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Abstract. The possibility of using a variety of sensor signals acquired during metal powder bed fusion processes, to 

support part and process qualification and for the early detection of anomalies and defects, has been continuously 

attracting an increasing interest. The number of research studies in this field has been characterised by significant 

growth in the last few years, with several advances and new solutions compared with first seminal works. Moreover, 

industrial powder bed fusion systems are increasingly equipped with sensors and toolkits for data collection, 

visualisation and, in some cases, embedded in-process analysis. Many new methods have been proposed and defect 

detection capabilities have been demonstrated. Nevertheless, several challenges and open issues still need to be 

tackled to bridge the gap between methods proposed in the literature and actual industrial implementation. This 

paper presents an updated review of the literature on in-situ sensing, measurement and monitoring for metal powder 

bed fusion processes, with a classification of methods and a comparison of enabled performances. The study 

summarises the types and sizes of defects that are practically detectable while the part is being produced and the 

research areas where additional technological advances are currently needed. 

Keywords: in-situ; in-process; sensing; metrology; monitoring; powder bed fusion; additive manufacturing; defects. 

 

 

1 Introduction 

Since early adoptions of metal additive manufacturing (AM) technologies, the opportunity of exploiting the 

layerwise production paradigm to monitor the process and detect flaws at their onset stage, and possibly implement 

closed-loop control strategies, has attracted the interest of the research and industrial communities. The seminal 

studies of Tapia and Elwany (2014) and Mani et al. (2015) clearly pointed out the measurement needs to take 

advantage of the large amount of in-process information made available equipping AM systems with various kinds 

of sensors. Other authors reviewed the literature devoted to in-situ sensing and monitoring methods (Spears and 

Gold, 2016, Everton et al., 2016, Grasso and Colosimo, 2017), summarising and comparing various possible 

solutions to make sense of large amounts of data measured layer by layer. In the last few years, the number of 

studies has been characterised by an impressive growth as shown in Fig. 1 (details about the procedure adopted in 

this study for the literature collection are given in the Appendix). By limiting the field of analysis to powder bed 

fusion (PBF) processes only, the number of papers published since 2018 is more than twice the overall number 

published before 2018. Moreover, various commercial tools have been made available by almost all PBF system 
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developers and several novel patents related to in-situ sensing, measurement and monitoring techniques have been 

released in the last few years. Some methodologies previously explored in seminal papers have been consolidated 

and validated in most recent works, and a relevant number of new approaches has been presented in the last couple 

of years, paving the way for new research directions and new industrialisation opportunities. First studies mainly 

focused on the feasibility analysis of measurement methods to characterise quantities related to the process stability 

and the properties of the manufactured part, with only a few attempts to develop automated defect detection 

techniques. In the last couple of years, instead, the number of studies presenting machine learning and data mining 

solutions for real-time feature extraction and anomaly detection or classification has exponentially grown: about 

20% of studies published since 2018 presented a machine learning tool to process and analyse the in-situ gathered 

data (Wang et al. 2020a, Goh et al. 2021). Such fast and wide evolution of the state of the art has motivated the 

present study, whose main goal is to provide an up-to-date review of the many new results achieved so far and the 

research questions that still need to be answered.   

 

 

Figure 1. Number of publications presenting methods for in-situ sensing and/or in-situ monitoring of PBF processes (the 

figure includes all papers devoted to in-situ sensing and monitoring methods in PBF reviewed in the present study and it is 

based on Scopus and Google Scholar databases) 

 

Special focus is devoted to the classification of the different quantities that can be measured during the process, 

also known as “process signatures”, and their correlation with detectable defects. The present study attempts to 

summarise and highlight the kind of defects and anomalies that are currently detectable and the suitable sensing and 

data analysis techniques for each of them. In-situ measurement methods are reviewed and compared in terms of 

spatial and temporal resolutions and other measurement performances, with special attention to issues related to 

their adoption on industrial systems. In-situ monitoring methods are reviewed and compared in terms of final 

performances (e.g., actual defect detection rate and localisation accuracy, misclassification rates), implemented 

algorithms, training needs and computational aspects.  
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This study focuses on laser and electron beam PBF processes (L-PBF and EB-PBF respectively) only (an 

overview of the PBF process can be found in Gibson et al. 2014, Spears and Gold 2016, Sing et al. 2021, Popov et 

al. 2021, Körner 2016, King et al. 2015). This choice is motivated by different factors. First, metal PBF processes 

currently represent the category of AM processes with the highest industrial maturity and spread (Leach and 

Carmignato 2020). Second, the largest part of the literature devoted to in-situ sensing, measurement and monitoring 

is concentrated on PBF applications. Third, L-PBF and EB-PBF are also the technologies where the highest maturity 

of industrial monitoring tools has been achieved so far, since all industrial PBF systems are equipped with various 

kinds of sensors and data collection, visualisation and storage tools. Several research institutes have also developed 

PBF prototype systems used to test and demonstrate innovative in-situ sensing, monitoring and control 

methodologies that are still difficult or impossible to validate on industrial systems. Despite such great variety of 

research and industrial efforts to make the most efficient and effective use of data gathered during the PBF process, 

many open issues still have to be addressed and, for some types of defects, there is still a lack of methods that are 

robust enough to be directly implemented in industry.  

This study aims to provide an updated picture of both the potentials and limitations of the methods presented and 

tested so far. It is conceived as an updated review, with a special focus on more recent research published in the last 

three – four years, but also as a self-contained paper including a comprehensive picture of the literature since first 

seminal studies. The present review is therefore meant as a state-of-the-art analysis for experts, who are willing to 

have an update on most recent results and novel solutions, but also for readers and newcomers in the field, who are 

willing to have a first and thorough introduction to the research on in-situ measurement and monitoring approaches. 

A brief overview on process control and in-situ defect correction methods exploiting in-situ measured quantities 

completes the study, to highlight novel and future research directions towards novel generations of zero-defect AM 

capabilities. 

The paper is organised as follows. Section 2 summarises the terminology and main definitions adopted in 

following Sections. Section 3 reviews in-situ measurement methods, focusing on the quantities that can be measured 

in-situ, methods of their measurement and the measurement performance that could be achieved. Section 4 reviews 

in-situ monitoring methods showing the defects and process anomalies that can be practically detected and classified 

and the defect detection capabilities that still need to be refined or developed. In Section 5, the overview of feedback 

and feedforward control methods that can take advantage of in-situ gathered data is briefly discussed. Section 6 

concludes the paper and presents a discussion on open issues and future research directions. 

 

2 Definitions and terminology 

2.1. Terminology 

Several terms referring to measurement and monitoring techniques are used in the literature and reviewed in this 

document. In some cases, there is inconsistency in the use of such terms, not only in the reviewed literature but also 
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in different scientific fields. This Section provides a glossary of terms to avoid confusion on how different 

measurement and monitoring methods can be classified. The most relevant terms, for which a definition is provided 

below, are summarised in Fig. 2. We have adopted the definitions that were developed during a recent roadmap 

exercise in the UK (Leach 2020). 

 

 

 
Figure 2. Graphical representation of different terms associated with measurement and monitoring techniques (from Leach 

and Carmignato 2020) 

 

The term “in-process” refers to any measurement gathered during the process or between successive 

manufacturing steps within the same production line. In-process measurements are synchronised with the different 

stages of the manufacturing process so that the process can be monitored. When in-process measurements are 

performed right before, right after or between manufacturing stations, they are referred to as “in-line” 

measurements. In-line measurements are taken on separate measurement systems along the standard production line 

where manufacturing is not occurring. Therefore, they belong to the category of “off-machine” measurements, i.e., 

measurements carried out outside the machine where the manufacturing process occurs. When in-process 

measurements are performed using sensors that are installed on the machine where the process is occurring, they 

are referred to as “on-machine” measurements. On-machine measurements that primarily record data directly from 

the location where the process is occurring are referred to as “in-situ” measurements. The term “in-situ” is the most 

widely used in the AM literature to indicate sensing and monitoring techniques aimed at gathering information 

about the process stability and the product quality while the part is being produced. Finally, when measurements 

are not performed in-process, they are referred to as “off-line”. They belong to the category of off-machine 

measurements as they are commonly performed outside the manufacturing environment, either on a measurement 

station in the factory that is separate from the production line or in a laboratory.  

For the purposes of this review, we focus only on in-situ methods. In this field, it is possible to distinguish 

between “in-situ measurement” and “in-situ monitoring” methods. In-situ measurement refers to the ability to 

measure quantities with in-situ sensors, either to understand and characterise the process or to quantify quality 

characteristics of the part while it is being produced. “In-situ monitoring”, instead, refers to the in-process detection 

of errors, anomalies and out-of-control process states that could lead to defects in the part, hence involves the 

definition of an alarm rule or a classification algorithm.  
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The present study first reviews in-situ measurement methods, focusing on which quantities can be measured and 

how (Section 3). In-situ monitoring methods are reviewed in Section 4, focusing on which defects can be practically 

detected during the process and how. A different task is “process control”, i.e., a closed-loop control of process 

parameters at different temporal scales, e.g., from point to point, from track to track or from layer to layer, based 

on information gathered in-situ. A brief overview of process control methods is provided in Section 5.  

 

2.2. Classification of measurement levels in PBF 

The term “process signature” was first used by Mani et al. (2015) in the framework of in-situ sensing in AM. The 

term refers to one or more quantities that can be measured during the process to gather relevant information about 

the process stability, underlying physical phenomena and the onset of possible defects and errors. The process 

signatures of interest in PBF processes may be classified on the basis of the information they enclose, and the spatial 

and/or temporal scales involved in their measurement. In this study, we propose a classification of in-situ 

measurement methods that inherits classifications proposed in previous studies (Grasso and Colosimo 2017) and 

extends it to include new research directions arisen in the literature. Such classification involves the five levels 

shown in Fig. 3. With respect to the categorisation proposed in Mani et al. (2015), in this study we refer only to 

“observable signatures”, i.e., measurable quantities, and we leave the discussion of “derived signatures”, i.e., 

quantities estimated via process modelling, to the literature on PBF process simulation. 

 

 

Figure 3. Five in-situ measurement levels applicable to PBF processes 

 

 

Level 0 involves quantities that can be measured with embedded sensors typically used in PBF systems to keep 

machine states and environmental conditions under control. Level 0 measurements include chamber pressure, 

ambient temperature and oxygen content, current and torque signals from linear axis motors, inert gas flow, build 
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plate temperature, status of installed filters, and other parameters. Such quantities are used to guarantee a normal 

machine functionality and stop the process in case of unproper operating conditions. Level 0 methods mentioned 

here refer to a different perspective, i.e., to a more advanced use of such signals to automatically detect anomalies 

and unstable process states that could possibly cause non-conforming part properties without activating machine 

state alarms. 

Level 1 involves measurements gathered once (or more than once) per layer, with a field-of-view that covers the 

entire build area or a region of interest. Two families of process signatures can be envisaged at this level. The first 

involves quantities that are representative of the homogeneity of the powder bed and/or related to the presence of 

powder bed contaminations. The second involves either geometrical and dimensional features of the printed slice 

or its surface topography.  

Level 2 includes quantities that can be measured with temporal resolutions considerably higher than those used 

in Level 1. Level 2 involves process signatures that can be measured while the laser or the electron beam is displaced 

within the build area to produce the current layer. This entails the capability to observe the interaction between the 

beam and the material, the thermal history of the process and its by-products, such as spatters and plume emissions. 

Level 3 involves measurements of process signatures representative of the highest level of detail at which the 

PBF process can be observed in the current layer, i.e., the melt pool. The melt pool is known to be a primary feature 

of interest in any process that involves a beam-material interaction aimed at achieving a local fusion of the material.  

Level 4 finally regards the capability of gathering information about phenomena occurring under the currently 

processed layer. It includes measurements that can be obtained with ad-hoc prototype machine configurations that 

enable transverse X-ray imaging, but also ultrasound and acoustic emissions caused by the release of elastic energy 

and plastic deformations in the solidified material.  

Figure 4 shows how the literature devoted to in-situ measurement and monitoring for PBF processes is divided 

into these five measurement levels and more recent contributions (2018 – 2020) divided by monitoring level. 

 

 

Figure 4. Overall percentage of publications per in-situ measurement level (left) and number of publications per in-situ 

measurement level and publication period (right) (the figure includes all papers reviewed in the present study) 
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Figure 4 shows that the largest portion of the literature is devoted to level 1, 2 and 3 methods. Level 4 methods 

have attracted increasing interest in the recent years due to the potentials of acoustic emission measurements and 

the development of novel L-PBF system prototypes with integrated X-ray video imaging.  

In addition to the above mentioned levels, it is possible to divide in-situ measurements into two further categories 

based on the location of the sensor. “Co-axial measurement” refers to the use of sensors that are integrated directly 

into the laser’s optical path (a configuration that is enabled only in L-PBF), whereas “off-axis measurement” refers 

to the use of sensors that are placed outside the optical path of the beam, which is suitable in both L- and EB-PBF.  

 

3 In-situ sensing and measurement methods 

3.1 Level 0 methods – Use of embedded sensors 

Both L-PBF and EB-PBF systems require several embedded sensors to keep the build chamber environment 

under control and to guarantee the proper performance of the various process operations. However, publications 

proposed a more advanced in-process use of signals from such sensors only in EB-PBF applications as a possible 

source of information for in-situ anomaly detection (Grasso et al. 2018, Steed et al. 2017, Chandrasekar et al. 2020). 

Embedded sensor signals in EB-PBF are also known as “log signals”. They include column and chamber 

temperature and pressure signals, filament current and voltage, grid current and voltage, pulse signals representative 

of powder dosing, duration of each process phases, and many more. Steed et al. (2017) pointed out that many of 

these EB-PBF log signals are correlated with process errors and variations in process conditions. However, due to 

the large number of signals and their complex dependencies, both data visualisation and automated detection of out-

of-control patterns need the development of novel solutions. Steed et al. (2017) introduced “Falcon”, a tool for 

visualisation and analysis of large multivariate time series data generated by embedded sensors in EB-PBF (Figure 

5). The tool was used in studies to investigate correlations between log signals and actual defects in parts produced 

via EB-PBF (Yoder et al. 2017). Chandrasekar et al. (2020) showed that in situ analysis of rake position and rake 

sensor pulse signals could provide in-depth information about the powder spreadability.  

The use of rake pulse sensor signals was also investigated by Grasso et al. (2018b), but with a different goal, i.e., 

the development of a statistical process monitoring tool for the automated detection of defects related to incorrect 

powder spreading conditions. Grasso et al. (2018b) showed that in-process monitoring of the rake sensor pulse 

signals allowed the anticipated detection of geometrical errors caused by anomalies in the powder recoating 

operation. These seminal studies open up either to further possible solutions in the framework of in-situ process 

monitoring that require no additional sensors, or to new data fusion methods to take advantage of multiple signals 

coming from both embedded and external sensors (Colosimo and Grasso 2020). 
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Figure 5. An example of the Falcon data visualisation interface, from Steed et al. (2017) 

 

 

3.2 Level 1 methods – Powder bed and printed slice 

In-situ measurement and characterisation of layer properties (including the printed slice, a.k.a, the solidified layer, 

observed at the end of the melting phase, and the loose powder bed observed after the recoating operation) represent 

the primary way in which the layerwise production paradigm can be exploited for in-process qualification. By 

observing each layer, a large amount of information about process stability and part quality can be gathered. 

Measurements performed before laser or electron beam scanning inform about the presence of raw powder 

inhomogeneities, defects produced by the recoating system (rippling, bouncing effects, etc.) and the presence of so-

called super-elevated edges, i.e., areas of the previously printed slice that could not be fully covered by the new 

powder layer. Measurements performed after scanning, instead, enable the characterisation of the printed slice as 

well as the powder bed contamination caused by the beam-material interaction and process by-products.  

As far as the analysis of the printed slice is concerned, two major streams of research can be identified. One 

regards the characterisation and detection of out-of-plane irregularities in the printed area and its surface 

topography. Irregular surface patterns may produce undesired variability in the local powder thickness, with a 

resultant undesired variation of the actual energy density provided to the material. Surface irregularities may also 

interfere with the recoating operation, generating a propagation of defects within the build area. Another stream of 

research regards the reconstruction of the contours of the printed area to identify geometrical and dimensional 

deviations from the nominal shape. Table 1 summarises and classifies the literature devoted to level 1 methods 

depeding on the measured signatures of interest and the sensing equipment in L-PBF and EB-PBF. 

 

 

 

 

Page 8 of 66AUTHOR SUBMITTED MANUSCRIPT - MST-112379.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 9  
 

Table 1 – Literature devoted to level 1 in-situ sensing and measurement methods 

Signatures of interest Sensing method References (L-PBF) References (EB-PBF) 

Surface pattern or height map of 

the powder bed 

Off-axis imaging in visible range Scime et al., 2020; Angelone et al., 

2020; Zur Jacobsmuhlen et al., 2015; 

Scime and Beuth, 2018a,b; Foster et al., 
2015 

Grasso et al., 2020;  

Fringe projection (with single or 

multiple off-axis cameras) 

Land et al., 2015; Zhang et al., 2016a,b Liu et al. 2020a; Liu et al. 2019;  

Blade-mounted sensor Phuc and Seita, 2019; Barrett et al., 
2018b 

 

Surface pattern or height map of 

the printed slice 

Off-axis imaging in visible range Scime et al., 2020; Lu et al., 2020; 

Scime and Beuth, 2018a,b; Aminzadeh 
& Kurfess, 2019; Angelone et al., 2020; 

Imani et al., 2019a,b; Lu et al., 2019; 

Gobert et al., 2018; Abdelrahman et al., 
2017; Kleszczynski et al., 2014; Zur 

Jacobsmuhlen et al., 2015; 

Kleszczynski et al., 2012 

 

Off-axis NIR/IR imaging Mahmoudi et al., 2019; Bamberg et al., 

2016 

Yoder et al., 2019; Yoder et al., 

2018; Nandwana et al., 2018; 

Mireles et al., 2015; Schilp et al., 

2014; Ridwan et al., 2014; 
Schwerdtfeger et al., 2012; 

Rodriguez et al., 2012 

Fringe projection (with single or 
multiple off-axis cameras) 

Zhang et al., 2016a, b; Land et al., 
2015; Zhang et al., 2015; Kalms et al., 

2019 

Liu et al. 2020a; Liu et al. 2019 
 

Blade-mounted sensor Erler et al., 2014; Barrett et al., 2018b  

Inline coherent imaging Fleming et al., 2020; Depond et al. 

