground, for the elevation angle θ, and between the projection of the tethers on the ground and
the symmetry axis of the ground unit, for the azimuthal angle φ. Such encoders have various sources of errors and in
general the accuracy is usually around ±1 count, e.g an encoder with a 10 bit resolution has an additive error of less than
0.4◦.

The additive error from the encoder can be expressed as

φ̃ = φ+ εφ (17)

θ̃ = θ + εθ (18)

where the variables with "˜" denote noise-corrupted measurements, variables without a "˜" the true values and ε represents
the additive error. The estimated center location of the path can be written as

φ̃c =
1

N

N∑
k=1

φ(k) + εφ(k) (19)

θ̃c =
1

N

N∑
k=1

θ(k) + εθ(k) . (20)

Again, k ∈ [1, N ] where one loop flown by the wing hasN sample points. The center location of the flown path is derived
from all measurement points captured during one loop. Assuming that the error at each time step is i.i.d. with zero mean,
we can expect that the error on the center location of the path in φ and θ converges to zero for high sampling rates. We
can in fact rewrite (19) and (20) as

φ̃c =
1

N

N∑
k=1

φ(k) +
1

N

N∑
k=1

εφ(k) ≈ φc + ε̄φ = φc

θ̃c =
1

N

N∑
k=1

θ(k) +
1

N

N∑
k=1

εθ(k) ≈ θc + ε̄θ = θc .

The difference in average traction force between the left and right half-paths can be calculated according to (11), using
(17) and (18); with some manipulations and assuming a sufficiently small sampling time, we obtain

∆F̄ (Θ, φW ) = F̄L − F̄R ' −
C
2

sin(2(φc − φW ))B̃ , (21)

where the positive term B̃ is given by

B̃ =
1

NL

NL∑
k=1

v(θ̃(k)) sin(2(|φ̃∆(k)|+ εφ(k)))

+
1

NR

NR∑
k=1

v(θ̃(k)) sin(2(|φ̃∆(k)|+ εφ(k)))

From (21) we see again that the difference in average traction force is zero only if φc = φW and that it is monotonic for
|φc − φW | ≤ π/4. From the equation above it can be seen that the influence of the line angle sensors’ errors on ∆F is
not changing its qualitative shape, or the estimation of the average path position. Therefore, the alignment in φ direction
is not affected by the line angle sensor errors.
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Similarly, the alignment in θ direction, using the average traction force F̄ (9), is not influenced by the errors in the
line angle sensors. Thus, such errors have no impact on the performance of the adaptation algorithm.

We next consider errors affecting the force measurements. Since the tether force is the main feedback variable used
by our algorithm, we expect the related errors to be more critical for the performance of our adaptation approach. The
force sensors are load cells installed at ground level, see e.g. [27] for details. The related measurement error is assumed
to consist of two components, an additive term and a multiplicative term:

F̃ (k) = F (k)(1 + δF ) + εF (k)

δF accounts for a calibration error of the signal gain of the sensor and εF is an additive bias accounting for noise with
zero mean plus a calibration offset. It is assumed that |δF | < 1. Thus, for a sufficiently small sampling time the effects of
the additive term on the average force become constant:

ε̄F ≈
1

N

N∑
k=1

εF (k) . (22)

The difference in average traction force can be written as

∆ ˜̄F = ˜̄FL − ˜̄FR (23)

where

˜̄FL =
1

NL

NL∑
k=1

{Cv(θ(k))m(φ(k)− φW ) (1 + δF ) + εF (k)|φ(k) ≥ φc}

˜̄FR =
1

NR

NR∑
k=1

{Cv(θ(k))m(φ(k)− φW ) (1 + δF ) + εF (k)|φ(k) < φc} .

