
Abstract— Phasor Measurement Units (PMUs) are the 
measurement devices fostering the transformation of electric 
power networks towards the Smart Grid paradigm. They should 
accurately measure synchrophasors, frequency and rate of 
change of frequency (ROCOF), so that the management and 
control applications relying on PMU-based distributed 
monitoring system can operate effectively. Commercial PMUs 
performance is typically guaranteed by the compliance with the 
IEEE standard C37.118.1, which is focused on PMUs for power 
transmission systems and defines testing conditions and error 
limits. However, actual operating conditions are much more 
variable than those covered by the standard, especially when 
PMUs are used in distribution networks. In particular, the 
standard does not consider unbalance, which may be negligible 
neither in transmission nor in distribution grids. For the first 
time, this paper analyzes the impact of unbalance on the 
accuracy of four of the most significant classes of signal 
processing algorithms for PMU measurements. Synchrophasor, 
frequency and ROCOF estimation performance under different 
unbalance conditions is investigated in the test cases suggested 
by the IEEE C37.242-2013 guide. Novel analytic expressions to 
predict the errors are derived and validated, and they are 
proved to be useful for an effective implementation of PMU 
algorithms intended for both distribution and transmission 
systems. 

 
Index Terms— Frequency estimation, Phase measurement, 

Phasor Measurement Units, Rate of Change Of Frequency 
(ROCOF), Unbalanced Three-phase Electric Systems, Voltage 
Measurement 

I. INTRODUCTION 

HASOR Measurement Units (PMUs) are expected to 
become the main tool for electrical power networks 

monitoring. PMUs are synchronized with respect to 
coordinated universal time (UTC), thus allowing voltage and 
current amplitudes and phase angles, frequency and Rate Of 
Change Of Frequency (ROCOF) measurements to be 
performed in a common time reference. Large scale distributed 
measurement systems can be thus designed relying on PMU 
peculiarities. Such systems, namely wide area measurement 
systems (WAMS) in power transmission networks (TNs) 
context, can represent the future also for distribution network 
(DN) [1]. 

PMU employment in DNs is not straightforward, because of 
the different dynamics and characteristics typical of 
distribution systems [1]. DNs are made of shorter and weakly 
meshed lines, resulting in small phase-angle differences 
between nodes and will show less predictable operating 
conditions, due to a massive penetration of distributed and 
renewable energy resources. PMU algorithms that allow 

accurate measurements under a wide range of conditions will 
be one of keys to the success of PMU employment in DNs [2]. 

Nowadays, the starting point of PMU performance 
evaluation is the synchrophasor standard IEEE C37.118.1-
2011 [3], along with its amendment IEEE C37.118.1a-2014 
[4]. Since 2011, the standard defines the PMU measurement 
outputs and indicates errors limits under specific test cases. 
The test signals and requirements are used to define two 
classes (P and M) of compliance. Prescriptions are given in 
terms of reporting rate, accuracy, step response, and latency, 
and examples of PMU algorithms for P and M classes are 
reported in [3], Annex C. 

In the literature, particular attention has been devoted to the 
identification of techniques that are well-suited to PMU 
implementation and to the design of algorithms that allow 
complying with the requirements of the standard. The test 
conditions indicated in [3] are often a common ground to 
compare the proposed methods. Many algorithms have been 
defined (an overview can be found in [5]) and characterized by 
means of both simulations [6], [7] and experimental tests [8], 
[9]. Nevertheless, it has become clear that PMU algorithms, 
particularly in DN framework, require a deeper testing to cover 
more realistic cases. For instance, some aspects of narrow- and 
wide-band noise impact are assessed in [10], [11]. The guide 
IEEE C37.242-2013 [12] that has been published to help the 
calibration, installation and testing of PMUs, reflects these 
emerging discussions. The guide provides a detailed 
description of the procedures and of the conditions to perform 
PMU testing from a practical perspective. It also suggests 
performing additional tests, with respect to those imposed by 
[3], considering unbalanced three-phase inputs. 