2018; Neef et al., 2014 

 

Electronic imaging  Wong et al., 2020; Wong et al., 
2019a,b, 2018; Pobel et al, 2019; 

Arnold et al., 2019; Arnold et al., 

2018 

Geometry of the printed slice  Off-axis imaging in visible range Pagani et al., 2020; Zur Jacobsmuhlen 

et al., 2019; Gobert et al., 2018; 

Caltanissetta et al., 2018; Gaikwad et 

al., 2019; He et al., 2019; Foster et al., 

2015 

Wong, 2020 

Blade-mounted sensor Barrett et al., 2018b  

 

 

As shown in Table 1, level 1 methods include a variety of sensing techniques, which produce different data 

formats and lead to different measurement performances and capabilities (Table 2). It is worth noting that in most 

reviewed studies, the term “spatial resolution” is commonly used in place of “instantaneous field of view” (iFoV), 

whereas the true spatial resolution depends on the inherent optical blur (Lane et al. 2016b). In this Section and in 

following ones, the term “spatial resolution” will be used to indicate the width of an individual pixel on the 

measurement surface. 

Sections 3.2.1 to 3.2.5 review the in-situ sensing and measurement methods shown in Table 1 and Table 2.  
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Table 2 – In-situ measurement performances for level 1 methods (includes only references where resolution values were specified) 

Sensing method Process Spatial (lateral) resolution 

/µm/pixel  

Vertical resolution 

/µm/pixel 

References 

Off-axis imaging in 

visible range 

L-PBF 7  

10 – 13 µm/pixel 
20 

24  

 
20 - 30  

15 - 50  

50  
45 – 88  

125  
20 – 290  

290  

na 

Aminzadeh and Kurfess, 2018 

Lu et al., 2020 
Caltanissetta et al., 2018 

Kleszcsynski et al., 2012, Zur 

Jacobsmulhen et al., 2015, 2013 
Zur Jacobsmulhen, 2019 

Foster et al., 2015 

Gobert et al., 2018 
Abdelrahman et al., 2017 

Pagani et al., 2020 
Scime et al., 2020 

Scime and Beuth, 2018a,b 

Off-axis NIR/IR 

imaging 

L-PBF 25  

100  
830  

na 

Mahmoudi et al., 2019 

Bamberg et al., 2016 
Schwerdtfeger et al., 2012 

EB-PBF 100  

 
170  

350  

Yoder et al., 2019, 2018, Nandwana et 

al., 2018 
Ridwan et al., 2014 

Rodriguez et al., 2012 

Fringe projection 

(with single or 
multiple off-axis 

cameras) 

L-PBF 6.8  

60  
72 – 76  

100  

- 

- 
- 

<10 

Zhang et al., 2016a,b, Land et al., 2015 

Zhang et al., 2015 
Dickins et al., 2020 

Kalms et al., 2019 

EB-PBF  <20 Liu et al. 2020a, 2019 

Blade-mounted 
sensor 

L-PBF 5.3  
20  

na 
- 

Phuc and Seita, 2019 
Barrett et al., 2018 

Inline coherent 

imaging 

L-PBF 30  

100  

7 

25 

Fleming et al., 2020 

Depond et al., 2018 

Electronic imaging EB-PBF 33.33  
320 - 358  

60  

50 - 100  

na 

Wong et al., 2020 
Wong et al., 2019a,b 

Arnold et al., 2020, 2018 

Pobel et al., 2019 

 

 

3.2.1. Off-axis imaging in the visible range 

Powder bed cameras are already available in most L-PBF systems, hence the development of in-situ measurement 

and monitoring methods, based on such sensing setups, has the advantage of being easily implementable in industry. 

Seminal works demonstrated the feasibility of layerwise imaging techniques for the detection of powder bed 

irregularities (Kleszczynski et al. 2014, Zur Jacobsmuhlen et al. 2015, Kleszczynski et al. 2012, Foster et al. 2015) 

and powder bed monitoring algorithms have already been implemented by L-PBF system developers (a summary 

of commercial monitoring toolkits is reported in Colosimo and Grasso 2020).  

The capability to detect local inhomogeneity in the powder bed and/or irregular surface patterns requires a 

machine vision setup involving a sufficient spatial resolution and appropriate lighting conditions. The importance 

of lighting conditions was pointed out by different authors (Kleszczynski et al. 2012, zur Jacobsmulhen et al. 2015, 

Foster et al. 2015, Abdelrahman et al. 2017). Caltanissetta et al. (2018) and Gobert et al. (2018) investigated and 

compared different illumination sources, showing that significantly different layerwise image processing 

performances could be achieved by varying the lighting conditions. Fig. 6 shows examples of layerwise images 

with different lighting conditions Gobert et al. (2018) . 
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Figure 6. In-situ powder bed images using different single lighting conditions, adapted from Gobert et al. (2018) 

 

In most studies, high spatial resolution cameras where installed on L-PBF machines exploiting available 

viewports, but in a few cases, powder bed cameras and illumination conditions already available in industrial 

systems were used, without any modification of the original setup (Scime et al. 2020, Pagani et al. 2020). Recent 

studies focused on the automated extraction of features from powder bed images for the classification of 

irregularities within both loose powder regions and previously melted areas (Scime and Beuth 2018a,b, Aminzadeh 

and Kurfess 2018, Lu et al. 2020, Gobert et al. 2018). Despite being a relatively mature solution in L-PBF, powder 

bed homogeneity monitoring via off-axis optical imaging has been investigated in only one study in EB-PBF 

(Grasso et al. 2020). Indeed, the high temperature differences within the powder bed in EB-PBF after powder 

recoating, and the difficulty to install additional sensors on EB-PBF machines, makes this kind of in-situ monitoring 

more challenging than in L-PBF. 

Layerwise optical imaging allows also the reconstruction of slice geometry. After the seminal work of Foster et 

al. (2015), various authors studied and tested layerwise image segmentation techniques in L-PBF to this aim. 

Caltanissetta et al. (2018) showed that, by combining appropriate image pre-processing and segmentation 

algorithms with suitable lighting configurations, sufficient measurement accuracy and repeatability to detect major 

geometric deviations could be achieved. Pagani et al. (2020) extended the study of Caltanissetta et al. (2018) by 

presenting a tuned image segmentation approach that is robust to non-optimal illumination conditions. Other 

methods for in-situ slice contour detection have been proposed by Aminzadeh and Kurfess (2016), Gaikwad et al. 

(2019), He et al. (2019) and zur Jacobsmuhlen et al. (2019). It is worth noting in-situ geometry reconstruction is not 

suitable for comparison against final tolerances carried out in situ. Indeed, tight tolerances commonly foree post-

processing and finising steps and some deviations (e.g., shrinkage and thermal stress-induced distortions) may not 

be captured on a layer-by-layer basis. Nevertheless, in-situ geometrical inspection could be suitable to anticipate 

the detection of anomalies that could be difficult or impossible to recover in post-processing (Pagani et al. 2020). 

 

3.2.2. Off-axis imaging in the NIR/IR range 

In L-PBF, some authors used NIR layerwise imaging for surface pattern analysis. Bamberg et al. (2016) presented 

a method called “optical tomography”, currently implemented by EOS in the EOSTATE monitoring toolkit. The 
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surface pattern of the printed area was reconstructed by translating off-axis NIR video frames, acquired during the 

the melting phase, into a layerwise image. Fig. 7 shows an example of layerwise patterns reconstructured via the 

optical tomography method discussed by Bamberg et al. (2016). Mahmoudi et al. (2019) generated layerwise images 

by combining thermal images of the melt pool acquired via an off-axis two-wavelength thermal camera.  

Layerwise NIR and IR imaging have been more commonly used in E-PBF, due to the hot nature of the process. 

In the seminal works of Schwerdtfeger et al. (2012), Rodriguez et al. (2012), Ridwan et al. (2014) and Mireles et 

al. (2015), layerwise IR vision was used to characterise the surface pattern of printed areas to detect flaws and 

surface anomalies. More recently, Yoder et al. (2018, 2019) and Nandwana et al. (2018) used a layerwise imaging 

system called “LayerQam”, developed by Arcam (GE Additive) for integration in its EB-PBF machines. The system 

consists of a NIR camera that acquires an image of the layer after the melting phase. Local pixel intensity variations 

and the presence of bright spots were used as proxies of possible volumetric flaws and material discontinuities in 

studies that correlated in-situ and ex-situ inspection results.  

 

 

Figure 7. Examples of optical tomography images for cubic samples with variation of energy density (a), a cylinder produced under 

shielding gas flow variation (b) and defect-free complex shapes (Bamberg et al., 2016) 

 

3.2.3. Fringe projection 

Off-axis imaging methods discussed in the previous sub-Sections are suitable to provide a 2D reconstruction of 

the powder bed and the printed slice. Local pixel intensity variations represent the only suitable driver to determine 

possible surface irregularities. Other methods have been applied in PBF processes to obtain a 3D reconstruction of 

the height map of the powder bed. One technique proposed by different authors is fringe projection, which enables 

a combination of layer imaging and topographical analysis. The technique requires one or multiple cameras and a 

projector: various configurations have been proposed in the literature, mainly for L-PBF. 

The simplest configuration exploits a single camera (single-view setup). With this approach, Zhang et al. (2016a) 

upgraded a method previously presented by the same authors (Zhang et al. 2016b and Land et al. 2015). Land et al. 

(2015) pointed out that the  most  important  factors in  determining  the  resolution  of  the  height  map  are the  

spatial  frequency of the projected fringes onto the build plane (that depends on the pixel density of the projector) 

and the geometric arrangement of the imaging hardware, which, in L-PBF applications, is  constrained  by  the  
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chamber  size  and  the location of available viewports. Other authors proposed and tested multi-view configurations, 

with two or more cameras, suitable to achieve higher resolution and accuracy (Kalms et al. 2019, Dickins et al. 

2020) and an example of surface reconstruction based on these methods is shown in Fig. 8. In terms of defect 

detectability, the recently published study by Dickins et al. (2020) presented a multi-view fringe projection system 

comprising four cameras now commercialised via Taraz Metrology, which is suitable to detect defects and 

anomalies with sizes larger than 100 μm with a horizontal field of view of about 350 mm. 

 

 

 

Figure 8. Example of height map and height surface profiles gathered through a multi-view fringe projection approach (values in 

millimeters, field of view of (150  150) mm) (Kalms et al., 2019) 

 

 

The use of fringe projection in EB-PBF on commercial machines from Weyland Precision was investigated by 

Liu et al. (2019, 2020a). The fringe projection measurements were taken during the time window between powder 

recoating and fusion and after EB melting. The proposed system involved a single-view architecture. 

 

3.2.4. Blade mounted sensors 

A few authors explored the idea of using sensors mounted on the recoater to gather a full-field and high spatial 

resolution 2D scan of the powder bed surface, similarly with flatbed document scanners. Tan Phuc and Seita (2019) 

installed a linear optical sensor on the recoater and equipped the L-PBF system with a microcontroller to synchronise 

the recoater speed with the image acquisition. With an optical resolution of 4800 dots-per-inch (DPI) over a length 

of 210 mm, a spatial resolution of 5.3 μm/pixel was achieved. By using the optical video imaging methods discussed 

in Section 3.2.1, analogous spatial resolutions could be achieved even with a limited field of view. Moreover, the 

line-scanning approach avoids any perspective distortions and issues related to non-homogeneous illumination 

conditions within the build area. Tan Phuc and Seita (2019) showed that their proposed approach could be used, not 

only for 2D surface pattern characterisation of the entire powder bed, but also to detect irregularities along the 

vertical direction. Due to the small depth-of-field of the linear sensors, super-elevated edges and variations in the 
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powder layer thickness were shown to fall out of the focal plane, resulting in “blurred” areas in the acquired images. 

Fig. 9 shows an example of a powder bed image obtained with the line-scanning methods presented by Tan Phuc 

and Seita (2019) and the corresponding estimate of the height map. 

 

 

Figure 9. Example of high spatial resolution powder bed line-scan optical imaging (top) and corresponding reconstruction of 

irregularities based on focus level mapping (b) (Tan Phuc and Seita, 2019) 

 

 

In a previous work, Barrett et al. (2018b) mounted a high-resolution laser triangulation line-scan system on the 

recoater arm of an L-PBF machine, to perform surface mapping of the powder bed before and after the melting 

phase. A similar concept was first proposed by Erler et al. (2014). The advantage of this approach, compared to that 

presented by Tan Phuc and Seita (2019), is the effective capability of reconstructing the powder bed topography via 

a height map. However, the obtained lateral resolution was lower than that reported by Tan Phuc and Seita (2019) 

(the commercial triangulation system used by Barrett et al. (2018b) was characterised by a profile data interval of 

20 μm and the laser scanner spans only a small fraction of the powder bed, i.e., a 15 mm scan width).  

 

3.2.5. In-line coherent imaging 

Rather than using an optical point or line triangulation instrument, some authors proposed a technique known as 

low-coherence interferometry or in-line coherent imaging, where the L-PBF laser beam itself is used, at the end of 

the melting phase, to reconstruct the surface topography of the layer (Fleming et al. 2020, Depond et al. 2018, Neef 

et al. 2014). This approach exploits a co-axial sensing configuration to collect local height measurements by raster 

scanning the area with an imaging beam, collecting the backscattered radiation and interfering it with a reference 

beam. The imaging beam is directed through the same lens used by the processing beam, which prevents the need 

for perspective corrections (Fleming et al. 2020). The seminal work of Neef et al. (2014) demonstrated the feasibility 

of the method. The topography to be captured was exposed to the radiation of a broadband light source integrated 

into the sensor within a (3  3) mm area scanned with a grid pattern of 4 μm sampling distance. The region of 
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interest was raster scanned at nearly constant speed, with pulses generated at defined pixel positions to trigger the 

optical sensor. With such a high lateral resolution, the resulting height map could be used to detect single powder 

particles and defects of lateral size lower than 50 μm. Two more recent studies further investigated the potential of 

this approach. Fleming et al. (2020) used a sensing apparatus enabling a vertical resolution of 7 μm and a lateral 

resolution of 30 μm. Fleming et al. (2020) also proposed a method to combine the in-line coherent imaging 

measurement with an in-situ surface topography correction method that exploits the same L-PBF laser for ablation 

of the layer surface. In Depond et al. (2018), the surface topography of a (44  44) mm square region was measured 

with a lateral resolution of 100 μm and a vertical resolution of 25 μm. The vertical resolution is theoretically limited 

by the coherence length of the light source (with the setup used by Depond et al. (2018), the theoretical limit was 

about 5 μm). The lateral resolution is limited by the beam diameter and the sampling strategy along the raster 

scanning direction. This method also requires a raster scan of the area after the melting phase, inflating the overall 

process duration.  

Fig. 10 shows an example of in-situ topography reconstruction via in-line coherence imaging from Neef et al. 

(2014). A different use of co-axial in-line coherent imaging for melt pool morphology monitoring was presented by 

Kanko et al. (2016) and is discussed in Section 3.4. 

 

Figure 10. Region of interest covered by the inline coherent imaging (left) and corresponding in-situ topography reconstruction (right) 

(Neef et al., 2014) 

 

3.2.6. Electronic imaging 

In EB-PBF, process by-products include secondary and backscattered electrons and X-rays. Thus, in principle, 

the electrons produced as by-products of the beam-material interaction could be used, in a scanning electron 

microscopy mode, to generate an electronic image of the layer. This idea has been explored and tested by various 

researchers. Wong et al. (2019a) presented a pilot study involving an in-house developed electronic imager. The 

system was installed on an Arcam A1 machine. The electron beam was used to scan the layers and metal surfaces 

while the heat shield was used as an electron collector. A raw image was produced, where each pixel value was 
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proportional to the signal strength of backscattered and secondary electrons. In a more recent work, the same authors 

showed the layerwise generation of bitmap images of the printed areas, for comparison against the nominal shape 

from the sliced CAD model (Wong 2020) and investigated the possibility of detecing different materials within the 

build area (Wong et al. 2020). 

Arnold et al. (2018) used the same approach, but only using backscattered electrons, and installed a circular 

backscattered electron detector shortly above the build chamber of an Arcam S12 machine. Arnold et al. (2018) 

demonstrated that this configuration enabled a much higher spatial resolution (60 μm/pixel). In this study, and in 

all previously mentioned studies, the electronic image was generated at the end of the melting phase by performing 

a raster scan of the entire build area with the electron beam. Arnold et al. (2020) demonstrated, instead, that the 

same image could be generated during the melting phase, leading to an “in-operando” monitoring capability. Along 

the direction orthogonal to the scan tracks, the resulting image resolution was equivalent to the hatch spacing 

(between 50 μm/pixel and 100 μm/pixel in the published work). Along the scan direction, the resolution was limited 

by the scan speed and the sampling rate of the measurement system, and was significantly higher than that in the 

other direction. In order to get square-shaped pixels, the data was downsampled to the lowest resolution. 

Fig. 11 shows some examples of electronic images in EB-PBF from Wong et al. (2019a) and Arnold et al. (2020). 

 

 

Figure 11. Examples of electronic images in EB-PBF: a) images with different magnification factors from Wong et al. (2019a), b) 

images of squared printed areas generated via in-operando backscattered signal acquisition from Arnold et al. (2020) for different materials 

(top panels: X15CrNiSi20-12, bottom panels: Ti6Al4V) with hatch spacing increasing from left to right (50 μm, 100 μm, 200 μm). 

 

 

 

 

3.3 Level 2 methods – Scan track 

In-situ process monitoring at track level involves in-process measurements of fast transient phenomena and high-

speed emissions during laser or electron beam scanning. Studies in the literature can be divided into two major 
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streams of research. The first regards measurements related to the local or global cooling history, either for the 

characterisation of spatio-temporal thermal gradients in each layer or for the detection of anomalous heat exchanges 

and cooling patterns. The second research stream involves the in-process measurement of quantities related to the 

by-products of the L-PBF process, i.e., spatters and plume emissions. The aim is either to understand underlying 

physical phenomena through the study of process by-products or to detect unstable process conditions and improper 

energy inputs.  

A third field of research in L-PBF is the in-situ measurement of acoustic emissions associated with air density 

variations caused by plasma formation and plume emissions during the laser scanning of the part. According to the 

nomenclature commonly used in laser welding (Ali and Farson 2002), these acoustic emissions are called air-borne 

emissions and can be captured by microphones or other sensors in the vicinity of the melting area. These acoustic 

emissions are different from the so-called structure-borne emissions, which require the contact sensors discussed in 

Section 3.5. A classification of the literature devoted to level 2 in-situ sensing and metrology is shown in Table 3. 