(24)

Using (22), Equations (23)-(24) can be simplified to

∆ ˜̄F (Θ, φW ) = ˜̄FL − ˜̄FR ' −
C
2

sin(2(φc − φW ))B̃ , (25)

where the term B̃ is given by

B̃ =
1

NL

NL∑
k=1

v(θ(k)) sin(2|φ∆(k)|)(1 + δF )

+
1

NR

NR∑
k=1

v(θ(k)) sin(2|φ∆(k)|)(1 + δF )

+ε̄FL
− ε̄FR

From (25) we see that the qualitative behavior of ∆ ˜̄F as a function of φ is the same as that of the true values, hence the
alignment in φ direction is not affected by the force sensor errors, see Fig. 14 for a simulation example. It has to be noted
that for high sampling rates the values ε̄FL

and ε̄FR
are the same, since the same force sensors are used for both halves of

the path, hence their effect in (25) cancels out.
For the alignment in θ direction, we consider the difference of the average traction force of two loops at different

elevation angle θc, F̄1 and F̄2, since such a difference is used in our approach to compute the search direction for θc. Also
in this case, it can be shown that the considered force sensor errors do not affect the alignment algorithm. Assume that
two loops at different elevation angles θc were flown with average traction forces F̄1 and F̄2. Additionally, without loss
of generality, we can assume that F̄1 > F̄2. The difference of the measured average traction forces can then be written as

˜̄F1 − ˜̄F2 = F̄1 − F̄2 + F̄1δF − F̄2δF + ε̄F − ε̄F
'
(
F̄1 − F̄2

)
(1 + δF ) .

From this we can see that the additive error term does not play a role, and that the multiplicative error only changes
the magnitude of the difference of the two flown loops, but not the sign (which is used in the optimization/adaptation
algorithm), i.e. the qualitative behavior of the measured force as a function of ϑc is the same as that of the true force, see
Fig. 15 for an example.
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Figure 14: Simulation results. Difference in average traction force ∆F̄ as a function of the misalignment between the
average loop location and the wind direction, computed using the point-mass model with δF = 0.15, εF = 250± 100 N
(normally distributed). The true ∆F̄ (dashed) and measured ∆ ˜̄F (solid) are shown.
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Figure 15: Simulation results. Average traction force F̄ as a function of the average loop elevation θc, computed using
the point-mass model with δF = 0.15, εF = 250± 100 N (normally distributed). The true F̄ (dashed) and the measured
˜̄F (solid) are shown.

5.2 Turbulences
In a real-world system, the incoming wind will never be perfectly smooth and some fluctuations, such as wind gusts or
turbulences, will be present. Using the wind shear profile (1), this can be expressed as

Wt(k, φ, θ) = W0

(
r sin (θ)

Z0

)α
+W∆(k, φ, θ)

where Wt stands for the wind profile with added turbulences and W∆ is the change in wind speed around the nominal
wind value due to turbulences for a given point in time and space. For the sake of simplicity of notation, we omitted
the sampling time k for the position angles φ and θ. As it can be seen from (6), changes in the wind speed influence the
traction force quadratically. Thus,W∆ will significantly affect the traction force developed by the wing and, consequently,
the performance that can be achieved by the adaptation algorithm.

Turbulences are a very complex phenomena, for which a theoretical analysis is difficult to carry out. On the other
hand, there exist state-of-the-art turbulence models readily available in public toolboxes, such as TurbSim [28]. These can
be used to study the effects of turbulences on the system and on the adaptation algorithm via simulations. The wind fields
generated with TurbSim, which is a tool used for wind mill analysis, use a measure for the turbulence strength called
intensity I , defined as

I =
u′

U
,

where U is the mean velocity and u′ is the root-mean-square of the turbulent velocity fluctuations. A turbulence intensity
of 10 % and more is generally considered as strong and 1 % to 5 % as medium. The generated wind fields provide us
with a value of W∆ at each sampling time and any point in space. We used TurbSim with the Kaimal power spectrum to
generate the turbulence values W∆, see Fig. 16 (details about the turbulence model can be found in [28]).

Due to the turbulent wind, the traction forces experienced during flight will unlikely be equal to their nominal values
F̄ and ∆F̄ , rather they will lie in an interval around such nominal values, see Figs. 17 and 18.
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Figure 16: Simulated turbulent wind speed in longitudinal direction over time for three different turbulence intensities
with a average wind speed of 5.4 m s−1, 1 % (solid), 5 % (dashed), and 10 % (dotted).