In practical power systems the positive sequence 
synchrophasor carries most information about a three-phase 
quantity. For this reason, accurate positive sequence 
synchrophasor estimation is vital for state estimation as well as 
for grid control and automation. It is worth noticing that these 
applications are mostly based on a positive sequence 
representation of the system. 

But most important, [3] defines a unique system frequency 
for each set of three-phase quantities that is the angular speed 
of the positive sequence synchrophasor in a GPS-synchronized 
reference frame. In fact, reference P-class and M-class 
algorithms proposed by the standard (Annex C) obtain 
frequency and ROCOF measurements by differentiating the 
positive sequence synchrophasor phase angle. 

For this reason, it is interesting to study how unbalance 
affects frequency and ROCOF measurements, other than the 
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positive sequence synchrophasor estimation. Voltage and 
current unbalance is sometimes not negligible in high-voltage 
systems, since it may reach levels well above 1% even during 
regular operation. For example, the Italian transmission system 
operator monitors weekly the maximum voltage unbalance for 
power quality assessment. The expected 95th percentile value 
for 2017 is 4%, but measurements show that this value was 
significantly exceeded in the preceding years [13]. Current 
unbalance is supposed to be significantly greater. Higher 
unbalance figures are typical of DNs (which may include 
unbalanced or even single-phase loads and generators) [14]. 
Standard EN 50160 [15] states that, under regular operation, 
95% of the ten-minute voltage unbalance should be below 3%. 
However, this aspect is often overlooked since only few papers 
deal with the issues of PMU algorithms and operation under 
unbalance conditions for both TN and DN [16]-[19]. 

In [20] the impact of a negative sequence component on the 
estimation performed by means of the aforementioned 
reference algorithms and of the recently proposed space vector 
(SV) based algorithms [21], [22] has been discussed from both 
a theoretical and practical point of view. In this paper, the 
analysis is expanded significantly including two other 
techniques that are particularly studied in recent literature for 
application in the synchrophasor estimation context. The first 
one is the Taylor-Fourier filtering algorithm [23], which is 
specifically designed for dynamic conditions, and is 
representative of a large class of methods based on 
synchrophasor dynamic modeling. The second one is the 
interpolated discrete Fourier transform (IpDFT) [24] that is 
particularly suited to deal with short range leakage problems. 
In this paper, the aim is thus to cover a wide range of 
estimation techniques, based on different principles, under 
unbalance conditions and to offer a detailed analysis of the 
impact of this phenomenon on classes of measurement 
algorithms that are designed with different goals. The impact 
of unbalance on the estimations provided by all the algorithms 
can be predicted with the analytic formulas that are introduced 
in this paper and validated by means of simulation results 
under different conditions inspired by the complementary tests 
described in [12]. Such equations also allow having a better 
insight into the main contributions to the errors of 
synchrophasor, frequency and ROCOF measurements in three-
phase unbalanced systems. On the other hand, the derived 
expressions may also be helpful to an effective design of PMU 
algorithms both for DN and TN applications. 

II. ANALYTIC PERFORMANCE PREDICTION 

Compliance tests suggested by the well-known 
synchrophasor measurement standard [3] are based on three-
phase balanced input signals, at least for the fundamental 
component. Although it is not required for the certification, 
[12] recommends assessing PMU performance in presence of 
unbalance. The suggested test signals to be applied are 
obtained starting from a positive sequence, three-phase signal, 
and changing, both in phase-shift and magnitude, one of the 
phases. Hence, the three sinusoidal signals xa, xb, xc at the 

frequency f1 (corresponding to the angular frequency ω1) can 

be represented by their respective phasors aX , bX , cX : 
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where 2 /3je    and the coefficients kx and ka allow 
introducing magnitude and phase unbalance respectively. For 
the following analysis, it is convenient to describe the test 
signal in terms of symmetrical components. Thus, by applying 
the Fortescue transformation, the positive, negative and zero 