 

Table 3 – Classification of the literature devoted to level 2 methods 

Signatures of interest Sensing method References (L-PBF) References (EB-PBF) 

Heatmap / heating and 

cooling profiles 

Off-axis video-imaging in the 

visible range 

Yan et al., 2020; Colosimo and Grasso, 2018; 

Grasso et al., 2017 

Grasso et al. 2020; Lee et al., 2018 

Off-axis NIR/IR video imaging Mohr et al., 2020; Heigel et al., 2020a,b; 

Lough et al., 2020b; Paulson et al., 2020; 

Baumgartl et al., 2020; Gaikwad et al., 2020; 
Jalalahmadi et al., 2019; Plotnikov et al., 2019; 

Elwarfalli et al., 2019; Lough et al., 2019; 

Williams et al., 2019; Foster et al., 2018; 
Bartlett et al., 2018; Montazeri and Rao, 2018; 

Alldredge et al., 2018; Bamberg et al., 2016; 

Lane et al., 2016b; Schilp et al., 2014; Krauss 
et al., 2014; Krauss et al, 2012 

Boone et al., 2018; Cordero et al., 2017; 

Raplee et al., 2017; Rodriguez et al., 

2015; Price et al., 2014; Gong et al., 
2013; Price et al., 2012 

Off-axis multispectral 

pyrometry 

Montazeri et al., 2020; Mitchell et al., 2020; 

Dunbar and Nassar, 2018 

Cordero et al., 2017 

Process by-products 
(spatters and plume) 

Off-axis video-imaging in the 
visible range 

Yang et al., 2020a, b; Tan et al., 2020; Yin et 
al., 2020; Zhang et al., 2019a, b; Nassar et al., 

2019; Bidare et al., 2018a,b; Zheng et al., 

2018; Zhang et al., 2018; Ye et al., 2019, 
2018a; Andani et al., 2018; Ozel et al. 2018; 

Repossini et al., 2017; Ly et al. 2017; Andani 

et al., 2017; Liu et al., 2015; Bidare et al., 2017 

 

Off-axis stereo vision in the 

visible range 

Eschner et al., 2020a; Eschner et al., 2019; 

Barrett et al., 2019; Barrett et al., 2018a 

 

Off-axis NIR/IR video imaging Yang et al., 2020b; Grasso and Colosimo, 

2019; Grasso et al., 2018a; Ozel et al., 2018 

 

Off-axis X-ray video imaging Young et al. 2020; Leung et al., 2019; Guo et 

al., 2018; Zhao et al., 2017 

 

Off-axis Schlieren video-

imaging 

Bidare et al., 2018a,b; Bidare et al., 2017  

Air-borne acoustic 

emissions 

Air-borne acoustic emission 

detector 

Shevchik et al., 2019; Wasmer et al., 2019; Ye 

et al., 2018b; Kouprianoff et al. (2018) 

 

 

 

Level 2 monitoring methods involve off-axis mounted sensors, mainly cameras in the visible range or thermal 

cameras. Unlike in level 1 methods, high temporal resolution is needed to capture fast and transient phenomena, 

whereas high spatial resolution is needed to characterise the spatial features of interest. 
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Section 3.3.1 reviews in-situ sensing and measurement methods devoted to thermal mapping and reconstruction 

of heating/cooling patterns. Section 3.3.2 reviews in-situ sensing and measurement methods devoted to the analysis 

of process by-products in L-PBF, i.e., spatters and plume emissions. 

 

3.3.1.  Measurement of process heatmap and heating/cooling profiles 

The layerwise manufacturing paradigm allows the “seeing” of the thermal history of the process, in time and in 

space. Almost all major quality characteristics of the final part and its mechanical performance depend on the 

thermal history (Williams et al. 2019). Local and global variations of heating and cooling patterns may indicate 

either a lack of fusion or excessive heat accumulation with resultant effects on material solidification at volumetric, 

microstructural and geometrical levels. Table 4 classifies the literature in this field in terms of measurement 

methods, wavelengths and associated spatial and temporal resolutions.  

 

Table 4 – Measurement wavelength range and spatial/temporal resolution of methods applied in L-PBF and EB-PBF 

Wavelength 

range 
Process 

Spatial (lateral) 

resolution /µm/pixel 

Temporal resolution 

/Hz 
References 

Visible L-PBF 150 300 Yan et al., 2020; Colosimo and Grasso, 2018;  

Grasso et al., 2017 

EB-PBF 100 
76 

600 
12,000 

Grasso et al. 2020 
Lee et al., 2018 

NIR L-PBF   - 

EB-PBF 66 – 79 

46.8 – 66.2 

8 – 47 

- 

up to 60 

up to 60 

Boone et al. 2018 

Gong et al., 2013 

Price et al., 2012, 2014 

Short wave IR L-PBF 36 
34 - 52 

130 

- 
36-53.3 

1,800 
1,800 

2,500 

- 
1,800 

Montazeri and Rao, 2018 
Heigel et al. 2020a,b 

Lough et al., 2020b; 2019 

Gaikwad et al., 2020 
Lane et al., 2016b 

EB-PBF   - 

Medium wave IR L-PBF - 

- 

100 
- 

50 

346.7 

900 
10,000 

Baumgartl et al., 2020 

Foster et al., 2018 

Mohr et al., 2020 
Paulson et al., 2020 

EB-PBF 35 10 Raplee et al., 2017; Dehoff et al., 2019 

Long wave IR L-PBF 195 - 260 

- 
1000 

250 

- 
760 

7 

30 
60 

50 

1,315 
1,300 

Bartlett et al., 2018 

Plotnikov et al., 2019 
Williams et al., 2019 

Krauss et al., 2012 - 2014; Schilp et al., 2014;  

Alldredge et al., 2018 
Jalalahmadi et al., 2019 

EB-PBF 175 - 350 - Cordero et al., 2017; Rodriguez et al., 2015; Mireles 

et al., 2015 

Dual wavelength L-PBF Not applicable 100 Montazeri et al., 2020; Dunbar & Nassar, 2018 

EB-PBF - - Cordero et al., 2017 

 

 

It is possible to distinguish between two major streams of research. One aimed at reconstructing a heatmap of the 

layer combining information gathered at low speed (up to 50 fps), while another aimed at capturing fast heating and 

cooling transients, with temporal resolutions from 300 fps to more than 10000 fps. In terms of spatial resolution, it 

is also possible to identify two major categories of measurement approaches. On the one hand, in-situ measurement 
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setups with a field of view limited to a small portion of the build area enable resolutions in the range 8 µm/pixel to 

100 µm/pixel. On the other hand, in-situ measurement setups with a field of view covering the entire build area 

enabled lower spatial resolutions, typically above 100 µm/pixel. 

Thermal cameras have been used in both L-PBF and EB-PBF either in the short wave IR (~0.9 µm to 2.5 µm), 

medium wave IR (2 µm to 5 µm) or long wave IR range (7.5 µm to 14 µm or more). In L-PBF, Montazeri and Rao 

(2018), Gaikwad et al. (2020) and Heigel et al., (2020a,b) used short wave IR video imaging to capture thermal 

signature variations throughout the build of overhang features and bridges. The choice of a narrow short wave IR 

bandwidth (from 1.35 µm to 1.6 µm) was motivated by Heigel et al., (2020a,b) to filter out the laser wavelength 

and to minimise possible temperature measurement errors related to wavelength-dependent emissivity values. Short 

wave IR video imaging was used by Lough et al. (2019, 2020b) differently. They used features extracted from the 

thermal map to generate a voxel-based representation of the part, to be correlated with its local and global quality 

characteristics. Lane et al (2016b) used a MWIR camera with a short wavelength filter to reduce the temperature 

measurement uncertainty due to inaccurate emissivity estimations, since this uncertainty can be reduced at short 

wavelengths. 

Despite their higher sensitivity to emissivity values for absolute temperature estimation, thermal cameras 

operating in the medium or long wave IR range can be calibrated in a wider temperature interval than that of short 

wave IR cameras, with high sensitivity even at high temperatures. This makes them the most utilised sensors for in-

situ thermal video imaging applications in both L-PBF and EB-PBF.  

In some cases, thermal maps of the layer were generated by selecting frames acquired during different phases of 

the process (Bartlett et al. 2018), Jalalahmadi et al., 2019) or by averaging video frames (Plotnikov et al. 2019). 

Whereas most studies focused on the analysis of the thermal map of each layer, Williams et al. (2019) focused on 

the temperature evolution along the build, analyzing the impact of the inter-layer cooling time on the final quality 

and mechanical properties of the parts. They showed that the number of parts in the build and the way in which they 

are spatially located have a significant effect on the quality of the manufactured part as a result of its thermal history. 

Other authors used high temporal resolution IR video imaging in L-PBF to enhance the capability of 

reconstructing temperature profiles in space and time, additionally capturing transient and fast phenomena. Foster 

et al. (2018) used high-speed IR videos to estimate local peak IR intensities within the scanned areas and correlate 

their maximum value with different processing parameters. Mohr et al. (2020) applied a feature extraction approach 

to high-speed thermographic data to determine the time that a surface element was at an apparent temperature above 

a certain threshold, also called “time over threshold”; the same indicator was used by Paulson et al. (2020). An 

image from the study presented by Paulson et al. (2020) and the local estimation of the time over threshold indicator 

is shown in Fig. 12. Mohr et al. (2020) also showed that combining synchronous video imaging at high spatial 

resolution (NIR camera) and high temporal resolution (medium wave IR camera) increased the capability of 

detecting volumetric defects compared to imaging with a single sensor. 
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Figure 12. An example of in-situ reconstruction of local cooling profiles via high-speed IR video imaging and the “time over threshold” 

index computation by Mohr et al. (2020) 

 

In EB-PBF, in-situ video imaging methods need to be adapted to face specific characteristics of the process. Both 

conventional and thermal cameras need to be protected from X-ray emissions and metallisation. To this aim, 

available viewports can be equipped with leaded glass and a rolling Kapton film to prevent metal vapour from 

adhering to the window. The Kapton film has an IR transmission of about 79%, whereas a 10 mm thick leaded glass 

window has an IR transmission of 1.08% (Dinwiddie et al. 2013). However, due to the high temperatures involved 

in the process, detailed IR imaging capabilities were shown in the literature, despite such reduced transmission. 

Other researchers (Rodriguez et al. 2015) used a mechanical shutter to protect the viewport from metallisation, 

enabling image acquisition within a brief interval only. In-situ thermography in EB-PBF was further used by 

Cordero et al. (2017), Raplee et al. (2017) and following studies by the same researchers (Dehoff et al. 2019). 

Although IR cameras enable accurate measurements of thermal gradients in space and time, the estimation of 

absolute temperatures is difficult to achieve. PBF processes involve fast phase transitions from powder to liquid 

then to solidified material, in addition to continuous changes in surface properties and emissions of the vapourised 

material, which limit the feasibility of accurately estimating the emissivity needed to convert raw signals into 

temperature values. In several in-situ monitoring applications, the variation of the thermal signature over time is 

more relevant than the estimation of the absolute temperature. In those cases, data processing and monitoring 

algorithms can be directly applied on raw signals, i.e., measured radiance values in arbitrary units. When accurate 

estimates of the true temperature are needed, different methods can be used. A simple but less accurate approach 

used by some authors (e.g., Price et al. 2014) consists of selecting the emissivity value to set the temperature 

measured within the melt-pool region at the known liquid–solid transition temperature of the material. Other studies 

described calibration procedures using heated calibration artefacts, which enable more accurate estimates. These 

include the methods presented by Williams et. (2019), Dinwiddie et al. (2013) and Rodriguez et al. (2015), involving 

ad-hoc designed components whose temperature was measured by both thermal cameras and embedded thermo-

couples. Fig. 13 shows the calibration components used by Williams et al. (2019) in L-PBF (top panel) and the one 

used by Rodriguez et al. (2015) in EB-PBF (bottom panel). 
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Figure 13. Examples of calibration components used in L-PBF (top panel) (Williams et al., 2019) and in EB-PBF (bottom panel) 

(Rodriguez et al., 2015) to enable true temperature estimation via in-situ IR video imaging 

 

Thermal cameras are large in size, expensive and typically require a modification of the machine hardware and 

viewports for installation on industrial systems. Conventional cameras are much cheaper and easier to integrate than 

thermal cameras, and high temporal resolution can be made available with compact equipment. Although they do 

not allow actual temperature measurements, pixel intensity gradients in the visible range can be used as proxies for 

actual thermal gradients to identify anomalies and defects in some applications. In this framework, some studies 

focused on the detection of local over-heating phenomena known as “hot-spots” via high-speed video imaging in 

the visible range (Grasso et al. 2016, Colosimo and Grasso 2019, Yan et al. 2020). A hot-spot is a local over-heating 

of the layer caused by out-of-control heat exchanges with the surrounding material. A region affected by a hot-spot 

stays hot (bright) for a longer time with a slower cooling drift than in normal conditions. Because of this, a 

conventional camera with sufficient temporal resolution is suitable to capture the anomaly. High-speed vision in the 

visible range was also used in EB-PBF for hot-spot detection (Grasso et al. 2020) and to support the development 

of a novel scan strategy by monitoring the dynamics of the so-called “ghost beam” (Lee et al. 2018).  

As a compromise between standard optical systems and thermal cameras, video-imaging in the NIR range 

(0.7 µm to ~1 µm) has been used by various researchers (Gong et al. 2013, Price et al. 2012, 2014, Boone et al. 

2018). The main advantage is to filter out undesired effects at specific wavelengths and to reduce the dynamic range 

of the measurement with respect to that of optical video imaging. NIR video imaging for level 2 in-situ 
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measurements has been used mainly in EB-PBF. The leaded glass used to shield X-ray emissions has a transmission 

larger than 90% in the NIR range, much higher than in the IR range (Boone et al. 2018).  

 

 

3.3.2.  Measurement of process by-products 

Due to the different beam-material interactions in L-PBF and EB-PBF, different kinds of by-products are 

generated in the two processes. In L-PBF, spatters are ejected together with partial material vaporisation, also known 

as plume. Various researchers demonstrated the correlation between the information enclosed by such by-products 

and process states that can have detrimental effects on part quality (see Section 4). Different by-products are 

generated in EB-PBF, including secondary and backscattered electrons and X-rays, but, as shown in Section 2, they 

are more appropriate for level 1 in-situ measurements rather than for capturing fast transient phenomena during the 

electron beam scanning of the part. Therefore, this Section is devoted to methods applied to L-PBF only. 

Intense by-products emissions can partially deflect and absorb the laser beam energy, or even deviate the laser 

focus position, leading to a modification in the laser beam geometry and the energy input. Spatters deposited on the 

powder bed may also produce contaminations in the part and discontinuities in the powder bed (Anwar and Pham 

2018). Thus, unstable and out-of-control process by-product generation may have a detrimental effect on material 

properties. Fig. 14 depicts the plume emission and spatter ejection mechanisms in L-PBF, including droplet and hot 

powder spatters. The schematic example in Fig. 14 shows a forward plume emission, but, as shown by Bidare et al. 

(2018a), upwards and backwards plume emissions may occur, depending on process parameters. 

Various studies in the literature demonstrated the possibility to gather information about spatter and plume salient 

properties via visible and IR video imaging methods. Table 5 summarises and classifies the literature in terms of 

sensing equipment and measurement specifications (wavelength range, spatial and temporal resolution).  

 

 

 
Figure 14. Schematic representation of spatters and plume emissions in L-PBF 
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Table 5 – Measurement wavelength range and spatial/temporal resolution of in-situ by-product measuring methods in L-PBF 

Methods 
Wavelength 

range 

Spatial Resolution 

/µm/pixel 

Temporal 

Resolution /Hz 
References 

Optical video imaging Visible  11 

- 
- 

3.92 – 5.70 

11.7 
- 

1.5 – 11 

- 
- 

- 
250 

5 

- 

3,000 

2,000 – 24,000 
3,000 

100,000 

2,000 
37,500 

8,000 

20,000 
2,000 

6,000 
1,000 

100,000 

- 

Yang et al., 2020a 

Yang et al., 2020b; Ozel et al., 2018 
Tan et al., 2020 

Yin et al. 2020 

Zhang et al. 2019a, b 
Nassar et al., 2019 

Bidare et al., 2018a,b, 2017 

Zheng et al., 2018 
Zhang et al., 2018 

Andani et al., 2018, 2017 
Repossini et al., 2017 

Ly et al., 2017 

Liu et al., 2015 

Optical stereo video imaging Visible 40 
250 

18 – 24 

60,000 
1,000 

1,000 

Eschner et al., 2020a, 2019 
Barrett et al. 2019,  

Barrett et al. 2018a 

NIR/IR video imaging NIR - 5,000 Ye et al., 2019, 2018a 

Long wave IR - 50 Grasso and Colosimo, 2019; Grasso et al., 

2018a 

X-ray video imaging - 
6.6 

up to 1 
- 

45,259 – 135,776 
5,100 

54,310 
50,000 

Young et al. 2020 
Leung et al., 2019 

Guo et al., 2018 
Zhao et al., 2017 

Schlieren video imaging - 16,000 Bidare et al., 2018a,b, 2017 

 

 

Fig. 15 shows some examples from the in-situ measurement of process by-products. 

 

 

Figure 15. Examples from the in-situ measurement of process by-products in L-PBF: a) ultra high-speed video frames with cameras 

synchronised to a pulsed high-power diode laser light source (Yin et al., 2020); b) high speed video frames where only hotter objects are 

visible (Tan et al., 2020); c) 3D spatter localisation via high-speed stereo vision (Barrett er al., 2019); d) plume emissions captured with 

long wave IR video imaging (Grasso and Colosimo, 2019); e) high-speed X-ray video frames (Guo et al., 2018); f) Schieleren imaging 

video frames (Bidare et al., 2018a). 
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In most cases, focus was on the characterisation of the by-product ejection mechanism and the correlation of 

salient properties measured via high-speed video imaging (e.g, the number of spatters, their size, velocity, spread 

in space) with different process parameters. Recent studies proposed a high-speed stereo vision setup to identify 

and track individual spatters in the 3D space above the layer (Eschner et al. 2020a, 2019, Barrett et al. 2019, 2018a). 