Regarding the φc alignment, i.e. seeking the optimal azimuthal position of the flown path, the presence of turbulence
gives rise to a range, ∆φc, of φc values for which a measure of ∆F̄ = 0 is possible:

∆φc = max
(
φc|∆F̄ = 0

)
−min

(
φc|∆F̄ = 0

)
,

Thus ∆F̄ = 0 does not imply that the average loop location is aligned with the nominal wind, i.e. φc = φW . Within these
azimuthal average positions, the optimization algorithm might make a step in the wrong direction, see Fig. 17. Estimating
∆φc is not straightforward, since it depends on the current wind situation at the the wing’s position. However, we can
reduce the size of ∆φc at the expense of convergence speed. In particular, an intuitive idea to increase the robustness of
the approach against turbulences is to use averaged quantities over more than a single flown loop. This means, instead
of comparing the values of a single loop, Navg > 1 loops are measured before the average values of ∆F̄ and F̄ are
calculated. With this approach, equations (12) and (14) become:

F̄ (Θ, φW ) =
1

NavgN

Navg∑
k=1

N∑
k=1

F (k)

∆F̄ (Θ, φW ) =
1

Navg

Navg∑
k=1

F̄L − F̄R ,

where F̄L and F̄R are from (13).
This modification can easily be integrated into Algorithm 1, by changing the first if statement on line 2, which then

makes sure that Navg loops are flown instead of just one before the average forces are calculated.
In Fig. 17, the values of ∆F̄ as a function of φc in a turbulent wind flow are shown, for the case Navg = 1 (gray dots).

The same figure shows the envelope of ∆F obtained with Navg = 5. It can be noted that in this case the use of Navg = 5
decreases ∆φc by almost a factor of two.

An example of the effect that Navg has on ∆φc for different turbulence intensities is shown in Fig. 19. For this
analysis, 100 different turbulent wind fields were generated. The point-mass model controlled by controller K was then
simulated for 300 s. The collected data was used to estimate the range ∆φc. It can be seen that Navg = 5 gives already a
good improvement for strong turbulences.

Similarly, for the θc alignment there exists a range, ∆θc, of θc values for which a measure of the same F̄ value is
possible. Due to the shape of the function F̄ , this range gets larger closer to the optimal θc value for a given turbulence
intensity. This could lead to steps of the adaptation algorithm away from the optimal elevation of the nominal traction
force. Also here, the envelope of F̄ is decreased by using Navg > 1 and thus reducing the sensitivity of the approach with
respect to turbulence. In Fig. 18, the values of F̄ for different values of θc in a turbulent wind flow are shown, together
with the effect of using Navg = 5. It can be noted that in this case the use of Navg = 5 decreases ∆θc by more than a
factor of two.
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Figure 17: Simulation results. Average traction force differences using the point-mass model for different values of φc,
with θc = arctan (

√
α), W0 = 5 m s−1, I = 5 %. ∆F̄ with no turbulences (solid), ∆F̄ for turbulent wind flow (gray

dots), the envelope of ∆F̄ obtained by using Navg = 1 (dash-dot) and Navg = 5 (dotted), and ∆φc (horizontal line) for
Navg = 1 (between circles) and for Navg = 5 (between squares).
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Figure 18: Simulation results. Average traction forces using the point-mass model for different values of θc, with φc =
φW , W0 = 5 m s−1, I = 5 %. F̄ with no turbulences (solid), F̄ for turbulent wind flow (gray dots), the envelope of F̄
obtained by using Navg = 1 (dash-dot) and Navg = 5 (dotted), and example of interval ∆θc where the same average
traction force can be experienced (horizontal line) withNavg = 1 (between circles) and withNavg = 5 (between squares).
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Figure 19: Simulations results. Value of ∆φc with different turbulence intensities for different values of Navg obtained
using the point-mass model. Three different turbulence intensities are shown: 1 % (solid), 5 % (dashed), 10 % (dotted).
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Table 1: Point-Mass Model Parameters used
for the numerical simulations