sequence phasors X , X , 0X  are obtained: 
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It should be noticed that the negative and zero sequence 
phasors are exactly the same. It is worth defining the 
unbalance level, namely the magnitude of the ratio between 
negative and positive sequence phasors, that can be easily 
computed. Using the inverse Steinmetz transform, the time-
domain test signals can be written as: 
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where * denotes the complex conjugate operator. Using the 
inverse Fortescue transform: 
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The three-phase test signals have to be applied to the input 
of the PMU under test which returns the measured positive 
sequence synchrophasor, frequency and ROCOF. Assuming 
that ω0 is the rated angular frequency of the power system, an 
ideal PMU should return exactly zero ROCOF, the actual 
frequency f1 and a positive sequence synchrophasor x whose 

expression, as a function of time, is: 

    1 0j tx t X e  
    (5) 

From the estimations and the actual values, the usual 
performance indexes, Total Vector Error (TVE), Frequency 
Error (FE) and ROCOF Error (RFE), must be evaluated. 

It is clear that results strictly depend on the peculiar 
estimation technique implemented in the PMU. In this work, 
four types of algorithms are considered and compared. For all 
of them, analytic expressions that allow predicting TVEs, FEs, 
RFEs in case of unbalanced input have been derived. 

A. Space Vector based PMUs 

PMU algorithms based on the SV transformation have been 
firstly proposed by the authors in [21]. An improved version 



[22] is characterized by higher flexibility: its performance 
depends on five digital filters that can be tailored to meet 
specific goals, for example complying with P and M classes. 
One of the advantages is that the results of the performance 
tests required by [3], [4] can be predicted by using simple 
analytic expressions. These formulas, as shown in the 
following, can be employed also to predict the accuracy in 
case of unbalance. 

SV-based algorithms require computing the space vector

SVx in a reference frame rotating at the speed ω0, 

corresponding to the rated frequency f0 of the power system: 
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Substituting (3) and (4) into (6) it is possible to write the 
expression of the SV in terms of symmetrical components: 

     01 1* j tj t j t
SVx t X e X e e   

     (7) 

As expected, the SV is unaffected by the zero-sequence 
term. Moreover, equations presented in [22] for the steady-
state tests can be also employed to predict how unbalance 
affects the estimations. In fact, the negative sequence 
component can be seen as a harmonic disturbance 
characterized by a negative angular frequency -ω1. The SV 
approach requires designing the input filter H as well as the 
other filters for estimating the positive-sequence 
synchrophasor magnitude and phase (M and P respectively), 
frequency and ROCOF (F and R). Thus, introducing  H j , 

 M j ,  P j ,  F j  and  R j as their frequency 

response functions, using (33), (26), (28) in [22] with ωd=-ω1, 
the following expressions for maximum TVE of the positive 
sequence synchrophasor estimation, FE and RFE can be 
obtained: 

  max 1TVE max , 2K A P j       (8) 

  max 1FE 2KF j     (9) 

  max 1RFE 2KR j     (10) 

being: 
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that are obtained from (23) and (30) in [22] by considering 
ωd=-ω1. In the above equations, a complex expression without 

overline denotes its magnitude, while  M j  and  F j  

indicate the zero-phase responses of filter M and F.  

B. Reference P- and M-class algorithms 

Reference P- and M-class algorithms proposed by the 
standard represent the second type of algorithm to be 
investigated. The architecture is reported in [3], but some of 
the parameters have been changed in the amendment [4]. The 
algorithms, first of all, require demodulating the phase 
quantities using quadrature oscillators at the rated angular 
frequency ω0. Using the complex notation, recalling (3), after 
demodulation the three signals ,a dx , ,b dx  and ,c dx are obtained. 
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After that, the three synchrophasors are estimated by 
applying a linear phase, low pass filter H   characterized by its 
frequency response function  H j , and compensating for 

the group delay. Considering the generic phase p, it results: 
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Where     / 2H j H j  ,  H j is the zero-phase 

response of filter H and ,p ex  is the measured synchrophasor. 