Spatter tracking along its trajectory may improve the characterisation of process by-products and provide additional 

insights about their origination mechanism and the influence of process parameters (an example is shown in Fig. 15 

c)). Eschner et al. (2019) used two ultrahigh-speed cameras combined with a particle detection matching and 

tracking algorithm, which allowed them to determine the 3D position and velocity of spatters. The same approach 

was used in a more recent study (Eschner et al. 2020a) to correlate spatter signatures with the penetration depth 

measured ex-situ and with the transition from heat conduction to evaporation dominating the process regime. Barrett 

et al. (2018a) demonstrated the use of low-cost, high-speed stereo vision methods on an industrial L-PBF machine 

(EOS M290).  

Some researchers used pulsed high-power diode laser light sources (Yin et al. 2020) or tungsten filament lamps 

(Bidare et al., 2018a) to enable the visualization of both the weld track and the hot ejections from the melted area 

(as shown in Fig. 15 e)). High-speed videos, where only hot objects, i.e., spatters, plume and the laser heated zone, 

are bright enough to be observable, facilitate the image segmentation and feature extraction of process by-products 

detected as connected components (Fig. 15, b)). This was obtained by many other researchers without any external 

illumination (Zheng et al. 2020, Zhang et al. 2020, Ye et al. 2019, Repossini et al. 2017). In other cases, similar 

videos were recorded with external light sources to cope with limited sensor sensitivity or with too short integration 

times (e.g., Tan et al. 2020, Andani et al. 2018). Some authors (Grasso and Colosimo 2019, Grasso et al. 2018a) 

used an IR camera to monitor hot plume emissions in L-PBF (Fig. 15, d)).  

For the characterisation of the spatter origination mechanism, various researchers used high-speed high-energy 

X-ray video imaging system (Young et al. 2020, Leung et al. 2019, Guo et al. 2018, Zhao et al. 2017). The laser 

scan path is typically limited to a single continuous scan perpendicular to the X-ray beam (Fig. 15, e)). The scan 

occurs on a powder bed held in place by two transparent side walls. Owing to this measurement setup, it is not only 

possible to observe spatter dynamics, but also the melt pool penetration depth and sub-surface porosity formation 

(see Section 3.5). Bidare et al. (2018a) combined high-speed video imaging with high-speed Schlieren video 

imaging, which allowed visualizing the gas flow and its interaction with the plume and ejected spatters (Fig. 15, f)). 

 

3.3.3.  Measurement of air-borne acoustic emissions 

Air-borne acoustic emission sensors have already been used in laser welding applications (Ali and Farson 2002) 

and a few studies have tested this approach in L-PBF. The underlying principle consists of capturing air density 

variations during the laser scanning of the part by placing the sensor in the vicinity of the melted area. Therefore, 

the measured signature is related to the process by-product in terms of plume emissions and plasma formation.   
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In Wasmer et al. (2019) and Shevchik et al. (2019), the airborne acoustic emission signal was acquired by means 

of a fibre Bragg grating (FBG) optoacoustic sensor installed into the build chamber at about 200 mm from the 

process zone. In both studies, the sensor was installed on an industrial L-PBF machine and the sampling frequency 

was 1 MHz. The sensor was placed so that the longitudinal axis of the fibre was perpendicular to the acoustic wave 

to increase its sensitivity. In Ye et al. (2018b), instead, a microphone was installed into the build chamber at an 

angle of 30° above the build area, with a frequency response in the range 0 to 100 kHz. A similar approach was 

used in Kouprianoff et al. (2018). The resulting measurements and their information content in the temporal and/or 

frequency domain can be viewed as signatures of the laser-material interaction during the laser scanning of the part.  

 

3.4 Level 3 methods – Melt-pool  

The melt pool represents a fundamental source of information to understand the PBF process dynamics. In-situ 

measurements of the melt pool properties have been investigated only in L-PBF, although some EB-PBF level 2 

methods, reviewed in Section 3.3, attempted to extract features at both track and melt pool level via off-axis video 

imaging. The significant advantage provided by L-PBF is the possibility of using the laser optical path in co-axial 

sensing mode. On this basis, the majority of the literature in this field relies on co-axial spatially integrated 

pyrometry measurements, co-axial spatially resolved video imaging methods or combinations of the two. The 

novelties presented in most recent studies are mainly related to the analysis of melt pool measurements via machine 

learning techniques. Nevertheless, a few studies proposed novel sensing solutions such as co-axial dual wavelength 

video imaging (Mitchell et al. 2020, Williams et al. 2019, Hooper et al. 2018) or co-axial optical emission 

spectroscopy (Lough et al. 2020a). Table 6 and Table 7 summarise and classify the literature in this field.  

 

Table 6 – Summary and classification of level 3 methods in L-PBF 

Signatures of interest Sensing method References (L-PBF) 
Melt pool radiation intensity Co-axial single wave pyrometry  

(spatially integrated) 

Forien et al., 2020; Haines et al., 2020; Renken et al., 2019; Yang 

et al., 2019; Demir et al., 2018; Craeghs et al. 2011, Berumen et 
al. 2010, Chivel 2013, Clijsters et al. 2014, Doubenskaia et al., 

2012, Pavlov et al. 2010, Thombansen et al. 2015 

Co-axial multi wave pyrometry 
(spatially integrated) 

Jayasinghe et al., 2020; Okaro et al., 2019; Alberts et al., 2017 

Off-axis single wave pyrometry 

(spatially integrated) 

Bisht et al., 2018; Nadipalli et al., 2019 

Melt pool size and shape Co-axial video imaging in the visible range Zhirnov et al., 2020; Yang et al., 2019; Yuan et al., 2019; Demir 
et al., 2018; Kwon et al., 2018; Yuan et al., 2018; Craeghs et al. 

2010, Craeghs et al. 2012, Clijsters et al. 2014, Berumen et al. 

2010, Kruth et al. 2007 

Co-axial video imaging in the NIR range Kolb et al., 2020; Vasileska et al., 2020; Forien et al., 2020; Lane 
and Yeung, 2019: Demir et al., 2019, 2018; Fisher et al., 2018; 

Kolb et al., 2018, 2018b; Fox et al., 2017 

Co-axial dual wave video imaging Williams et al., 2019; Hooper, 2018 

Off-axis video imaging in the visible range Scime and Beuth, 2019; Bruna-Rosso et al., 2018 

Off-axis NIR/IR video imaging Lane et al., 2020; Heigel et al., 2020a,b  

Inline coherent imaging Kanko et al., 2016 

Melt pool temperature profile Co-axial video imaging in the visible range Doubenskaia et al. 2012; Berumen et al. 2010, Yadroitsev et al. 

2014, Chivel 2013 

Off-axis dual wave video imaging Mitchell et al., 2020 

Melt pool emission spectrum Co-axial optical emission spectroscopy Lough et al., 2020a 

Material cross-contamination Co-axial single wave pyrometry Montazeri et al., 2018 
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Table 7 – Wavelength ranges and spatial/temporal resolutions of in-situ melt pool measurements in L-PBF 

Sensing method Wavelength range /nm 
Spatial Resolution 

/μm/pixel 

Temporal Resolution 

/Hz 
References (L-PBF) 

Co-axial 
pyrometry 

(spatially 

integrated) 

1500 – 1700 
1580 - 1800 

850 – 1000 

1000 – 2000 
350 – 1100 

1054 - 1074 

- 
780 – 950 

 

900 – 1200 
 

na 

100,000 
10,000 

100,000 

100,000 
10,000 

100,000 

100,000 
10,000 

 

20,000 
 

Forien et al., 2020 
Haines et al., 2020 

Renken et al., 2019 

Yang et al., 2019 
Montazeri et al., 2018 

Demir et al., 2018 

Thombansen et al. 2015 
Clijsters et al. 2014, Craeghs et al. 

2011, Berumen et al. 2010 

Chivel 2013, Doubenskaia et al., 
2012, Pavlov et al. 2010 

700 – 1050, 1080 – 1700 

700 – 1050, 1100 – 1700 

- 

100,000 

100,000 

100,000 

Jayasinghe et al., 2020 

Okaro et al., 2019 

Alberts et al., 2017 

Co-axial video 

imaging 

Visible 

- 

- 

- 
3.75 

20 

2,500 

1,000 

2,500 
68 

20,000 

Yang et al., 2019 

Yuan et al., 2019, 2018 

Kwon et al., 2018 
Demir et al. 2018 

Chivel 2013, Doubenskaia et al. 2012 

700 – 900 

850 – 1000 
 

830 – 870 

780 – 820 
830 – 870 

830 – 870 
700 - 1100 

780 – 950 

6.7 

14 
 

12 

17 
15 

8 
2.2 

- 

15,000 

1,200 
 

30,000 

1,000 
50,000 

2,000 
68 

10,000 

Kolb et al., 2020, 2018a, 2018b 

Vasileska et al., 2020, Demir et al., 
2019 

Fox et al., 2017 

Forien et al., 2020  
Fisher et al., 2018 

Lane and Yeung, 2019 
Demir et al. 2018 

Clijsters et al. 2014, Craeghs et al. 

2010, Craeghs et al. 2012, Berumen 
et al. 2010 

700, 950 

700, 950 

20 

- 

50,000 

100,000 

Williams et al., 2019  

Hooper, 2018 

Co-axial inline 

coherent imaging 

Centre wavelengths: 843 (setup1), 

864 (setup2) 

 200,000 Kanko et al., 2016 

Co-axial optical 

emission 

spectroscopy 

400 – 700 na 14 Lough et al., 2020a 

Off-axis 

pyrometry 

(spatially 
integrated) 

1150 – 1800 

1200 - 1800 
na 

50,000 

100,000 

Bisht et al., 2018 

Nadipalli et al., 2019 

Off-axis video 

imaging 

Visible 

Short-wave IR 

Visible 
630 – 650 

Short-wave IR 

830 – 870 
700, 900 

3.07 

34 - 52 

6.2 
- 

36 

3.28 
21 

20,000 

1,800 

6,400 
50,000 

1,800 

10,000 
6,000 – 7,000 

Zhirnov et al., 2020 

Heigel et al., 2020a,b 

Scime and Beuth, 2019 
Bruna-Rosso et al., 2018 

Lane et al., 2020 

Lane et al., 2020 
Mitchell et al., 2020 

 

 

Section 3.4.1. and Section 3.4.2. review spatially integrated and spatially resolved methods, respectively. The 

reader is also referred to Liu et al. (2020c) for a review of patents devoted to melt pool temperature monitoring. 

 

3.4.1.  Spatially integrated methods 

In-situ co-axial measurements of melt pool properties represented the core of research in L-PBF process 

monitoring in the first published studies (between 2010 and 2015, and in a few cases earlier). The melt pool 

properties of interest include the melt pool size or geometry, the intensity and spectrum of emitted radiation, etc.  
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Spatially integrated pyrometry, by means of one or multiple photodiodes, is suitable to measure melt pool 

radiation intensity with high temporal resolution. Table 7 shows that, in almost all recent studies, a sampling rate of 

100 kHz was used. Among the most important factors affecting the quality of the measured data, the measurement 

wavelength range and the sensor field of view play a central role. In all the studies reported in Table 7, the 

wavelength range was slightly above or below 1000 nm, whereas some researchers used dual-wavelength 

measurements in the ranges 700 nm to 1050 nm and 1100 nm to 1700 nm (Jayasinghe et al. 2020, Okaro et al. 2019, 

Alberts et al. 2017). Measuring melt pool radiation above 1000 nm was prevented, in some cases, by the optical 

chain (Clijster et al. 2014), but this limit was overcome in other studies (e.g., Forien et al. 2019 and Yang et al. 

2019). Co-axial photodiodes are nowadays available in most industrial L-PBF systems, and, in most cases, a 2D 

map of melt pool intensities is provided by synchronising the photodiode signal with the laser spot coordinates. A 

different use of a co-axial photodiode was discussed in Montazeri et al. (2018), where the authors showed that the 

chemical composition of the material can be determined via melt pool radiation measurement, leading to possible 

material cross-contamination detection. In this case, the detection range of the sensor was 350 nm to 1100 nm, with 

the aim of measuring the radiation intensity of the plume.  

Some researchers proposed in-situ melt pool measurement methods relying on off-axis mounted photodiodes. 

For example, Nadipalli et al. (2019) and Bisht et al. (2018) used an analogous approach for melt pool intensity 

measurements during the production of tensile specimens. The field of view of the sensor covered the entire build 

area, which enabled the collection of not only melt pool radiation signals, but also radiation emitted by surrounding 

hot areas and by-product emissions. Due to this, the characterisation of melt pool properties is limited and imprecise, 

compared to co-axial methods. Instead of measuring the integrated radiation intensity emitted by the melt pool, 

Lough et al. (2020a) used a co-axial optical emission spectroscopy approach to measure the spectral content of the 

collected radiation and determine the chemistry and relative intensities of the excited species vaporised within the 

plume. To this aim, the measurement spectral range was 400 nm to 700 nm.  

 

 

3.4.2.  Spatially resolved methods 

Richer information about melt pool properties and stability over time can be gathered via co-axial video imaging 

methods, and several studies proposed this approach. As shown in Table 7, in most cases, a high-speed camera (with 

sampling rate between 1000 fps and 50,000 fps) equipped with a narrow-band NIR filter was used to enhance the 

dynamic range and capture predominant melt pool emissions at the melting temperature. It is worth noting that the 

literature on in-situ monitoring of melt pool properties lack any method based on co-axial IR video imaging.   

Some researchers used off-axis video imaging methods for melt pool measurements. This approach was made 

feasible by using high-magnification optics combined with a limited field of view. Zhirnov et al. (2020) and Lane 

et al. (2020) used an off-axis high-speed camera combined with a mirror that allowed close-range observation of 

the melt pool without obstructing the laser, achieving a spatial resolution in the order of 3 μm/pixel. Lane et al. 
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(2020) also used an off-axis thermal camera for melt pool thermography at lower resolution (36 μm/pixel). 

Similarly, Heigel et al. (2020a,b) used an off-axis IR camera for melt pool length and cooling rate estimations, 

whereas Scime and Beuth (2020) and Bruna-Rosso et al. (2018) used off-axis mounted high-speed cameras in the 

visible range to study the morphology of the melt-pool and its variation along the track. 

Only a few researchers reported calibration procedures for melt pool video imaging analysis. Lane et al. (2020) 

calibrated their off-axial high-speed camera, equipped with a NIR filter, by using a light emitting diode-driven 

integrating sphere, leading to a non-linear calibration curve between blackbody temperature and camera signal. A 

different approach was adopted by other researchers who proposed the use of dual wavelength video imaging, i.e., 

the acquisition of video image streams at two different wavelengths (700 nm and 950 nm) to enable a temperature 

estimate via two-colour thermography (Williams et al. 2019, Hooper et al. 2018, Mitchell et al. 2020). The method 

allows the avoidance of the difficulties related to melt pool emissivity estimation by calculating the ratio of the 

radiances measured at the two separate wavelengths, under the assumption of a constant emissivity at these 

wavelengths. Fig. 16 shows some examples of melt pool images and melt pool surface temperature estimations.  

 

 

Figure 16. a) Co-axial melt pool images in four sequential video frames in the visible range (Yuan et al., 2019), b) melt pool surface 

temperature estimation via dual wavelength co-axial video imaging (Hooper et al., 2018), c) melt pool surface temperature estimation via 

off-axis video imaging for different process parameters (Zhirnov et al., 2020) 

 

A different spatially resolved approach was used by Kanko et al. (2016). They used a co-axial in-line coherent 

imaging method, analogous to that introduced in Section 3.2, to measure the melt pool and surrounding area 

morphology changes. The in-line coherent imaging approach enabled a local reconstruction of the height profile 

within the melt pool and along the track. This approach has been applied to single tracks only, but it could be 

extended, in principle, to three-dimensional builds. 

 

3.5 Level 4 methods – under the layer 

All the in-situ sensing and measurement methods presented in the previous Sections, classified from level 0 to 

level 3, involve a measurement of the patterns and phenomena that occur in the layer in the process of production, 
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either before, during or after the melting phase. However, as the next layer is being printed, the material 

characteristics underneath are modified as well, due to the partial remelting of top layers and heat exchanges within 

the build volume. Some in-situ sensing and measurement methods have been proposed to go beyond the layerwise 

paradigm, aiming at gathering information about what goes on under the current layer. Table 8 and 9 summarise 

and classify these methods. One stream of research regards the use of high-speed high-energy X-ray imaging 

systems to observe subsurface melt pool dynamics, the penetration depth and pore formation. Other researchers 

investigated the use of a similar sensing setup for X-ray diffraction measurement, which allows the characterisation 

of strain and stress formation and phase transformations (Schmeiser et al. 2020, Uhlmanna et al. 2017, Calta et al. 

2018, Zhao et al. 2017). One study also explored the feasibility of in-situ micro-tomography (Lhuissier et al. 2020). 

A second mainstream of research regards the use of acoustic emissions to gather information about elastic energy 

releases under the layer, such as cracks and delamination. A few researchers also studied in-situ measurements of 

the baseplate (Herh et al. 2020, Dunbar et al. 2016). All these methods have been applied only in L-PBF so far.  

 

Table 8 – Classification of the literature devoted to level 4 methods 

Signatures of interest Sensing method References (L-PBF) 

Subsurface melt pool dynamics X-ray video imaging Young et al. 2020; Paulson et al., 2020; Calta et al., 

2020; Guo et al., 2020; Leung et al., 2019; Martin et 
al., 2019; Bobel et al., 2019; Guo et al., 2019; Guo et 

al., 2018; Leung et al., 2018; Calta et al., 2018; Zhao 
et al., 2017 

Volumetric reconstruction X-ray micro-tomography Lhuissier et al., 2020 

Phase transformation,  

strain and stress formation 

X-ray diffraction Schmeiser et al. 2020; Uhlmann et al., 2017; Calta et 

al., 2018; Zhao et al., 2017 

Acoustic emissions Structure-borne acoustic emission detection Eschner et al. 2020b; Plotnikov et al. 2019; Rieder et 

al., 2016; Rieder et al., 2014 

Baseplate deformation Strain gauge Hehr et al., 2020; Dunbar et al., 2016 

 

 

Table 9 – Measurement performances for level 4 methods in L-PBF 

Methods 
Frequency band 

/kHz 

Spatial Resolution 

/µm/pixel 

Temporal Resolution 

/Hz 
References (L-PBF) 

X-ray video imaging - 

1.97 
- 

1.97 

6.6 
1 

1.974 

2 

1.1 

up to 1 

- 

45,259 – 135,776 

30,000 
- 

140,000 

5,100 
500,000 

50,000 

45,000 

4,000 

54,310 

50,000 

Young et al. 2020 

Paulson et al., 2020 
Calta et al., 2020 

Guo et al., 2020 

Leung et al., 2019 
Martin et al., 2019 

Bobel et al., 2019 

Guo et al., 2019 

Calta et al. 2018 

Guo et al., 2018 

Zhao et al., 2017 

X-ray micro-tomography 3.64  Lhuissier et al., 2020 

X-ray diffraction 

na 

10,000 

- 

1,000 
- 

Schmeiser et al. 2020 

Uhlmann et al., 2017 

Calta et al., 2018 
Zhao et al., 2017 

Structure-borne acoustic 

emission 

0 – 2,000 

>100 
400 – 30,000 

na 

 

4,000,000 

1,000,000 
250,000,000 

Eschner et al. 2020b 

Plotnikov et al. 2019 
Rieder et al., 2016, 2014 

Baseplate deformation 
na 

20 

- 

Hehr et al., 2020 

Dunbar et al., 2016 
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X-ray video imaging methods were introduced in Section 3.3. Although they can provide insights about the 

origination mechanism of process by-products, their main use regards the capability of observing the melt-pool 

cross-section in a plane perpendicular to the layer. Fig. 17 shows an example of the apparatus used in Guo et al. 