A = 9m m = 2.45 kg r = 30m
nl = 3 dl = 0.003m
CL = 0.8 CD = 0.134 CD,l = 1.2
W0 = 5m s−1 Z0 = 4m α = 0.1

5.3 Discussion
We showed that errors in the line angle and force sensors do not impair the performance of our adaptation algorithm. For
the line angle sensor errors, we only considered an additive error with zero mean. Systematic constant errors, such as
misalignment of the sensors, do not affect the performance of the algorithm since they would introduce an offset in the
force-position curves without altering their qualitative shape, which is exploited by our approach. For the force sensor
errors, we considered a constant multiplicative error and an additive error. Again, these errors do not affect the adaptation
algorithm, since the qualitative system behavior is unaffected. Note that we assumed in both cases a fast sampling rate
such that errors from high frequency noise get averaged out over the course of one flown (half-) path. To this end, in our
experience a sampling rate of 50 Hz is sufficiently large to make errors on the computation of the average traction forces
negligible.

As a last point, we analyzed the effect of turbulent wind on the adaptation algorithm using a dynamical point-mass
model in simulation where the turbulent wind was generated with TurbSim. We showed that turbulences can cause the
algorithm to make steps in the wrong direction around the optimal average location. The range of positions where this
can happen increases with the turbulence intensity I , but it can be reduced in size by using averaged traction forces over
multiple flown loops. Additionally, the stopping criterion ∆F̄min for the azimuthal position adaptation can be used as a
tuning parameter to reduce steps in the wrong direction.

6 Numerical simulations and experimental results
We tested the adaptation approach in simulation using the same point-mass dynamical model of the system as in [12] and
the controller presented in [24]. The results indicate that the approach is able to tune in real-time the underlying controller
K in order to follow a changing wind direction and adapt the paths’ average elevation according to the (unknown) wind
profile. The main parameters of the model are listed in Table 1.

According to simulations, the approach performs well in a turbulent wind field with an appropriate choice of Navg . A
plot with the time course of the average location of the path and the wind direction in such conditions with Navg = 3 and
Navg = 5 can be seen in Fig. 20.
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Figure 20: Simulation results obtained by applying the proposed algorithm on the point-mass model with turbulent wind
with intensity 5 % with Navg = 3 (black) and Navg = 5 (light gray). The solid and dashed lines represent the average φ
and θ positions of the path, φc and θc, respectively. The gray dotted line shows the true, turbulent wind direction.

Additionally, simulation results show that wider loops perform better in turbulent wind situations. This is due to the
fact that each half-loop takes longer to complete and thus turbulences get averaged out more than on shorter paths in time.
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This goes along the same direction as increasing Navg .
Experimental test flights using the presented algorithm have also been carried out on a small scale prototype (shown

in Fig. 21), built at UC Santa Barbara, with promising results. The prototype used two different three-line, inflatable kites
with a constant tether length of r = 30 m. The employed power kites were Airush One 6 m2 and 9 m2 kites. Due to the

Figure 21: Small-scale prototype built at the University of California, Santa Barbara, to study the control of tethered
wings for airborne wind energy.

short lines, a measurement of φW with good accuracy was possible with an anemometer approximately 4 m above the
ground. The algorithm was set to use Navg = 3. For more details on the test setup, see [24] and [27].

A test flight with the 9 m2 kite is reported in Figs. 22-25. The underlying controller was initialized to fly a path with
a misalignment of roughly 20◦ from the wind direction φW and with a overly high elevation. The algorithm was able
to correct the misalignment with the wind direction in the first 150 s, i.e. roughly 30 flown loops, and then to adapt the
azimuthal position according to wind direction changes while improving the average elevation, see Fig. 22. The initial
and final paths of the wing with the measured trajectory (φc, θc) can be seen in Fig. 23. Note that although the paths seem
not to differ much in position, yet the force increase is significant, see Fig. 24, as expected from the sensitivity analysis
presented in section 3. The corresponding wind speed during the test flight can be seen in Fig. 25, with an average value of
5.3 m s−1. Note that due to the alignment with the wind the loop becomes more symmetric, thus indicating that measures
of elapsed time or speed of the wing in a half path could also potentially be used, instead or in addition to the force, to
detect a misalignment with the wind direction.