The positive sequence synchrophasor is estimated using the 
Fortescue transformation. Recalling (4), the estimated positive 
sequence synchrophasor can be expressed in terms of 
symmetrical components. 

      1 012
, 1 0( ) 1 j tj t
ex t Ke H j X e     

        (15) 

having defined: 
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Therefore, the positive sequence synchrophasor estimation 
contains a disturbance proportional to the ratio between 
positive and negative components (unbalance level), but is 
completely unaffected by the zero-sequence term. Frequency 
and ROCOF are obtained by using the finite differences 
method to approximate an ideal differentiation of the phase of 

,ex . From these computations, the maximum frequency and 

ROCOF errors (FEmax and RFEmax) can be obtained: 
 max 1FE 2Kf   (17) 

 2
max 1RFE 8 Kf   (18) 

For the M-class algorithm, the TVE can be computed by 
comparing (15) with (5). The TVE is composed by an average 
value plus an oscillating term; after some computations, the 
peak value TVEmax results: 

    max 1 0 1 0TVE 1H j KH j                (19) 



In this case, TVEmax is composed by the sum of two terms: 
the first one is the gain error of filter H with respect to unity; 
the second is proportional to K, hence to the unbalance level. 

As for the P-class reference algorithm, the FIR filter H is 
represented by a two-cycle triangular window resulting in 
significant attenuation under off-nominal frequency 
conditions. For this reason, the P-class algorithm includes an 
amplitude compensation of the filter output according to the 
estimated frequency. If the amplitude compensation exactly 
implements the magnitude response of H, performing a 
computation similar to that presented in [22] for steady-state 
tests, the following expression of maximum total vector error 
is derived: 

  maxTVE max ,1K A   (20) 

where: 
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As a final consideration, all the derived expressions clearly 
show how the main effect of unbalance is the infiltration of a 
double frequency component due to the negative-sequence 
phasor into all the measurements. The effect of such 
disturbance is magnified by the differentiations required for 
frequency and ROCOF computations. 

C. Taylor-Fourier Filter algorithms 

Another important class of synchrophasor estimation 
algorithms, specifically conceived for dynamic conditions, is 
that considering a dynamic model given by the Taylor 
expansion of the phasor around the measurement reference 
time [23]. The discrete-time model underlying the 
measurement algorithm is the following one (here and in the 
following ⋅  and ⋅  indicate the real and imaginary parts, 
respectively): 
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where , ⋯ ,  is the index spanning the samples of 

the signal  in the N-sample observation window around the 

measurement instant , while subscript p{a, b, c} denotes 
the phase. The coefficient ,  represents the generic -
derivative of the phasor ̅  at the instant  and  is the 
adopted expansion order.  

Rewriting (22) in matrix form, the linear model follows (the 
measurement time is dropped for the sake of simplicity): 
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where  is the vector of the samples in the measurement 
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The solution of (23) in the least squares sense gives the 
estimation of the synchrophasor along with its derivatives: 

⋅ ⋅  (25) 

From (25) it is clear that the estimation is linear and each 
row of the matrix allows performing the corresponding phasor 
derivative estimation. Once  is obtained, the following 
expressions hold: 
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and the desired quantities can be estimated for each phase. It 
can be noticed that the matrix  rows can be seen as 
containing the following filter coefficients: 

0 1,( ) nh n  H  

1 2,( ) nh n  H    2 3,( ) nh n  H  
(27) 

used to compute , , ,  and , . Such filters have 
peculiarities due to their definition and to the property 

2 2k H B I . Phasor estimation is performed by means of  

and it is easy to show that: 
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Then the estimated phasors, relating to a single phase and 
the positive sequence, can be expressed similarly to (14) and 

(15), respectively (replacing the generic filter H  with 0H ). 

For the estimated phasor of each phase it results: 
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When considering the positive sequence estimation, 
obtained applying the Fortescue transformation to the three 
estimated synchrophasors, the following expression applies (a 
generic time variable  is used for the sake of clarity): 
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 . Analogously to the previous 

section, the maximum estimation error can be expressed, by 
means of TVE, as: 
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The maximum TVE depends on the ratio between negative 
and positive sequence and thus involves both amplitude and 
phase-angle unbalance. 