(2019) and an example of an in-situ X-ray video frame (Paulson et al. 2020). The high-energy X-ray beam penetrates 

the material along a direction orthogonal to both the scan and build directions. Laser scanning is performed along a 

narrow powder bed, spread between two transparent walls (usually glassy carbon sheets). A downstream detection 

system converts the X-ray signal into visible light by means of a scintillator, and the converted signal is finally 

recorded by a high-speed camera. 

 

 

Figure 17. Scheme of the apparatus for in-situ X-ray video imaging in L-PBF (left) (Guo et al., 2019) and an example of an in-situ X-ray 

video frame (right) (Paulson et al., 2020) 

 

 

Fig. 17 shows that X-ray imaging for in-situ measurements can be used only at laboratory level using ad-hoc L-

PBF prototype systems. Despite not being applicable on production machines for industrial use, this approach turned 

out to be convenient to reveal complex dynamical changes in the melt pool and depression zones during laser 

scanning. This is enabled by the capability to look under the layer and by the very high spatial and temporal 

resolutions that can be achieved with this method. Table 9 shows that a spatial resolution of 1 µm/pixel to 2 µm/pixel 

can be achieved, with a sampling rate higher than 100,000 fps. Calta et al. (2018) and Zhao et al. (2017) combined 

in-situ X-ray video imaging with in-situ X-ray diffraction to observe not only subsurface melt pool dynamics but 

also phase transformations in the material and changes in the strain and stress states. In these studies, two different 

detectors were used for X-ray imaging and X-ray diffraction. In-situ X-ray diffraction was also studied in Schmeiser 

et al. (2020) and Uhlmann et al. (2017). A completely different configuration was proposed by Lhuissier et al. 

(2020), where the aim was to demonstrate the feasibility of in-situ X-ray micro-tomography for the volumetric 

reconstruction of the part during the process. Fig. 18 (top panel) schematically shows how the apparatus presented 

by Lhuissier et al. (2020) operates. Fig. 18 (bottom panel) shows the resulting 3D reconstruction of a wall measured 

at different consecutive layers (the 3D volume reconstruction was post-processed to remove particles of the powder 

bed and visualise the bulk wall). 
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Figure 18- Schematic representation of the working principle of the in-situ X-ray micro-tomography approach presented by Lhuissier et 

al. (2020) (top panels); in-situ 3D reconstruction of a wall measured at different consecutive layers (powder bed particles were removed in 

3D data post-processing to visualise the bulk wall) 

 

 

In Lhuissier et al. (2020), during the in-situ microtomography scan, 1500 projections were acquired resulting in 

a scan time of 45 s. The measurements presented in Lhuissier et al. (2020) were gathered with a spatial resolution 

of 3.64 µm/pixel and a field of view of (8.8 × 6.2) mm.  

A different field of research with more direct application potentials in industry regards the in-situ measurements 

of acoustic emissions. As mentioned in Section 3.3, acoustic emissions can be divided into air-borne and structure-

borne emissions. The latter are suitable to detect sudden releases of elastic energy that propagate within the material. 

This enables the possibility to detect crack formations, detachments of overhang areas from supports or 

delamination phenomena. The use of multiple sensors placed at different locations could also provide information 

about the location within the build where the energy release originated. The structure-borne signal is also influenced 

by other laser-material interactions and hence they can provide additional insights about changes in process 

conditions. The use of structure-borne acoustic emission sensors has been proposed by various authors since the 

first seminal works of Rieder et al. (2014 and 2016) and patented by some major L-PBF system developers (Gold 

and Spears 2018, Northeast et al. 2018, Scott and Sutcliff 2015). Rieder et al. (2014, 2016) proposed an ultrasonic 

monitoring device in L-PBF mounted on the underside of the baseplate focusing on the bottom plate interface echo 

and the backwall echo patterns as proxies of discontinuities in the material, while the specimen build-up height 

increased. More recently, a similar approach was presented in Eschner et al. (2020b) but the spectrogram of the 
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signal was used to characterise the acoustic emission signature of the process rather than the recorder echo. 

Plotnikov et al. (2019), instead, monitored the RMS of the signal.  

Finally, a couple of studies presented methods for baseplate distortion measurements during the process. In 

Dunbar et al. (2016), a displacement sensor was attached to the underside of the baseplate. A more recent study 

(Hehr et al. 2020) presented a smart baseplate for L-PBF with an embedded optical fibre strain measurement sensor. 

Rather than measuring the baseplate deformation, Hehr et al. (2020) demonstrated the feasibility of the proposed 

approach to detect plastic deformations like a delamination from the baseplate.  

 

4 In-situ monitoring and in-situ defect detectability 

Section 3 presented a review of the in-situ methods used to measure the most relevant process signatures while a 

product is being built. This section is devoted, instead, to in-situ monitoring methods, i.e., to the capability of 

signalling process anomalies that could indicate the onset of defects in the part or undesired changes in the process. 

For the design of in-situ monitoring methods, two types of correlation could be investigated. The first regards the 

influence of input variables and controllable factors on in-situ measured quantities, including powder properties, 

process parameters, part and build geometry and chamber atmosphere. The second type of correlation regards the 

correspondence between events and anomalies detected during the process and the final quality and performance of 

the manufactured part. Studies belonging to this second category can be divided into two main classes, one focused 

on the quality of single tracks or single layers, and one exploring the final properties of three-dimensional parts, 

including their microstructure, porosity, geometrical errors, residual stresses, cracks, etc.  

Table 10 classifies the studies that linked in-situ measured quantities to input controllable factors (left side) and 

major output quality characteristics (right side). Studies that investigated other types of defects (residual stresses, 

cracks and delamination) are reviewed in Section 4.2.5. Table 10 (right side) shows that most authors varied salient 

process parameters to force the occurrence of flaws in the part. Other studies focused on the effect of geometrical 

features, whereas only few authors addressed other sources of variability, i.e., the variability of either metal powder 

properties or chamber atmospheric conditions.  

 Table 10 (right side) shows that about 30% of studies that investigated the link between in-situ measured 

quantities and the final quality of manufactured parts involved single track (or single layer) experiments. Although 

the analysis of individual track properties is not sufficient to demonstrate actual in-situ defect detection capabilities 

in three-dimensional parts, it provides relevant information about defect onset mechanisms and the suitability of 

process signatures to identify variations in the process state. The remaining portion of studies showed on the right 

side of table 10 was devoted mainly to the in-situ detection of local porosities or the distinction between different 

density levels, whereas various authors investigated also the capability of predicting the final microstructural 

properties of the part or detecting possible geometrical distortions, and/or the correlation between process signatures 

and mechanical properties. Section 4.1 briefly summarises major insights about the link between all these input 

variables and in-situ process signatures. Section 4.2 reviews the literature in this framework. 
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Table 10 – Mapping of studies that linked in-situ measured quantities to input controllable factors (left side) and to output quality characteristics (right side) in L-PBF and EB-PBF 

(references of methods in EB-PBF are shown with italic font) – part 1: levels 0, 1 and 2   

Input In-situ signals Output 

Powder Process parameters Part/build geometry 
Chamber 

atmosphere 

Signatures of 

interest 
Sensing method 

Single 

track/ single 

layer 

quality 

3D part quality 

Microstructure Porosity/ density 
Geometrical 

distortions 

Mechanical 

properties 

Chandrasekar 

et al., 2020 

   
Level 0 

   Grasso et al., 2018  

 Lu et al., 2020; Aminzadeh and 

Kurfess, 2019; Imani et al., 2019a; Lu 

et al., 2019 

Scime et al., 2020; Scime and 

Beuth, 2018a,b 

 

L
ev

el
 1

 

Surface pattern 

or height map 

of the printed 

slice 

Off-axis imaging in 

visible range 

  Lu et al., 2020; Imani et 

al., 2019a,b; Gobert et 

al., 2018; Lu et al., 

2019; Abdelrahman et 

al., 2017 

Scime et al., 2020; 

Scime and Beuth, 

2018a,b  

Lu et al., 2019 

Nandwana et 

al., 2018 

 Yoder et al., 2019, 2018;  Off-axis NIR/IR 

imaging 

  Mahmoudi et al., 2019; 

Yoder et al., 2019;  

 Yoder et al., 

2019 

    Blade-mounted 

sensor 

  Barrett et al., 2018b   

 Fleming et al., 2020; Depond et al., 

2018 

Depond et al., 2018  Inline coherent 

imaging 

     

 Pobel et al., 2019; Arnold et al., 2019, 

2018 

  Electronic imaging   Arnold et al., 2018   

  Pagani et al., 2020; Zur 

Jacobsmuhlen et al., 2019; 

Caltanissetta et al., 2018; 

Gaikwad et al., 2019;  

 Geometry of the 

printed slice  

Off-axis imaging in 

visible range 

   Pagani et al., 2020; 

Gaikwad et al., 2019 

 

  Yan et al., 2020; Colosimo 

and Grasso, 2018; Grasso et 

al., 2017 

 

L
ev

el
 2

 

Heatmap / 

heating and 

cooling profiles 

Off-axis video-

imaging in the 

visible range 

 Lee et al., 2018  Yan et al., 2020; 

Colosimo and Grasso, 

2018; 

Grasso et al., 2017 

 

 Mohr et al., 2020; Lough et al., 2020b, 

2019; Paulson et al. 2020; Jalalahmadi 

et al., 2019; Plotnikov et al., 2019; 

Foster et al., 2018; Bartlett et al. 2018; 

Alldredge et al., 2018; Cordero et al., 

2017; Raplee et al., 2017; Dehoff et al. 

2019 

Heigel et al., 2020a,b; Mohr et 

al., 2020; Gaikwad et al., 

2020; Williams et al., 2019; 

Elwarfalli et al., 2019; 

Montazeri and Rao, 2018; 

Boone et al. 2018  

 Off-axis NIR/IR 

video imaging 

 Foster et al., 2018; 

Williams et al., 

2019; Raplee et 

al., 2017; Dehoff 

et al., 2019 

Mohr et al., 2020; 

Lough et al., 2020b, 

2019; Paulson et al. 

2020; Jalalahmadi et al., 

2019; Bartlett et al., 

2018; Williams et al., 

2019; Foster et al., 2018 

Boone et al. 2018 Williams et al., 

2019; Lough et 

al., 2020b; 

 Montazeri et al., 2020; Dunbar and 

Nassar, 2018; Cordero et al., 2017; 

  Off-axis 

multispectral 

pyrometry 

  Montazeri et al., 2020   

 Yang et al., 2020a; Tan et al., 2020; 

Yin et al., 2020; Zhang et al., 2019a, b; 

Zheng et al., 2018; Zhang et al., 2018; 

Bidare et al., 2018a; Ye et al., 2019, 

2018; Andani et al., 2018, 2017; 

Repossini et al., 2017; Ly et al. 2017 

 Bidare et al., 

2018b 
Process by-

products 

Off-axis video 

imaging in the 

visible range 

Yin et al. 2020; 

Zhang et al., 

2019a, b; Zheng 

et al., 2018; 

Zhang et al., 

2018; Ye et al., 

2019, 2018a;  

 Andani et al., 2018; 

Repossini et al., 2017 

  

 Eschner et al., 2020a    Off-axis stereo 

vision in the visible 

range 

     

 Grasso et al., 2018a;  Grasso and 

Colosimo, 2019 

  Off-axis NIR/IR 

video imaging 

   Grasso et al., 2018a;  

Grasso and Colosimo, 

2019 

 

Leung et al., 

2019 

Young et al., 2020; Zhao et al., 2017  Young et al., 

2020; Guo et al. 

2018 

Off-axis X-ray 

video imaging 

     

 Wasmer et al., 2019; Shevchik et al., 

2019; Ye et al. 2018; Kouprianoff et 

al., 2018 

  Air-borne 

acoustic 

emissions 

Air-borne acoustic 

emission detector 

Ye et al., 2018b; 

Kouprianoff et 

al., 2018 

 Wasmer et al., 2019; 

Shevchik et al., 2019 
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Table 10 – Mapping of studies that linked in-situ measured quantities to input controllable factors (left side) and to output quality characteristics (right side) in L-PBF and EB-PBF 

(references of methods in EB-PBF are shown with italic font) – part 2: levels 3 and 4   

Input In-situ signals Output 

Powder Process parameters Part/build geometry 
Chamber 

atmosphere 

Signatures of 

interest 
Sensing method 

 3D part quality 

Single 

track/ single 

layer 

quality 

Microstructure Porosity/ density 
Geometrical 

distortions 

Mechanical 

properties 

 Forien et al., 2020; Renken et al., 

2019; Yang et al., 2019; Demir et al. 

2018 

Renken et al., 2019 Haines et al., 

2020 

L
ev

el
 3

 

Melt pool 

radiation 

intensity 

Co-axial single 

wave pyrometry 

(spatially integrated) 

Forien et al., 

2020 

    

 Jayasinghe et al., 2020; Alberts and al., 

2017;  

  Co-axial multi wave 

pyrometry 

(spatially integrated) 

  Jayasinghe et al., 2020; 

Alberts and al., 2017; 

 Okaro et al., 

2019 

 Nadipalli et al., 2019  Bisht et al., 

2018 
Off-axis single wave 

pyrometry (spatially 

integrated) 

Nadipalli et al., 

2019 

   Bisht et al., 

2018 

 Zhirnov et al., 2020; Kwon et al. 2020; 

Yuan et al., 2019, 2018; Yang et al., 

2019; Demir et al., 2018 

  Melt pool size 

and shape 

Co-axial video 

imaging in the 

visible range 

Yuan et al. 

2019, 2018 

 Kwon et al. 2020;   

 Kolb et al., 2020, 2018a, 2018b; 

Vasileska et al., 2020; Forien et al., 

2020; Lane and Yeung, 2019; Demir et 

al., 2019, 2018; Fisher et al., 2018 

Kolb et al., 2018b; Vasileska 

et al., 2020; Demir et al. 2019 

Kolb et al., 

2018b 
Co-axial video 

imaging in the NIR 

range 

Kolb et al., 

2020; Forien et 

al., 2020; Fox et 

al., 2017 

 Kolb et al., 2018b Kolb et al., 2018b; 

Vasileska et al., 2020; 

 

 Lane et al., 2020   Off-axis NIR/IR 

video imaging 

Lane et al., 

2020 

    

  Hooper, 2018  Co-axial dual wave 

video-imaging 

     

 Scime and Beuth, 2019; Bruna-Rosso 

et al., 2018 

Scime and Beuth, 2019  Off-axis video 

imaging in the 

visible range 

     

  Heigel et al., 2020a,b  Off-axis NIR/IR 

video imaging 

     

    Melt pool 

temperature 

profile 

Off-axis dual 

wavelength video 

imaging 

  Mitchell et al., 2020   

 Lough et al., 2020a  Lough et al., 

2020a 
Melt pool 

emission 

spectrum 

Co-axial optical 

emission 

spectroscopy 

Lough et al., 

2020a 

    

Leung et al., 

2019 

Guo et al., 2020, 2019; Zhao et al., 

2017; Calta et al., 2020; Martin et al., 

2019; Bobel et al., 2019; Leung et al. 

2018 

 Calta et al., 

2020; Guo et al. 

2018, Martin et 

al., 2019 

L
ev

el
 4

 

Subsurface melt 

pool dynamics 

X-ray video imaging Calta et al., 

2020; Bobel et 

al. 2019 

    

    Volumetric 

reconstruction 

X-ray micro-

tomography 

  Lhuissier et al., 2020   

 Eschner et al., 2020b; Plotnikov et al. 

2019 

Eschner et al., 2020b;  Acoustic 

emissions 

Structure-borne 

acoustic emission 

detection 

  Eschner et al., 2020b   
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4.1 Influence of input variables on in-situ signals 

4.1.1 Influence of process parameters 

Varying process parameters and scan strategies represents the most common way adopted by researchers to force 

a variation of the final quality and functional properties of the part and observe consequent anomaly and defect 

onset mechanisms through in-situ measurement of process signatures.  

Various authors showed that different energy density levels in L-PBF generate different surface topographies of 

each printed slice (Lu et al. 2020, Aminzadeh and Kurfess 2019, Imani et al. 2019a,b, Lu et al. 2019, Fleming et al. 

2020, Depond et al. 2018). Deviations from a uniform and smooth surface were shown both at low energy density 

(resulting in irregular and porous patterns or even balling effects in more severe cases) and high energy density 

(resulting in uneven surfaces and superelevated edges). Similar effects have been studied in EB-PBF too (Pobel et 

al. 2020, Arnold et al. 2019, 2018). An irregular surface topography is more likely to generate defects in the part, 

but it is not a sufficient condition, because partial remelting in following layers may mitigate or even avoid the onset 

of defects in the part (see Section 4.2 for more details).  