A test flight with the 6 m2 kite, where it was initially commanded to fly a path with a misalignment of roughly 25◦

from the wind direction φW and with a overly high elevation, is reported in Figs. 26-29. Also in this case, the algorithm is
able to first correct the misalignment with the wind and then to improve the traction force by changing θc. A short movie
of the test with the adaptive algorithm and this kite is also available online [29]. In Fig. 26, the time courses of the wind
direction φW and of the average position φc and θc of the path, modified in real-time by the proposed algorithm, can be
seen. In Fig. 27, the corresponding average traction force for each full path is shown. It can be noted that the average
force increases significantly thanks to the adaptive approach. The time course of the wind speed magnitude is shown in
Fig. 28. Finally, Fig. 29 shows two measured flown paths, at the beginning and at the end of one test, together with the
optimal location in terms of average angle φc and with the measured trajectory of (φc, θc).

7 Conclusion an future work
We presented an analysis of the average traction force generated by a tethered wing and, based on the results of such
analysis, we proposed an algorithm to adapt and optimize in real-time the average position of the flown path without exact
knowledge of the wind direction and profile. The algorithm is not dependent on the system configuration, e.g. number of
lines or position of the generator, and it can be used as an extension of any working controller for a tethered wing, provided
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Figure 22: Experimental test results using a small-scale prototype with a 9 m2 kite. The φc position (solid) and θc position
(dashed) of the paths, and the wind direction φW (dotted) are shown.
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Figure 23: Experimental test results using a small-scale prototype with a 9 m2 kite. Initial (dashed) and final (solid) paths
flown by the wing corresponding to the data shown in Figs. 22, 24, and 25. The trajectory of (φc, θc) (dotted) and the
initial and final (φc, θc) locations (circles) are shown together with the optimal φ∗c location (dashed-dotted).
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Figure 24: Experimental test results using a small-scale prototype with a 9 m2 kite. Course of the average traction force
F̄ .
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Figure 25: Experimental test results using a small-scale prototype with a 9 m2 kite. Course of wind speed measured
roughly 4 m above the ground. The average wind speed was 5.3 m s−1.
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Figure 26: Experimental test results using a small-scale prototype with a 6 m2 kite. The φc position (solid) and θc position
(dashed) of the paths, and the wind direction φW (dotted) are shown.
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Figure 27: Experimental test results using a small-scale prototype with a 6 m2 kite. Course of the average traction force
F̄ .
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Figure 28: Experimental test results using a small-scale prototype with a 6 m2 kite. Course of wind speed measured
roughly 4 m above the ground. The average wind speed was 4.3 m s−1.
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Figure 29: Experimental test results using a small-scale prototype with a 6 m2 kite. Initial (dashed) and final (solid) paths
flown by the wing corresponding to the data shown in Figs. 26-28. The trajectory of (φc, θc) (dotted) and the initial and
final (φc, θc) locations (circles) are shown together with the optimal φ∗c location (dashed-dotted).
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that the controller is able to control the wing in order to fly on a symmetric horizontal path and to attain a reference position
in terms of average location of the path in the wind window. We tested the approach both with numerical simulations and
real-world experiments, showing good performance in adapting and optimizing the system’s operation in the presence of
unknown and changing wind conditions with turbulences.

[Detailed Adaptation Algorithm] The outline of the Algorithm 2 below is a more detailed version of Algorithm 1. Note that
this algorithm uses Navg loops to calculate the average forces. For path-related variables, we use i as the index standing for the last
Navg flown full paths, e.g. F̄ (i) is the average traction force of the last Navg paths and θc(i) the average θ position of the last Navg
paths. The employed coordinate search method uses the step sizes δφ and δθ for the adaptation of the φc and θc directions. Both step
sizes have a defined minimal and maximal value, denoted by a subscript min or max. At each change in φc or θc, the related step size
is adapted with a scaling factor c > 1 (if the step direction is unchanged) or 1/c (if the step direction changes).