It is interesting to notice that, when all but the first term of 
the Taylor series remainder can be considered in the 
expansions of the filter frequency response around 	 , 
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The above expressions of the TVE and, in the following, 
those relating to FE and RFE, are valid for a generic order of 
expansion . 

Frequency and ROCOF are estimated by the second and 
third expressions in (26), respectively, and such equations 
allow defining also the frequency and ROCOF estimation 
errors when , , ,  and ,  are expressed using the 
corresponding filters. Focusing first on single-phase 
estimations, it is possible to obtain: 
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where the denominators are | , | 	 for 0 1K  . 

Similarly to (28), it is possible to define the derivatives of 

 around 	 . Only the first derivative 	 is non-zero, as 

follows: 
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and thus it is possible to express the filter frequency responses 
by means of their Taylor expansions till the order 1. 

After a few simplifications, the following expression can be 
derived: 
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where: 
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Frequency estimations for each phase have been obtained; 
nevertheless, a set of three-phase quantities is characterized by 
a unique frequency value. For this reason, the frequency of the 
three-phase quantities is obtained as the average of the three 
measured frequencies and seeking an expression for the 
maximum frequency error, the following holds in the 
unbalanced system defined by (1): 
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The error includes a first term due to off-nominal frequency 
and two others relating to the phase unbalance. This 
underlines how frequency estimation is independent from 
amplitude unbalance, since the frequency errors on a single 
phase (34) are only influenced by relative level of 
disturbances. 

With similar passages, using (26) and the properties of the 
second derivative filter  (zero derivatives at 	 , except for 
the second derivative at , as required by the second order 



derivation filter), it is possible to obtain the ROCOF estimation 
for each phase. ROCOF ,  can be approximated as: 
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where: 
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and, by averaging with further simplifications, the following 
holds for an unbalanced system: 

   

0

0

max ,

1 1
21 0

1

1
2 22

1

RFE max ROCOF

1 1

2 ( 1)! 2

1
1 cos 2 sin 2

3

p e

k k

k

k

a ak

d H

k d

d H
k k

d





 
 



 









 

    
 


      


 
(39) 

As for the RFE, similarly to FE, the error budget can be 
divided into a first term due to the deviation from nominal 
frequency and a second one due only to the phase unbalance, 
because a magnitude change on a single phase does not affect 
the corresponding ROCOF estimation. 

D. Interpolated DFT based PMUs 

Frequency-domain interpolation techniques are commonly 
employed for synchrophasor and frequency estimation [24]. 
The main advantage lies in the excellent steady-state 
performance, also under off-nominal frequency conditions. Let 
us consider the generic phase voltage or current signal xp(t), 
p{a, b, c}, as from (3), acquired with a sampling frequency 
fs=Mf0. A N-sample rolling window (N=P·M, where P is the 
number of nominal cycles) whose order is at least equal to two, 
is applied to the signal. Introducing 1 , the 
expression of the windowed signal xp,w(t,τ) is obtained. 

      , ,p w p wx t w x t T      (40) 

where τ spans from 0 to Tw in discrete steps. After some 
computations, the DFT of the windowed signal results: 
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ωw is the DFT angular frequency resolution and  W j  the 

window frequency response. Let us introduce k  as the 
harmonic index of the greatest positive frequency spectral 
component and kγ as that of the highest component adjacent to 

the k th. When the usual, two-point interpolation is 
considered, the ratio γ between the magnitudes of these two 
components has to be computed. Assuming that w(t) has 
linear-phase response (hence constant group delay τw), the 
analytic expression of γ results: 

    0 11 cos 2 w w pK t T           (42) 

where: 
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being  W j the zero-phase response of the window. It 

should be noticed that spectral leakage results in a double-
frequency alternating component in γ. The fundamental 
frequency fp,e can be estimated as: 