Many authors tested different sets of process parameters both in L-PBF and EB-PBF to investigate variations in 

the thermal history of the process measured in-situ via NIR or IR video imaging and pyrometry. In L-PBF, a 

variation of the energy density was shown to cause not only an increase of average and peak IR intensities (Foster 

et al. 2018), but also the occurrence of local outlying temperatures (Bartlett et al. 2018), a variations of the time a 

pixel temperature stays above a given threshold (Mohr et al. 2020, Lough et al. 2020b), a modification of cooling 

profile patterns (Paulson et al. 2020) and a shift in emission spectral characteristics associated to specific chemical 

elements (Montazeri et al. 2020). In EB-PBF, attention has been devoted to the effect of different process parameters 

on the temporal evolution of the average temperature of the layer (Cordero et al. 2017), and to temporal and spatial 

thermal gradients in different locations of the part passing from line to point scan strategies (Raplee et al. 2017; 

Dehoff et al. 2019). 

Various authors showed that an excessive energy input to the material causes large and unstable plume emissions 

with a large amount of spatters characterized by high speed and spreading at large distances from the melting area 

(Yang et al. 2020, Zhang et al. 2019b, Zheng et al. 2018, Bidare et al. 2018a, Grasso et al. 2018a, Repossini et al. 

2017). In such process state, a more likely generation of large droplet spatters ejected from the melt pool was 

observed too (Yang et al. 2020, Zhang et al. 2019b). Some authors also reported an increase of the backward ejection 

angle of spatters as the laser power increases (Yin et al. 2020, Zheng et al. 2018), although the orientation of spatter 

ejections can range from forward to backward depending on the combination of laser power and scan speed (Bidare 

et al., 2018a). In the presence of an insufficient energy input causing lack-of-fusion defects or balling irregularities 

along the tracks, low plume and spatter emissions were observed (Yang et al. 2020, Zhang et al. 2019b, Zheng et 

al. 2018, Bidare et al. 2018a, Repossini et al. 2017). Moreover, the effect of varying either the laser power or the 

scan speed may be different even if the energy density is the same (Ye et al. 2019).  
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In-situ X-ray video imaging confirmed aforementioned results and enabled more in depth insights about the by-

product properties and origination mechanisms (Young et al. 2020, Leung et al. 2018, Zhao et al. 2017). Young et 

al. (2020) also showed the generation mechanism of powder agglomeration spatters (formed through coalescing of 

multiple powder particles and spatters) and so-called “defect induced spatters”. The latter were observed in 

correspondence of large pores within previously built layers: the interaction between the melt pool and the 

depression zone with the localized pore under the surface was shown to cause a sudden eruption out of the melt 

pool with a consequent liquid material ejection. All the aforementioned studies investigated the spatter generation 

in single laser L-PBF. Andani et al. (2018) studied process by-products in multi-laser L-PBF, showing that when 

multiple lasers work simultaneously in the same area a larger number of spatters is produced and their area is larger 

than the one observed when a single laser beam is used. 

A large number of studies has been devoted to the effect of different process parameters on melt pool properties.  

An increase of the energy input to the material was shown to cause an increase of the melt pool thermal emission, 

the size and peak radiance of melt pool temperature isotherms, melt pool area, lengths and width (Forien et al. 2020, 

Zhirnov et al. 2020, Kwon et al. 2020, Kolb et al. 2020, Yuan et al. 2018, Alberts et al. 2017). The amplitude of co-

axial pyrometer signals could be used to identify transitions between conduction and key hole mode laser processing 

conditions (Forien et al. 2020). The analysis of the melt pool shape and size at different energy densities enabled 

additional insights about stable and unstable process conditions and variations along the scan track, turning point 

effects and other dynamics related to the complex flow of molten material (Zhao et al. 2017). Other authors 

investigated the effect of continuous and pulsed modes on melt pool properties (Nadipalli et al. 2019, Vasileska et 

al. 2020, Demir et al. 2019). Vasileska et al. (2020) showed the melt pool area increase as a consequence of the 

increase of duty cycle in pulsed mode, whereas Demir et al. (2019) showed the feasibility of assigning different 

emission types in different regions of the same part to keep the melt pool size stable during the entire process. Demir 

et al. (2019) also showed that the energy density is not sufficient to describe the melting behaviour, as under the 

same energy density continuous and pulsed mode emission regimes resulted in different melt pool dimensions. Kolb 

et al. (2020, 2018a,b) showed that the melt pool properties are affected also by the surface roughness of the 

consolidated material beneath the current layer. The salient mechanisms of laser-material interactions, convective 

motions, penetration depth variation, powder consolidation and pore formation for different sets of process 

parameters were highlighted in depth via in-situ X-ray video imaging (Martin et al. 2019, Bobel et al. 2019, Leung 

et al. 2018). 

Eventually, both air-borne and structure-borne acoustic emissions were shown to be affected by process 

parameters. Wasmer et al. (2019) and Shevchik et al. (2019) showed that different scan speeds caused different 

wavelet spectrograms patterns of the air-borne acoustic signal. The influence of process parameters on time and 

frequency domain features of the air-borne signal were discussed by Ye et al. (2018b) and Kouprianoff et al. (2018), 

whereas Eschner et al. (2020b) and Plotnikov et al. (2019) showed similar effects on structure-borne acoustic signals 

too. 
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4.1.2 Other influences: part and build geometry, powder properties and chamber atmosphere 

Various authors used specimens with different geometries and complex parts with layerwise varying shape to 

study the variability of surface patterns and presence of anomalies within the printed slice (Scime et al. 2020, Scime 

and Beuth 2018a,b, Depond et al. 2018, Yoder et al. 2019, 2018) and the accuracy and feasibility of in-situ 

monitoring methods based on layerwise geometry reconstruction (Pagani et al. 2020; Zur Jacobsmuhlen et al. 2019; 

Caltanissetta et al. 2018, Gaikwad et al. 2019). Complex geometries including critical geometrical features like 

overhang surfaces, acute corners and thin walls were used as benchmark to force the onset of defects related to 

anomalous heat exchanges and thermal histories (Mohr et al. 2020, Yan et al. 2020, Colosimo and Grasso 2018, 

Grasso et al. 2017, Boone et al. 2018) or to investigate the influence on melt pool properties (Vasileska et al. 2020, 

Kolb et al., 2018b, Demir et al., 2019). Grasso et al. (2017) and following studies from the same authors (Yan et al. 

2020, Colosimo and Grasso 2018) used a complex star-shaped part to force the onset of anomalous heat 

accumulations, i.e., hot-spots, which represent critical events in PBF as potential sources of micro and macro 

geometrical defects. Other authors used specimens including overhang areas with different angles and aspect ratios 

to force the occurrence of volumetric defects (Mohr et al. 2020) or geometrical errors (Boone et al. 2018, Kolb et 

al. 2018b), to investigate the effect on the thermal history of the process (Gaikwad et al. 2020, Montazeri and Rao 

2018), the properties of the melt pool (Hooper 2018, Scime and Beuth 2019) and the time-frequency signature of 

structure-borne acoustic emissions (Eschner et al. 2020b). Rather than varying the shape of individual parts, 

Williams et al. (2019) investigated the influence of different inter-layer cooling time by varying the number of parts 

printed at different heights within the build. 

Additional factors that have a direct and important effect on the stability of the process and the quality of the 

product regards the powder properties and the chamber atmosphere conditions. Nevertheless, only few authors 

investigated their impact on in-situ measured quantities. In EB-PBF, Chandrasekar et al. (2020) used log-signals 

associated the powder recoating operation to study the effect of powder recycling on its spreadability, showing that 

log-signals could provide relevant in-situ information about the powder particle behaviour. Nandwana et al. (2018), 

instead, studied the effect of powders from different suppliers on detected anomalies in layerwise NIR images. In 

L-PBF, Leung et al. (2019) investigated the effect of powder oxidation on melt pool and spatter dynamics through 

in-situ X-ray video imaging.  The results showed that the oxygen content from the oxidised powder could alter the 

surface tension of the melt pool and the convection flows, with oxides acting as potential nucleation sites for pore 

formation. Oxidised powders also caused larger amount of ejected spatters. Leung et al. (2019) showed that partial 

laser re-melting when the next layers are processed may disrupt the oxide layer within previously melted tracks, 

enabling gas pores to escape, reducing the size of pre-existing pores or modifying their shape from spherical to 

irregular when they are partially filled by liquid material.  

In L-PBF, Young et al. (2020) and Guo et al. (2018) studied the effects of chamber atmosphere conditions on 

process by-products, whereas Bisht et al. (2018), Kolb et al. (2018b), Lough et al. (2020a), Calta et al. (2020), Guo 
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et al. (2018) and Martin et al. (2019) studied the effect of atmosphere conditions on melt pool dynamics. Young et 

al. (2020) and Guo et al. (2018) showed that by reducing the ambient pressure down to vacuum conditions the 

amount of cold powder spatters was increased whereas the amount of hot powder spatters entrained by the hot metal 

vaporization was reduced since the entrainment effects requires a sufficient gas flow. Lough et al. (2020a) also 

showed that increasing the ambient pressure inflates the plume-laser interactions and a consequent attenuation and 

defocusing of the laser beam, leading to shallower and wider melt pools. Calta et al. (2020) showed that the effect 

of the ambient pressure on melt pool process by-products dynamics may be different from material to material 

because of different boiling temperatures at different pressures, affecting the melt pool surface tension. Eventually, 

Bisht et al. (2018) and Kolb et al. (2018b) showed that the lack of uniformity of the gas flow within the chamber 

may cause unstable melt pool dynamics leading to defective parts in some locations of the build area. 

  

4.2 In-situ detectability of defects and prediction of final part properties  

4.2.1. In-situ estimation of single track quality 

Among the studies reported in Table 10 involving single track experiments, various authors proposed machine 

learning methods suitable to determine the quality of the track based on in-situ measurements.    

Ye et al. (2018a) proposed a deep belief network classifier that exploited in-situ video imaging of process by-

products. The algorithm was trained in two different modes: i) using in-situ images as direct inputs for the network, 

which led to a classification accuracy of about 83% and ii) using extracted spatter and plume descriptors (including 

areas, lengths, widths, orientations, perimeters, etc.), which led to a classification accuracy of about 81.9%. The 

same authors applied the same type of classifier to air-borne acoustic signals (Ye et al. 2018b). In this case, the raw 

acoustic signal was pre-filtered and processed via fast Fourier transform before being provided as input to the deep 

belief network. The results showed a classification accuracy of 93.63%. Zhang et al. (2018) compared different 

classification algorithms, either applied to plume and spatter descriptors or to raw images, showing that the best 

classification accuracy, in the order of 92.8%, could be achieved by applying a Convolutional Neural Network 

(CNN) directly on raw images. Zhang et al. (2020) showed that previously presented results could be further 

improved by additionally including temporal information within the trained network. The underlying idea is that 

the relevant information content about spatter and plume behaviour is not only captured by individual video frames, 

but also by variations in sequential frames. To this end, Zhang et al. (2020) proposed a hybrid CNN scheme 

consisting of two steps. In the first step, the network learns spatial features from single images. In the second step, 

the features extracted in step 1 are rearranged according to the video frame sequence and used as inputs to a second 

network. With this approach, an overall accuracy of 99.6% was achieved.  

A semi-supervised classification approach was proposed by Yuan et al. (2019), who used melt pool images 

acquired by means of a co-axial high-speed camera. The semi-supervised paradigm allows training the classifier 

using both labelled and unlabeled data. Clearly, labelling individual data samples can be a time-consuming task and 
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defining the correct label for some samples is not always straightforward. Single tracks AISI 316L stainless steel 

were labelled by measuring their height after the process. The proposed CNN applied to melt pool images combined 

a supervised and unsupervised model. The classifier was trained using 1000 training data points, by varying the 

number of labelled ones. Yuan et al. (2019) reported a successful classification rate of 93.8% when 50% of the 

training data were unlabeled. The classification performance decreased as the amount of unlabeled data increased. 

All these methods were applied to single tracks of simple specimens. There is still a need for studies 

demonstrating the suitability of L-PBF by-product signatures, to identify changes of the process state in the presence 

of complex shapes, or to detect the onset of local defects.  

 

4.2.2. In-situ prediction of microstructural properties  

The in-situ prediction of microstructural properties, such as grain size and orientation, enables different 

interesting capabilities. First, it allows the detection of the local and global deviations (from an expected 

microstructure) that occur during the process. Second, it facilitates the support of novel solutions to adapt and tune 

the microstructure of functionally-graded products. In this framework, consolidated research has been carried out 

in EB-PBF by the Oak Ridge National Laboratory (Dehoff et al. 2019 and references therein). Raplee et al. (2017) 

presented a study on the use of in-situ thermography in EB-PBF to estimate the thermal gradient (G) and solid-

liquid interface velocity (R) suitable to determine the grain orientation within a part (i.e., columnar against equiaxed 

grains). They validated the in-process microstructure prediction by testing two different scan strategies, namely 

point melt and line melt, which led to different microstructural properties in IN718 parts. As another result of the 

study, Raplee et al (2017) showed that regions with abnormal temperatures with respect to the surrounding area 

indicated the presence of swelling or pitting defects in the part. Fig. 19 shows an example of an in-situ thermal map, 

the histogram of the G/R ratio estimated from in-situ data of the line and point scan strategies and the corresponding 

different microstructural properties obtained from different locations in the part.  

 

 

Figure 19. Examples from Raplee et al. (2017) and Dehoff et al. (2019): a) in-situ thermal map of a layer after calibration, b) histogram of 

the G/R ratios estimated in-situ for the line and point scan strategies, c) resulting columnar and equiaxed microstructures in different 

locations of the part 
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Correlations between in-situ thermography measurements have also been investigated in L-PBF. Rather than 

estimating G and R values, Williams et al. (2019) studied the effects of inter-layer cooling times (ILCT) on 

temperature profiles measured via off-axis IR video imaging. They showed that a shorter ILCT caused a greater 

grain growth and preferential orientation, with higher surface temperatures resulting in a lower G. Williams et al. 

(2019) observed other effects related to the ILCT, such as the increased number of spatters as a result of higher 

layer temperatures. The ILCT is determined not only by the processing of individual components, but also by the 

build composition in terms of number, size, shape and location of other parts in the same build. Accordingly, 

Williams et al. (2019) concluded that the qualification of a component must be carried out considering the overall 

build composition. If any component in the build changes, or other components are added or removed, the properties 

of all components in the build will be affected. In this context, in-situ monitoring may provide valuable support to 

control part-to-part and build-to-build variability. 

 

4.2.3. In-situ porosity detection 

Porosity is the defect that attracted the largest interest and highest number of studies in the literature. Nonetheless, 

the number of researchers who effectively demonstrated practical in-situ porosity detection capabilities, is still 

limited compared to the wide literature on in-situ process monitoring.  

Table 11 provides an overall picture of studies that addressed the in-situ porosity detectability problem. Table 11 

makes a distinction between i) voids included into the model of the part, which are also referred to as “artificial” or 

“intentional” pores in the literature , ii) local porosity (i.e., single pores or local clusters of pores, either spherical or 

irregular pores caused by lack of fusion – LoF) and iii) part density, i.e., the overall percentage of voids in the 

volume (or a portion of it). Table 11 shows that the majority of authors investigated the correlation between in-situ 

signals and the overall part density, but only few of them demonstrated the capability to detect local porosities 

within the part or even individual pores.  

The advantage of inserting artificial pores in the part is that their location and shape is known in advance, hence 

it is easier to determine the effect of these artificial flaws on in-situ acquired signals. The main drawback is that the 

pattern of the measured process signatures is not fully representative of the one that can be observed when a real 

pore originates in the part. In effect, an artificial void implies that a small region of the layer is not scanned, whereas 

a real pore originates from the beam-material interaction without scan interruptions along the track. 
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Table 11 – Mapping of the methods for in-situ porosity detection in L-PBF and EB-PBF (references of methods in EB-PBF 

are shown with italic font)  

Signatures of 

interest 
Sensing method 

Artificially 

injected voids  

Local porosity / individual pores 

Part density Spherical 

pores 
LoF pores Both 

L
ev

el
 1

 

Surface 

pattern or 

height map of 

the printed 

slice 

Off-axis imaging in 

visible range 

Imani et al., 

2019a,b; 

Abdelrahman et 

al., 2017 

  Gobert et al., 

2018 

Imani et al., 

2019a,b; Lu et 

al., 2020; Lu et 

al., 2019; 

Off-axis NIR/IR imaging Mahmoudi et al., 

2019 

 Yoder et al., 

2019 

  

Blade-mounted sensor Barrett et al., 

2018b 

    

Electronic imaging    Arnold et al. 

2018 

Arnold et al. 

2018 

L
ev

el
 2

 

Heatmap / 

heating and 

cooling 

profiles 

Off-axis NIR/IR video 

imaging 

Mohr et al., 2020 

 

Paulson et al. 

2020 

 Mohr et al., 

2020 

Lough et al., 

2020b; Lough 

et al., 2019; 

Bartlett et al., 

2018 

Lough et al., 

2020b; Williams 

et al., 2019; 

Jalalahmadi et al., 

2019; Foster et 

al., 2018 

Off-axis multispectral 

pyrometry 

    Montazeri et al., 

2020 

Process by-

products 

Off-axis video-imaging in 

the visible range 

    Andani et al., 

2018; Repossini 

et al., 2017 

Air-borne 

acoustic 

emissions 

Air-borne acoustic 

emission detector 

    Wasmer et al., 

2019; Shevchik et 

al., 2019 

L
ev

el
 3

 

Melt pool 

radiation 

intensity 

Co-axial multi wave 

pyrometry /spatially 

integrated) 

    Jayasinghe et al., 

2020; Alberts and 

al., 2017;  

Melt pool size 

and shape 

Co-axial video imaging in 

the visible range 

    Kwon et al. 2020; 

Co-axial video imaging in 

the NIR range 

    Kolb et al., 2018b 

Melt pool 

temperature 

profile 

Off-axis dual wavelength 

video imaging 

Mitchell et al., 

2020 

Mitchell et al., 

2020 

   

L
ev

el
 4

 Volumetric 

reconstruction 

X-ray micro-tomography    Lhuissier et al., 

2020 

 

Acoustic 

emissions 

Structure-borne acoustic 

emission detection 

    Eschner et al., 

2020b 

 

 

Voids of different shapes and sizes were used in various studies, including cubic voids with sizes in the range 

30 μm to 300 μm (Mitchell et al. 2020) or 50 μm to 750 μm (Imani et al. 2019a,b, Abdelrahman et al. 2017), 

cylindrical voids with diameters in the range 50 μm to 750 μm (Imani et al. 2019a,b, Mahmoudi et al. 2019, 

Abdelrahman et al. 2017) and spherical voids with diameters in the range 600 μm to 900 μm (Mireles et al. 2015). 