Algorithm 2: Optimization/Adaptation - Detailed

1 while true do
2 if Navg complete loops flown then
3 if |∆F̄ (i)| > ∆F̄min then
4 if ∆F̄ (i) > 0 then
5 if ∆F̄ (i− 1) > 0 then
6 δφ = min{δφ,max, c δφ}
7 else
8 δφ = max{δφ,min, 1

c δφ}
9 end

10 φc(i+ 1) = φc(i) + δφ
11 else /* ∆F̄ (i) < 0 */
12 if ∆F̄ (i− 1) < 0 then
13 δφ = min{δφ,max, cδφ}
14 else
15 δφ = max{δφ,min, 1

c δφ}
16 end
17 φc(i+ 1) = φc(i)− δφ
18 end
19 else
20 if F̄ (i− 1) < F̄ (i) then
21 δθ = min{δθ,max, c δθ}
22 if θc(i− 1) > θc(i) then
23 θc(i+ 1) = θc(i)− δθ
24 else
25 θc(i+ 1) = θc(i) + δθ
26 end
27 else /* F̄ (i− 1) ≥ F̄ (i) */
28 δθ = max{δθ,min, 1

c δθ}
29 if θc(i− 1) > θc(i) then
30 θc(i+ 1) = θc(i) + δθ
31 else
32 θc(i+ 1) = θc(i)− δθ
33 end
34 end
35 end
36 end
37 end

23



References
[1] L. Fagiano and M. Milanese. Airborne wind energy: an overview. In American Control Conference 2012, pages 3132–3143,

Montreal, Canada, 2012.

[2] M. L. Loyd. Crosswind kite power. Journal of Energy, vol. 4(3), pp.106–111, June 1980.

[3] Makani Power Inc. (Sep. 2013). Alameda, CA, USA [Online]. Available: http://www.makanipower.com.

[4] Sky Sails GmbH & Co. (Sep. 2013). Hamburg, Germany [Online]. Available: http://www.skysails.info.

[5] Ampyx Power. (Sep. 2013). Den Haag, The Netherlands [Online]. Available: http://www.ampyxpower.com.

[6] Windlift, Inc. (Sep. 2013). Emden, Germany [Online]. Available: http://www.windlift.com.

[7] Kitenergy S.r.l. (Sep. 2013). Turin, Italy [Online]. Available: http://www.kitenergy.net.

[8] Enerkite GmbH. (Sep. 2013). Berlin, Germany [Online]. Available: http://www.enerkite.de.

[9] Swiss Kite Power. (Sep. 2013). Windisch, Switzerland [Online]. Available: http://www.swisskitepower.ch.

[10] M. Canale, L. Fagiano, and M. Milanese. Power kites for wind energy generation. IEEE Control Systems Magazine, 27(6):25–38,
December 2007.

[11] A. Ilzhöfer, B. Houska, and M. Diehl. Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind
power generators. International Journal of Robust and Nonlinear Control, 17:1590–1599, 2007.

[12] M. Canale, L. Fagiano, and M. Milanese. High altitude wind energy generation using controlled power kites. IEEE Transactions
on Control Systems Technology, 18(2):279–293, mar. 2010.

[13] E.J. Terink, J. Breukels, R. Schmehl, and W.J. Ockels. Flight dynamics and stability of a tethered inflatable kiteplane. AIAA
Journal of Aircraft, 48(2):503–513, 2011.

[14] C. Vermillion, T. Grunnagle, and I. Kolmanovsky. Modeling and control design for a prototype lighter-than-air wind energy
system. In American Control Conference (ACC), 2012, pages 5813 –5818, June 2012.

[15] J. H. Baayen and W. J. Ockels. Tracking control with adaption of kites. IET Control Theory and Applications, 6(2):182–191,
2012.

[16] P. Williams, B. Lansdorp, and W. Ockels. Optimal crosswind towing and power generation with tethered kites. Journal of
guidance, control, and dynamics, 31(1):81–93, 2008.

[17] B. Houska and M. Diehl. Optimal Control for Power Generating Kites In European Control Conference (ECC), 2007, Kos,
Greece, 2.-5. July 2012.
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