  ,p e p wf k k f    (44) 

having introduced fw=ωw/2π and Δkp is the estimated frequency 
deviation of phase p in bins, obtained from a proper function 
Dw(γ) depending on the weighting window. By means of a 
first-order expansion, the following expression of Δkp is 
obtained: 

 

       

   
0

0

0 1

sgn sgn

cos 2

p w w

w
w w p

k k k D k k D

D
K t T

 




 

   


    

    
 

 

 (45) 

where sgn(·) denotes the sign function. Compensating the 
group delay, the estimated frequency is given by: 
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Thus, phase p maximum frequency error results: 
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The ROCOF can be obtained through differentiation, for 
example by means of the finite differences method. Its analytic 
expression as well as that of the RFE comes straightforwardly. 

The synchrophasor magnitude xp,e is computed by 
compensating the group delay and the scalloping loss from the 

k -th component of the DFT: 
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After some computations and first-order approximations: 
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Also the synchrophasor phase angle θp,e is derived from the 

k th component of the DFT, having properly compensated the 
delays due to DFT and windowing: 
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 (50) 

The term containing the estimated frequency appears when 
the group delay is not exactly half of the window length, for 
example when a periodic window is employed. In this case, 
Tw-2τw=Ts, therefore this contribution can be neglected for high 
sampling rates. After some computations: 
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 (51) 

Having obtained the phase p synchrophasor in terms of 
magnitude and phase angle, the TVE can be obtained. Its 
expression is quite complicated and not reported for the sake 
of brevity. However, a simple, approximated expression of the 
maximum TVE can be derived: 
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Analytic expressions for the frequency and ROCOF 
estimations for each phase have been obtained; frequency and 
ROCOF of the three-phase quantities are computed by 
averaging the three single-phase measurements. 

Let us start with the frequency estimation. Using (46), 
substituting the phasor magnitudes and angles reported in (1) 
while taking the average of the three estimations, the 
expression of the frequency is obtained. The peak frequency 
error results: 
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As expected (like in Section II.C), the frequency estimation 
obtained by averaging three single-phase measurements is not 
affected by magnitude unbalance. It is worth noticing that by 
using the approximated expressions, and in absence of phase-
angle unbalance, the double-frequency components due to 
leakage in the single-phase frequency estimations cancel out 
thanks to the average. Being the ROCOF obtained by 
differentiation, the expression of RFEmax is obtained 
immediately. 

Finally, an analytic expression of the positive sequence 
synchrophasor can be obtained using (1), (49), (51) and 
applying the Fortescue transformation. The TVE can be 
obtained, but the equation is rather complex and a simple yet 
accurate expression of the peak value is available for the 
magnitude unbalance only: 
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III. TESTS AND RESULTS 

The measurement performances of the different techniques 
in the presence of unbalance have been compared by means of 
numerical simulations, which also permit to validate the 
analytic expressions of the maximum errors derived in Section 
II. The conditions resemble those suggested by [12], thus the 
test signals are obtained from three perfectly balanced 
sinusoids, having frequency f1, by changing the magnitude or 
angle of one of them. In particular: 

 Magnitude variation kx: ±10% and ±20%, 
corresponding to about 3% and 6% unbalance 
levels. 

 Phase-angle variation ka: ±20°, ±40° and ±60°, 
namely 11%, 24% and 38% unbalance levels. 

 Fundamental frequency f1: 0f  and 0f -1 Hz (50 

Hz and 49 Hz for 50 Hz systems). 
For each kind of algorithm, two implementations have been 

tested: one designed to provide low latency and fast response 
times, the other tailored to ensure high steady-state accuracy. 
When available, the P- and M-class versions of the algorithms 
(for the maximum reporting rate stated in [3], that is 50 
frames/s for a nominal system frequency of 50 Hz) have been 
used, otherwise two different window lengths have been 
adopted, inspired by those of the filters suggested in [3] for the 
two classes. 