Imani et al. (2019a,b) and Mahmoudi et al. (2019) used intentionally seeded voids to test the capability of their 

proposed layerwise surface pattern monitoring methods, to detect surface discontinuities within the printed area. 

Both the methods presented by Imani et al. (2019a,b) and Mahmoudi et al. (2019) were applied in L-PBF and 

worked by partitioning the surfaces into regions of interest (ROIs) and classifying them into defective or defect-free 

regions. In Imani et al. (2019a,b), ROIs were generated from optical layerwise imaging, such that each ROI has the 

same number of pixels but different shapes, to adapt to layerwise varying part geometry. Imani et al. (2019a) used 

a deep learning approach to classify the ROIs into defective or defect-free. An accuracy (i.e., the ratio of ROIs that 

were correctly identified) of 92.5% was reported for artificial voids of different sizes and shapes. In Mahmoudi et 
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al. (2019), a thermal map of the layer was first created by merging melt pool images acquired during the process 

with an off-axis spatially resolved thermography setup. Then, multiple ROIs were identified as rectangular regions 

placed where connected components were observed after a binarisation of the layerwise reconstructed thermal map. 

Mahmoudi et al. (2019) proposed a modelling step, based on a Gaussian process model, that flags pixels with 

statistically significant deviations, followed by a final classification step to determine whether a ROI includes a 

defect or not. Tests were carried out in the presence of one single artificially seeded void. Both the methods 

presented by Imani et al. (2019a) and Mahmoudi et al. (2019) required a training phase involving samples of 

defective and defect-free image data.  

Mitchell et al. (2020) proposed a method, based on off-axis dual wavelength video imaging, that combined the 

estimation of melt pool properties with a reconstruction of the layerwise thermal map of the part. In the presence of 

artificially seeded voids, Mitchell et al. (2020) showed that voids as small as 120 μm were identified, however, the 

in-situ reconstructed void volume was underestimated by up to 28% with respect to the corresponding post-process 

reconstruction via X-ray CT. Mitchell et al. (2020) additionally investigated the capability of automatically 

detecting not only artificial voids but also natural porosity generated by the process. The AISI 316L specimens 

produced via L-PBF mainly included spherical pores with an equivalent spherical diameter (ESD) ranging between 

11.4 μm (minimum size detectable by the micro-CT) and 70 μm. A neighborhood searching algorithm was proposed 

to classify individual melt pool images into normal or outlier, by comparing the similarity of the melt pool in a 

given location with melt pools observed in its vicinity, within a given radius in terms of melt pool aspect ratio and 

orientation. Mitchell et al. (2020) showed that the percentage of pores detected by means of melt pool images 

signaled as outliers was in the range 25% to 55%, but it increased above 70% when considering only pores with 

ESD larger than 50 μm. Nevertheless, a relatively high false positive rate between 23% and 58% was reported. 

Examples of results from the study of Mitchell et al. (2020) are shown in Fig. 20. This study is, in effect, the only 

one (to our knowledge) that attempted to correlate individual melt pool signals with local pores in L-PBF.  

The high false alarm rate highlights the need for further research developments to design more effective in-situ 

monitoring tools for porosity detection. Such high false alarm rates can also be related to the remelting effect as the 

process continues, which may cause partial pore annihilation in underneath layers.   
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Figure 20. Examples of results from Mitchell et al. (2020): a) three-dimensional reconstructions of all pores identified using micro-CT, 

pores correlated with in-situ outlying melt pool signals, and pores not correlated; b) percentages of pores spatially coincident/correlated 

with outlier melt pools at different minimum ESDs and different threshold values 

 

 

Other studies investigated the capability to detect local pores using different in-situ monitoring approaches. As 

far as level 1 methods are concerned, Gobert et al. (2018) presented a voxel-wise comparison between a 3D 

reconstruction of the part, based on in-situ layerwise image pixel intensities and the post-process X-ray CT 

reconstruction. A landmark-based registration between the in-situ data and the CT data was applied. Then, the 

support vector machine (SVM) approach was used as a binary classifier to detect flaws in the in-situ reconstruction. 

Layerwise images were acquired with different illumination conditions, and Gobert et al. (2018), extending the 

previous work of Morgan et al (2017), showed that the most appropriate pore detection performances were achieved 

using an ensemble learning system, merging SVM models associated with each condition. The test specimen built 

with stainless steel powder had pores with ESD in the range 29.5 μm to 50.5 μm (with very few above 50.5 μm). 

Gobert et al. (2018) reported a detection accuracy of 85%, with a “precision” of 64%, where the precision was 

defined as the ratio between the number of true positives and the total number of true positives and false positives.  

A comparison between in-situ and post-process X-ray CT reconstructions of specimens, produced via L-PBF, 

was presented by Bamberg et al. (2016), who performed a layerwise mapping of hot and cold areas. This method 

was later implemented by EOS in the EOSTATE suite and called “Optical Tomography”. Although no information 

about the pore detection algorithm was provided, the authors showed a probability of detection between 90% and 

95% for lack-of-fusion flaws with diameters in the order of 150 μm.  

A voxel-wise comparison between thermal signatures generated via in-situ thermography and the X-ray CT of 

the part was carried out by Mohr et al. (2020), Lough et al. (2020b, 2019) and Bartlett et al. (2018). Lough et al. 

(2020b) compared different synthetic descriptors to generate layerwise thermal maps from IR video image data. 

They showed a correlation between the proposed synthetic indexes and the presence of local pores (at least the 

largest ones). Bartlett et al. (2018) proposed another rule to detect potential anomalies in thermal maps. The rule 

Page 43 of 66 AUTHOR SUBMITTED MANUSCRIPT - MST-112379.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

 44  
 

consists of signaling any pixel whose temperature is K standard deviations above or below the average temperature 

of the layer. They applied this approach to cylindrical specimens, showing a detection rate of 33% for keyhole 

porosity and 82% for lack-of-fusion porosity. Pores below approximately 50 μm were only detected with a 50% 

success rate, whereas all pores larger than 500 μm were correctly detected.  

A correlation between subsurface pores and cooling profiles reconstructed via in-situ thermography was 

presented by Paulson et al. (2020), however, in this case, in-situ X-ray video imaging was used as ground truth 

instead of post-process X-ray CT inspection. Pores were classified into small (<10 μm) and large (>10 μm), mainly 

focusing on spherical ones. By testing different sets of thermal history features and different classification 

algorithms, an accuracy in the range 84% to 100% was reported. 

Similar comparisons between in-situ reconstructed porosity maps and X-ray CT inspections have also been 

carried out in EB-PBF. Yoder et al. (2019) used the LayerQam system developed by Arcam (GE Additive) to 

acquire layerwise images of the build in the NIR range. Potential pores were identified simply by setting a threshold-

to-pixel intensity, as surface cavities were assumed to yield a bright spot in the image. Lack-of-fusion defects were 

concentrated in banded regions along vertical tensile specimens. Yoder et al. (2019) qualitatively demonstrated the 

correspondence between pore concentration regions signaled by the in-situ monitoring tool and “ground truth” pore 

concentration regions from the X-ray CT measurements. Arnold et al. (2018), instead, showed a comparison 

between in-situ electronic imaging, post-process optical microscopy on a prepared micro-section and X-ray CT, as 

shown in Fig. 21. Rather than identifying individual pores, Arnold et al. (2018) directly compared the pixel 

intensities in the images generated with different in-situ and ex-situ methods. A good agreement was highlighted 

for lack-of-fusion pores larger than 100 μm. 

 

 

Figure 21. Comparison between a cross-Section from an in-situ electronic image, ex-situ optical microscopy and ex-situ X-ray CT 

(Arnold et al., 2018) 
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The possibility of detecting in-situ individual pores was further discussed by Lhuissier et al. (2020) who used the 

same proposed in-situ X-ray CT approach in L-PBF. However, a comparison between in-situ detected pores and 

pores observed in ground truth post-process inspection has not been carried out (to our knowledge). 

Rather than trying to identify single pores or local clusters of pores, a large number of researchers correlated in-

situ signals with the global porosity of the part, commonly measured by means of the Archimede’s approach or as 

a cumulation of pore areas from other inspection techniques. Among them, Lu et al. (2019, 2020) showed the 

correlation between surface features extracted from layerwise optical images within the printed area after powder 

recoating and the density of the part. These features correspond to superelevated solidified areas and edges. 

Aminzadeh and Kurfess (2019), instead, showed the correlation between surface features extracted after the melting 

phase and the final part density. Aminzadeh and Kurfess (2019) also proposed a Bayesian classifier applied to 

surface texture features extracted from laywerise images of the printed area. Smooth and irregular surface patterns 

were generated by varying the laser power and scan speed. Images were binarised and converted into the frequency 

domain, in order to feed synthetic descriptors of the fast Fourier transform as input variables for the classifier. A 

classification precision of 83% was reported in an application on simple specimens made of Inconel 625. 

Montazeri et al. (2020) proposed a method for the classification of porosity into discrete classes or the prediction 

of an average porosity index using an off-axis multi-spectral spatially integrated pyrometry measurement in L-PBF. 

The method involved a transformation of the acquired signal into a graph and the application of a graph Fourier 

transform to compute the Fourier coefficients used as synthetic features for porosity classification (via K-nearest 

neighborhood) and prediction (via artificial neural networks). Montazeri et al. (2020) reported a prediction error of 

approximately 10%. Moreover, by dividing porosity into acceptable and unacceptable depending on the overall pore 

area observed in different layers, Montazeri et al. (2020) reported a 99% correct detection rate with a percentage of 

false alarms of about 28%. A similar approach was presented by Montazeri and Rao (2018) to distinguish between 

overhang and bulk build states.  

Okaro et al. (2019) proposed a semi-supervised classification approach applied to co-axial photodiode signals in 

L-PBF. The proposed method was based on a Gaussian mixture model and was trained to classify acceptable and 

faulty L-PBF builds of Inconel 718 specimens. A SVD of the training data matrix was applied to extract the features 

to be used for build classification. Okaro et al. (2019) reported a successful classification rate of 77% with a training 

dataset consisting of twenty-five labelled specimens and twenty-four unlabeled ones. 

Melt pool images were usually provided as direct inputs to the network for automated feature extraction. A 

different approach was proposed by Scime and Beuth (2019), who applied a multi-step pre-processing phase, 

consisting of the extraction of the scale-invariant features that characterize the gradient field and surround each 

pixel in the image. These features were used as inputs for the SVM methodology to classify melt pool images along 

the single tracks of Inconel 718, on bulk or overhang areas.  In Scime and Beuth (2019), melt pool images were 

divided into acceptable and non-acceptable categories, but the correspondence to actual defects was not discussed. 
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Repossini et al. (2017) showed that the classification of different density conditions corresponding to 

undermelting or overmelting process states could be enhanced by combining synthetic descriptors of the laser heated 

zone with spatter descriptors (number, size and spatial dispersion). A logistic regression method was applied to this 

aim, showing the suitability of spatter-enclosed information for process monitoring purposes. 

Further examples of machine learning methods for the classification of process states leading to different part 

densities were presented by Eschner et al. (2020b), Shevchik et al. (2019) and Wasmer et al. (2019) using acoustic 

emission signals. Eschner et al. (2020b) applied a multilayer perceptron network to classify different energy density 

levels, using the spectrogram of the high-frequency structure-borne acoustic emission signal, in the L-PBF of AISI 

316L specimens, with a successful classification rate of about 83%. Eschner et al. (2020b) also investigated the 

effect of geometrical complexity on classification performance, highlighting a slight worsening as complexity 

increased. Shevchik et al. (2019) and Wasmer et al. (2019) proposed a deep learning and reinforcement learning 

approaches applied to the wavelet decomposition of air-borne acoustic emission signals, during the L-PBF of 

CL20ES stainless steel samples with varying energy density along the build direction. A successful classification 

in the order of 78% was reported in Wasmer et al. (2019), whereas the successful classification results from different 

strategies discussed in Shevchik et al. (2019) ranged between 73% and 91%. 

 

4.2.4. In-situ detection of geometrical distortions 

Almost all the methods presented in the literature for the in-situ detection of geometrical distortions belong to 

level 1 and level 2. Regarding level 1 methods, the possibility to directly measure the geometry of the printed slice 

represents the major driver for in-situ geometrical distortion detection. However, only a few researchers developed 

automated alarm rules for the detection of deviations from the nominal shape with a validation based on ex-situ 

inspections of the final part. Gaikwad et al. (2019) presented a CNN for the in-situ prediction of the quality of thin-

wall Ti6Al4V parts in L-PBF. Instead of reconstructing the slice contour, de-noised and binarised images of the 

powder bed were provided as input to the CNN. Gaikwad et al. (2019) showed agreement in the range 80% to 98% 

between the in-situ predicted quality of the thin walls and their ex-situ measured quality. 

More recently, Pagani et al. (2020) presented a statistical process monitoring approach for the in-situ detection 

of geometrical errors in L-PBF. The method allows modelling the natural variability of geometric errors for complex 

shapes whose layerwise geometry is changing every layer. This approach enabled the identification of anomalies in 

one or multiple layers through the estimation of a deviation index capturing local mismatches between the in-situ 

observed shape and the nominal one from the slice CAD model. The method was tested by producing Ti6Al4V 

specimens with complex shapes on an industrial L-PBF system, using the already embedded powder bed camera 

and light source. Pagani et al. (2020) showed that the proposed approach produced a false alarm rate very close to 

the targeted one and allowed the signaling of various anomalies corresponding to geometrical deformations 

quantified after the process via X-ray CT inspection. Fig. 22 shows examples of thin-wall quality prediction by 

Gaikwad et al. (2019) and the statistical process monitoring approach developed by Pagani et al. (2020). 
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Figure 22. a) Comparison between in-situ and ex-situ estimates of the thin-wall quality in Gaikwad et al. (2019) for different thin wall 

orientations (the horizontal dashed line indicates the upper limit before the thin wall collapsed) and examples of thin-wall defects; b) 

moving window control chart for the in-situ detection of geometrical distortions proposed by Pagani et al. (2020) with an example of a 

detected geometrical distortion caused by warpage of the part. 

 

 

Level 1 methods, based on the analysis of the surface patterns of the powder bed and the printed slice, could also 

be suitable to detect geometrical distortions. In this regard, a few researchers demonstrated correlations between in-

situ detected and classified anomalies, in one or multiple layers, and the final quality of the part. Scime and Beuth 

(2018a,b) combined layerwise imaging in the visible range with a multi-scale CNN (MsCNN) in L-PBF, to 

automatically detect various kinds of anomalies, i.e., recoater hopping and streaking, incomplete powder spreading, 

presence of debris on the powder bed, super-elevated edges and other part damages. Part damages were successfully 

classified in 94.2% of test samples with a false alarm rate of 0.7% (anomalies of any kind signaled in defect-free 

images). The method was validated during the L-PBF of an Inconel 718 heat exchanger, where macroscopic defects 

were observed and detected by the proposed approach. The training was performed using fifty-one builds produced 

on industrial systems involving different materials. A human expert manually selected square image patches from 

powder bed images corresponding to either correct powder spreading or anomalies belonging to different categories. 

The training set included about 10,000 patches. Although the formation of such a large dataset could be quite 

demanding, once it has been made available, it could be used to train the classifier implemented on different L-PBF 

machines during the production of different materials.  
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Scime et al. (2020) recently extended and tuned the method previously proposed by Scime and Beuth (2018) and 

tested a transfer learning approach for the implementation of a classification algorithm, not only on different L-PBF 

machines from different vendors, but also in various metal AM technologies, i.e., EB-PBF and binder jetting, using 

different sensing setups. Scime et al. (2020) showed that false positive and false negative rates varied within a 

relatively wide range, depending on the AM system where the algorithm was tested. Best validation performances 

involved a false alarm rate of 0.4% and a true positive rate of 99.8%. Examples of in-situ detected geometrical 

distortions with these methods are shown in Fig. 23. 

 

 

Figure 23. Examples of geometrical distortions and corresponding in-situ anomaly detection in a) Scime and Beuth (2018a) and b) Scime 

et al. (2020) 
 

 

A few other solutions suitable to detect anomalies affecting the geometrical accuracy of the part were proposed 

in the literature using level 2 in-situ monitoring methods. Grasso et al. (2016) and Colosimo and Grasso (2020) 

proposed a hot-spot detection methodology based on the in-process analysis of the spatio-temporal auto-correlation 

pattern of pixel intensities in high-speed videos gathered through off-axis machine vision in the visible range. They 

showed that local anomalous heat accumulations in L-PBF could lead to micro- and macro-scale geometrical 

deformations in the final part. Grasso et al. (2016) proposed the use of an extension of the principal component 

analysis (PCA) method for high-speed video-image data. This extension, also known as “T-mode PCA”, is suitable 

to detect pixels whose intensity patterns over time exhibit anomalous temporal auto-correlations, which is a 

condition typically associated with pixels that remain hot for a long time with a slow cooling gradient. The spatial 

mapping of a synthetic PCA-based control statistic combined with a clustering-based alarm rule allowed the 

automated identification and localisation of local hot-spot events.  

Colosimo and Grasso (2020) extended the previous study by presenting a spatio-temporal PCA method, where a 

spatial weight matrix was included into the PCA decomposition to account for both the temporal and spatial auto-

correlations of pixel intensities in the video image. This allowed the detection of hot-spot events to be faster and 

more reliable. The method was tested during the L-PBF production of a complex geometry where hot-spots 

originated due to the presence of over-hang acute corners, leading to local geometrical distortions. In-situ video 

images were acquired by means of a high-speed camera in the visible range, placed outside the front viewport of an 
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industrial L-PBF system. An example of the in-situ hot-spot detection and corresponding part defects is shown in 

Fig. 24. A more recent study of the same authors (Ye et al., 2020) presented a different approach based on the 

spatio-temporal modelling of background and foreground patterns of the same high-speed video image data. Ye et 

al. (2020) showed that the proposed model-based approach was faster and more computationally efficient in 

detecting hot-spot events, at the expense of a number of parameters that needed to be tuned in the training phase. 

A different perspective was adopted in Grasso et al. (2018a) and Grasso and Colosimo (2019) where a statistical 

monitoring method was proposed to monitor the stability over time of plume emissions during the L-PBF of pure 

zinc specimens with different process parameters. Off-axis IR video images were processed to isolate the ROI 

corresponding to the plume and extract salient features, such as the area, average intensity and orientation. A few 

initial layers were used to estimate the control limits to be applied in all following layers. Results showed that 

unstable process conditions leading to defective parts could be quickly detected since their onset stage. Such out-

of-control states were characterized by anomalous and explosive plume patterns becoming more and more frequent 

along the build. Results also showed that no violations of the control limits occurred when optimal process 

parameters were used, leading to fully dense parts. 