As for SV algorithms, the following configurations 
implemented with a 016sf f  sampling frequency (same as 

in [22]) have been tested: 
 P-SV: 2 Hz passband frequency and 50 Hz 

stopband frequency for H, M, P, F and R filters. 
Passband ripple 32 10  for H, 210  for M and P. 

Stopband ripple 23 10 for H, M and P. Filter 
order 36 and stopband weights 100 and 1000, 
respectively for F and R. 

 M-SV: 5 Hz passband frequency and 25 Hz 
stopband frequency for H, M, P, F and R. 



Passband ripple 32 10  for H, 210  for M and P. 

Stopband ripple 23 10 for H, 210  for M and P. 
Filter order 128 and stopband weights 100 and 
1000, respectively for F and R. 

The P- and M-class reference algorithms proposed by the 
standard have been implemented and tested with a sampling 
rate 016sf f  . In the following, they are indicated as P-

C37.118 and M-C37.118, respectively. 
Two- and six-cycle Taylor-Fourier algorithms have been 

considered, and denoted as 2-TF and 6-TF in the following. 
Both of them have been implemented with the usual 

016sf f   sampling frequency using a second order 

expansion, the minimum that allows performing both 
frequency and ROCOF estimations without turning to discrete-
time derivatives. 

The considered IpDFT implementations are based on 
periodic Hann windows that allow considerably better 
performance with respect to the symmetric versions. As 
explained in Section II.D, with this choice the phase delay 
compensation depends on the estimated frequency, resulting in 
an additional error contribution evident in (50) and (51). Since 
this term is inversely proportional to the sampling rate, 

0200s ff    has been employed so that its impact results to be 

very small. Two-cycle and six-cycle implementations have 
been studied, and are denoted as 2-IpDFT and 6-IpDFT. 

For all the tests and algorithms, the maximum TVE, FE and 
RFE have been computed using 1-second test signals and 
sample-by-sample estimations. Since all the unbalance tests 
are steady-state tests, using a time resolution equal to the 
sampling interval allows better determining the maxima 
without changing the initial phase angle. 

First of all, the impact of unbalance on low-latency PMU 
algorithms is analyzed. Table I reports the maximum percent 
TVE for the positive sequence phasor estimation, the 
maximum FE and RFE for the above test cases as well as in 
symmetrical test conditions with 49 Hz frequency. Error 
values at 50 Hz without unbalance are not reported since they 
are negligible for all the algorithms. Results are compared with 
the values (between round brackets) derived by means of the 
analytic expressions proposed in Section II. For the amplitude 
unbalance tests, only the results for negative variations are 
reported: being characterized by higher unbalance level, for all 
the algorithms they have a greater impact on the estimations. 
When looking at (8)-(10) and (17), (18), (20), it can be noticed 
that maximum TVE, FE and RFE of the reference algorithms 
and of the SV-based techniques are proportional to /X X  , 

namely the unbalance level. From (2) it immediately appears 
that this ratio is higher for the negative amplitude changes. 
Furthermore, higher errors in the phase unbalance tests are 
expected, being them characterized by higher unbalance levels.  

TABLE I.  IMPACT OF MAGNITUDE AND PHASE UNBALANCE ON LOW-
LATENCY PMU ALGORITHMS 

Method 
Freq 
[Hz] 

kx 
[%] 

ka 
[°] 

Max Errors 
TVE 
[%] 

FE 
[mHz] 

RFE 
[Hz/s] 

P-C37.118 49 

0 0 
7.3e-4 

(0.0000) 
0.000 

(0.000) 
0.000 

(0.000) 

-10 0 
0.0012 

(0.0005) 
0.328 

(0.363) 
0.213 

(0.223) 

-20 0 
0.0017 

(0.0009) 
0.679 

(0.751) 
0.440 

(0.463) 

0 +20 
0.0023 

(0.0016) 
1.12 

(1.23) 
0.723 

(0.760) 

0 +40 
0.0039 

(0.0032) 
2.29 

(2.53) 
1.48 

(1.56) 

0 +60 
0.0057 

(0.0050) 
3.59 

(3.98) 
2.33 

(2.45) 