 

 

 

Figure 24. Examples of local geometrical defects in a complex shape produced via L-PBF and the corresponding in-situ detection of hot-

spot events that caused those defects (Colosimo and Grasso, 2018)  
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In EB-PBF, Grasso et al. (2018b) presented a level 0 method for the detection of anomalies in EB-PBF that was 

applied to detect severe swelling caused by improper powder recoating. A SVM-based methodology was proposed 

to estimate a multi-variate control region capturing the natural variability of multi-channel log signal data. The 

method was trained with data gathered during the production of few defect-free replicates of the same part. After 

the training phase, the method was used for the statistical monitoring of log signal data in following processes. The 

method is also suitable for series production applications, which represent the most common industrial use of the 

EB-PBF technology.  

 

4.2.5. Other defects: residual stresses, cracks and delamination 

As discussed in Section 3.5, a research question that has attracted increasing interest both in the scientific 

literature and in industry is the capability to detect anomalies occurring underneath the currently processed layer. 

In this context, a few researchers demonstrated the capability to either measure the development of stresses in the 

part while it is being built or detect delamination events caused by excessive residual stress accumulations. 

Among the level 4 methods suitable to “look” under the layer using X-ray measurement techniques is X-ray 

diffraction. This technique was proven suitable to measure strain and stress formations in the part together with 

phase changes during the process. Calta et al. (2018) and Zhao et al. (2017) used this technique during single track 

experiments, using custom built L-PBF systems. More recently, Schmeiser et al. (2020) demonstrated the feasibility 

of stress and strain development measurements, during the production of three-dimensional specimens. The study 

involved the L-PBF of Inconel 625, and the authors were able to quantify stresses along different directions. They 

found that in-plane stresses were generally higher than out-of-plane stresses, and were able to characterize 

directional differences of compressive and tensile stresses, and their development along the build. The method was 

tested during the production of specimens with dimension (20 × 5 × 2.5) mm, where 2.5 mm is the thickness in the 

direction parallel to the synchrotron radiation beam. Schmeiser et al. (2020) pointed out that the proposed approach 

could be scaled up to industrial machines, whereas no indication about constraints on in-situ inspectable part 

dimensions were provided.  

A method for the detection of delamination events was presented by Hehr et al. (2020). The authors developed a 

“smart” build-plate with embedded fibre optic strain sensors and tested it during an L-PBF process of AlSi10Mg 

parts that delaminated from the baseplate. Part geometries with varying aspect ratios and no preheating step were 

used to induce delamination. Hehr et al. (2020) showed a qualitative correlation between the spatial map of the 

measured strains, the directionality of the strain-vectors and the locations where delamination occurred. Additional 

research is needed to determine, in a quantitative way, the capability to detect damage occurrence and the location 

and direction of damage progression. This approach aims to detect delamination or cracking that occur near the 

baseplate surface and may not be visible with powder bed imaging sensors. When the effect of delamination is 

visible in the currently processed layers, in terms of out-of-plane geometrical distortions of the part, level 1 and 
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level 2 in-situ monitoring methods could also be suitable for defect detection. For example, in L-PBF, Baumgartl 

et al. (2020) presented a deep learning approach for the automated detection of severe defects that cause large heat 

accumulations in the layer, such as delamination, via off-axis IR video imaging, but only few experimental details 

were provided. 

In addition to the methods discussed above, structure-borne acoustic emission sensors are, in principle, also 

suitable to detect delamination and cracking events. This potential capability led to some recent developments in 

industrial in-situ monitoring toolkits. A recent patent from Renishaw showed the possibility of integrating structure-

borne acoustic emission sensors at the four corners of the baseplate, enabling not only the detection of sudden elastic 

energy releases, e.g., caused by cracks or support detachment, but also the localization of the energy release source 

within the build area through signal triangulation (Northeast et al. 2018). Despite being an interesting and promising 

research field, there is still a lack of studies that experimentally demonstrate this defect detection capability.  

 

5 Process control 

The large and quickly growing number of studies reviewed in previous sections highlights the importance of in-

situ and in-process measurements to improve the quality, repeatability and capability of PBF processes. In-situ 

measurements can be used to design and develop process control and optimization loops at different level. Fig. 25 

shows the framework of control and optimization loops in PBF proposed by Liu et al. (2020b). 

 

 

Figure 25. Generic framework for the use of in-situ measured data in the development of process control and optimization loops in PBF 

(Liu et al. 2020b).  
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Some defects and undesired variations can be predicted, as they are related to the geometry of the part and the 

thermo-mechanical interactions occurring during the process. These defects can be at least partially avoided by pre-

correcting the geometry model or by setting locally varying process parameters and scan strategies in the build file 

transferred to the L-PBF system. These two methods represent the two outer loops in Fig. 25 and they rely on 

process modelling and numerical simulation techniques, taking advantage of in-situ gathered data for model tuning 

and calibration. Whereas the pre-compensation of geometrical distortions in the CAD file (ex-situ product design 

optimization) is becoming a common practice with various implementations in industrial software (Druzgalski et 

al. 2020), model-based adaptation of process parameters (ex-situ process plan optimization, also known as model-

based feedforward control), represents an active research field. Some recent results of the feasibility and 

effectiveness of this approach were presented in Druzgalski et al. (2020). The authors proposed a method that 

extracts the geometry and scan path features from the build file and maps each scan track to pre-computed simulation 

results to set locally varying optimal process parameters.  The method was applied to overhang features, resulting 

in a reduction of dross formation with respect to the same part produced without any feedforward control. Variants 

of the feedforward control approaches were presented by Wang et al. (2020b) and Yeung and Lane (2020).  

Unfortunately, not all defects can be predicted due to many sources of stochastic variability, nuisance factors 

related to the degradation of performances system calibration and the prediction uncertainty of process simulation 

tools. In this framework, in-situ sensor signals represent the information source to enable additional in-situ and in-

process control loops. One way to exploit in-situ data to this aim consists of combining in-situ measurements and 

real-time closed-loop adaptation of process parameters at melt pool or track level. The famous seminal study of 

Kruth et al. (2007) demonstrated the feasibility of this approach by using the co-axially measured melt pool intensity 

as real-time feedback information from the process. Since these seminal findings only few novel solutions have 

been proposed and validated, due to the several challenges related to real-time adaptation of process parameters at 

very high speed using noisy and geometry-dependent signals.  

A recent study explored the combination of feedback and feedforward control methods (Renken et al. 2019). 

Model-based feedforward control was used to locally adapt process parameters in the presence of critical 

geometrical features (e.g., overhang surfaces). The closed-loop control of laser power using as input information 

the melt pool intensity enabled the additional reduction of fluctuations and deviations from a target set point that 

could not be avoided with the feedforward control method alone. The continuous variation of the laser power along 

the scan of each track is a challenging task on state-of-the-art L-PBF systems exploiting very high scan speed and, 

in most cases, multiple laser beams. An alternative approach involves a process parameter adaptation on a layer-by-

layer basis. In these cases, the information gathered in previous layers can be used to adapt the set point for tuning 

process parameters in the next layer. An example of this approach was presented in Vasileska et al. (2020), where 

a layer-wise control strategy based on coaxial melt pool monitoring was proposed. Starting from a set point of the 

melt pool area defined on a simple geometry, the melt pool area was then monitored on more complex shapes, and 
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the melt pool area measured on each scan vector was used to compensate the energy density of the same scan vector 

in the next layer. The study showed that this approach was effective in reducing swelling defects. 

When all previous control strategies are not applicable or not sufficient to guarantee actual defect-free 

components, one further type of intervention regards the in-situ correction or removal of defects after they have 

been detected. To this aim, layer re-melting has been investigated as a repairing solution to reduce internal porosity, 

surface roughness, local stress concentration and to improve microstructure characteristics (Heeling and Wegener 

2018, Demir and Previtali, 2017). Numerical and experimental studies for the selection of optimal re-melting 

process parameters and defect repairing strategies were presented by Jalalahmadi et al. (2019) and Demir et al. 

(2018), respectively. Re-melting for in-situ defect correction was proposed in EB-PBF too. Mireles et al. (2015b) 

showed the feasibility of triggering a re-melting process to correct the defect based on anomalies observed via in-

situ thermography. 

Another defect repairing solution consists of combining additive and subtractive processes in the same machine 

to “cancel” defective areas or entire defective layers while the part is being produced. Some authors discussed the 

combination of L-PBF and selective laser erosion to improve the layerwise surface characteristics and, in principle, 

to remove defective layers before re-starting the process (Yasa et al. 2011). Another concept was implemented and 

tested on an open-architecture L-PBF system called Penelope (Colosimo et al. 2020). A multi-sensor monitoring 

architecture was combined with a hybrid apparatus for in-situ defect removal. Such capability was achieved by 

using a surface grinding wheel mounted on a linear axis, which is activated as soon as an alarm is signalled by the 

in-situ monitoring system. The surface grinding operation allows getting rid of the last produced layers where the 

defects were identified. After the layer removal operation, the L-PBF process goes one with modified process 

parameters to avoid the re-occurrence of the same defect. In-situ defect correction or removal could be combined 

with previously mentioned control architectures, to integrate different reaction and recovery capabilities suitable to 

maximize the avoidance of flaws and to enhance the final quality and performances of the product. 

 

6 Open issues and future research directions 

Several studies have been devoted to in-situ measurement and monitoring of PBF processes in the recent years, 

with an average rate of almost eight new publications every month in the first semester of 2020. The majority of 

these studies can be classified in the following four categories: i) studies that demonstrated the feasibility and/or 

accuracy of in-situ sensing or measurement methods, ii) studies that showed how the measured signatures were 

affected by varying process parameters, scan strategies or other controllable factors, iii) studies that used in-situ 

measurements to understand and clarify underlying process dynamics and beam-material interactions, and iv) 

studies that presented and demonstrated in-situ anomaly and defect detection capabilities. It is interesting to note 

that about 80% of papers published in the last two years and reviewed in the present study belong to the latter 
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category. This fact highlights the increasing interest for machine learning and statistical process monitoring methods 

suitable to make sense of in-situ acquired data and automatically detect anomalous process states.  

The most investigated type of defects in the literature is porosity, but there still is a lack of methods suitable to 

detect local flaws with acceptable false alarm rates. Despite a few researchers showing that pores with equivalent 

spherical diameters larger than 100 µm can be detected with relatively high success rates, high false alarm rates 

were reported. Such high false alarm rate has different root causes that deserve additional investigation. One of 

them is the pore annihilation as a result of partial remelting when following layers are produced.  

Another limitation of the current state of the art regards the fact that, in the majority of studies, the proposed 

methods were tested during single track experiments or during the production of simple specimens. This is often 

motivated by the need for easing post-process inspections and tests to correlate in-situ measurements with quality 

and mechanical properties. This leads to at least two main issues. On the one hand, defect onset mechanisms and 

process signature dynamics in complex shapes can be quite different from those observed in simple specimens. On 

the other hand, there is a lack of methods to transfer knowledge and models from the simple specimens used during 

the development phase to the in-situ monitoring of more complex shapes. In all these cases, data from copies of the 

same simple geometry were used. Transfer learning methods (Colosimo et al. 2018, Tsung et al. 2018) still must be 

explored and validated to deal with continuously changing part geometries and with the portability of the developed 

methods from machine to machine. This latter issue is also related to the training of machine learning approaches 

for defect detection or process state classification. Most studies used supervised training paradigms, where labelled 

data from both defective and defect-free parts were used to get the desired classification or prediction performances. 

The acquisition of a sufficient amount of data representative of signal patterns in the presence of defects or faulty 

states may be difficult to achieve in practise, and data labelling may be a time-consuming and troublesome task. 

Only in a few cases did authors investigate semi-supervised methods, relying on both labelled and unlabelled 

training data, or one-class-classification methods, where the classifier (or the process monitoring tool) was trained 

on data representative of the natural process behaviour only. Additional research efforts are needed to develop in-

situ monitoring tools that are not only able to minimize the false alarm rate, but also characterized by training 

procedures that can be easily and effectively implemented for industrial application. In addition, traditional artificial 

intelligence-based methods are noticeably effective when input data are characterized by a stable and repeatable 

process signature, due to the possibility of collecting extensive training datasets. In the presence of “dynamic” 

process signatures that continuously vary as a consequence of varying part geometry, scan strategy, material, 

machine, etc., there could be the need for more adaptive and “self-learning” paradigms, which represents a field of 

considerable interest for future research. 

Many other challenges also need to be faced to bridge the gap between research and industrial implementations. 

Almost all reviewed in-situ data analysis methods were not applied and tested in real-time, and very few authors 

provided data about computational costs implied by their proposed methods. In-situ data streams from high spatial 

and/or high temporal resolution sensors, during builds consisting of thousands of layers, impose the need for 
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efficient solutions to handle very big and fast datasets. Typical problems often encountered in industrial applications 

of statistical quality monitoring and control (also referred to as statistical process control – SPC) characterize the 

practical implementation of many approaches developed for in-situ monitoring of AM (Colosimo et al. 2018, 

Colosimo 2018, Colosimo 2020): the need for large training data sets, which implies similar shapes printed along 

all the layers and repeated production of similar jobs, together with the need of  solutions for big data mining (in 

terms of volume, velocity and variety) are all barriers to the use of the developed approaches in real industrial 

settings.  

Real-time and efficient big data analysis represents a key issue for the development of closed-loop control 

(Renken et al. 2019, Vasileska et al. 2020, Colosimo et al. 2020) and/or in-situ defect correction and removal 

techniques. Many authors studied machine learning techniques applied to high-speed data (in the order of 10 – 100 

kHz), but basically all reviewed methods were tested off-line, and computational efficiency issues were addressed 

by few authors. Moreover, in-situ acquired signals during one entire process may lead to several gigabytes of data 

to be managed and stored. The lack of consolidated real-time implementations still represents one of factors 

contributing to the existing gap between the wide research in this field and industrially adopted solutions. This is a 

field where several research efforts and industrial developments are currently required. 

Few studies investigated the potentials of combining data from multiple sensors and/or combining different in-

situ monitoring levels to enhance the robustness and effectiveness of in-situ defect detection or to extend the range 

of detectable anomalies. As industrial systems become more and more equipped with multiple sensors, this 

represents an interesting opportunity to study and develop novel multi-sensor data fusion methodologies. Another 

challenge related to the implementation of industrial in-situ monitoring solutions is related to the fact that many 

sensing methods used in research studies are expensive, difficult or even impossible to install on industrial 

machines. Some recent studies compared different sensing methods to investigate the compromise between 

measurement performance and economic viability (Montazeri and Rao 2018, Foster et al. 2018). The feasibility of 

replacing high-fidelity and expensive sensors with low-fidelity and low-cost ones, possibly combining data fusion 

techniques from multiple sources, has received little to no investigation in the reviewed literature. 

Some researchers pointed out the possible combination of real-time data and process simulations to enhance in-

situ anomaly detection and to enable more efficient solutions for zero-defect AM. However, such digital twin 

solutions have only been explored at a preliminarily level and PBF process simulation is another field where 

additional research development is needed (Montazeri et al. 2020, Alldredge et al. 2018).  

The process control framework discussed in Section 5 highlighted that in-situ measured data could be used to 

design and develop different process control and optimization loops to pre-compensate geometrical errors, prevent 

the occurrence of defects in critical geometrical features and mitigate or correct defects when they have been 

signalled by in-situ process monitoring techniques. After a long-lasting temporal gap following first seminal studies 

in this area, various novel solutions have been proposed very recently. These studies have the great potential to pave 

the way towards a novel generation of smart PBF systems. Indeed, the fast growth of the research devoted to in-situ 
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measurement, monitoring and control, combined with the large number of research centres and industrial groups 

committed to the development of novel solutions in this field, is expected to significantly push forward the current 

technological and knowledge boundaries in the next few years. 
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Appendix – Literature collection procedure 

This section describes the procedure applied to collect the literature reviewed in this study. The literature analysis 

covered the period 2007 to September 2020. The following methods have been applied: 

1. Search by keyword: Google Scholar and Scopus databases where searched using several different 

combinations of salient keywords including the following: “L-PBF”, “SLM”, “EBM”, “EB-PBF”, “powder 

bed fusion”, “in-situ”, “in-process”, “in-line” “online”, “on-machine”, “layerwise”, “monitoring”, 

“measurement”, “sensing”, “sensor”, “metrology”, “defect detection”, “fault detection”, “error detection”, 

“anomaly detection”, “machine learning”, “artificial intelligence”, “data mining”, “statistical process 

control”, “statistical process monitoring”, “thermography”, “imaging”, “video-imaging”, “machine vision”, 

“camera”, “photodiode”, “pyrometer”, “spectrometry”, “fringe projection”, “powder bed”, “melt pool”, 

“porosity”, “distortion”, “geometric error”, “surface pattern”, “superelevated edge”, “residual stress”, 

“warping”, “crack”, “delamination”, “balling”, “process signature”, “topography”, “by-product”, “spatter”, 

“off-axis”, “in-axis”, “co-axial”. 

2. Search by author and research group: starting from i) previously published reviews, ii) the results of our 

search by keywords, and iii) the authors’ knowledge of the research area, any additional or more recent 
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papers from individual authors and the research groups they belong to were searched through faculties’ 

web-pages, Google Scholar personal pages, research groups and institutes’ websites. 

3. Search by references: for each paper selected through the former two methods, a further search was 

performed by going through all papers cited by the selected ones and identifying the relevant ones. 

4. Search by citation: for each paper selected through the three former methods, a further search was performed 

by going through all citations (using the Google Scholar “cited by” tool) and identifying the relevant ones. 

5. Iteration of steps 1 to 4: once new papers and new authors were identified, the list of keywords was refined, 

more recent papers were searched, and all citations were explored to identify additionally relevant studies. 

6. Final screening phase: all papers selected through steps 1 to 5 were read by the authors and screened out 

based on their relevance to the topics included in this review (e.g., we filtered out studies presenting methods 

that were not applicable in-situ/in-process, studies not appliable to powder bed fusion processes, etc.). 

Final classification phase: all finally selected papers went through a more in-depth analysis, they were classified 

according to the several classification criteria adopted in our study, including the sensing method, the in-situ 

monitoring level, the type of detected anomaly, etc.  
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