P-SV 

50 

-10 0 
2.5e-4 

(2.4e-4) 
0.012 

(0.012) 
0.0083 

(0.0083) 

-20 0 
5.1e-4 

(5.1e-4) 
0.025 

(0.025) 
0.017 

(0.017) 

0 +20 
8.5e-4 

(8.3e-4) 
0.040 

(0.042) 
0.027 

(0.028) 

0 +40 
0.0018 

(0.0017) 
0.084 

(0.086) 
0.057 

(0.058) 

0 +60 
0.0029 

(0.0027) 
0.134 

(0.134) 
0.091 

(0.091) 

49 

0 0 
0.0000 

(0.0000) 
0.000 

(0.000) 
0.000 

(0.000) 

-10 0 
4.9e-4 

(4.9e-4) 
0.0039 

(0.0039) 
0.0038 

(0.0039) 

-20 0 
0.0010 

(0.0010) 
0.0080 

(0.0080) 
0.0082 

(0.0082) 

0 +20 
0.0017 

(0.0017) 
0.013 

(0.013) 
0.013 

(0.013) 

0 +40 
0.0036 

(0.0034) 
0.027 

(0.027) 
0.028 

(0.027) 

0 +60 
0.0058 

(0.0054) 
0.044 

(0.042) 
0.043 

(0.043) 

2-TF 49 

0 0 
0.37e-4 

(0.37e-4) 
1.59 

(1.59) 
0.000 

(0.000) 

-10 0 
0.58e-4 

(0.58e-4) 
1.59 

(1.59) 
0.000 

(0.000) 

-20 0 
0.80e-4 

(0.80e-4) 
1.59 

(1.59) 
0.000 

(0.000) 

0 +20 
1.1e-4 

(1.1e-4) 
1.64 

(1.65) 
0.0082 

(0.0073) 

0 +40 
1.8e-4 

(1.8e-4) 
1.69 

(1.69) 
0.015 

(0.014) 

0 +60 
2.6e-4 

(2.6e-4) 
1.72 

(1.72) 
0.021 

(0.019) 

2-IpDFT 49 

0 0 
2.3e-4 

(0.0000) 
0.021 

(0.000) 
7.8e-5 
(0.000) 

-10 0 
0.0024 

(0.0024) 
0.021 

(0.000) 
2.4e-4 
(0.000) 

-20 0 
0.0049 

(0.0049) 
0.021 

(0.000) 
2.4e-4 
(0.000) 

0 +20 
0.0097 

(0.0096) 
15.3 

(15.4) 
9.48 

(9.45) 

0 +40 
0.0193 

(0.0191) 
28.8 

(28.9) 
17.8 

(17.8) 

0 +60 
0.0289 

(0.0287) 
38.9 

(38.9) 
24.0 

(23.9) 

FE and ROCOF estimations obtained by means of Taylor-
Fourier filtering are not sensitive to magnitude unbalance, 
while from (31) it appears that the maximum TVE increases 

with the ratio /X X  . As for the IpDFT techniques, from 

(54) it is clear that kx<0 produces higher TVE for a given 
amplitude change, while frequency and ROCOF estimations 
are expected to be unaffected by magnitude unbalance. The 



results of the P-C37.118, 2-TF and 2-IpDFT algorithms when 
the test signals have the nominal system frequency are not 
reported because they are almost zero, due to the zeros of the 
adopted filters. 

In general, all the algorithms show very good performance 
in terms of TVE even when the input frequency is equal to 49 
Hz: as shown in Fig. 1, the values are lower than 0.03%, thus 
negligible from a practical point of view. 

On the contrary, unbalance has a significant impact, in 
particular under off-nominal frequency conditions, on 
frequency (Fig. 2) and ROCOF estimations. The reference and 
the SV-based algorithm use a similar approach for frequency 
and ROCOF estimations, which are obtained by differentiating 
the phase angle of the positive sequence synchrophasor. 
Unbalance results in a double-frequency ripple in its phase 
angle whose amplitude is increased by the differentiating filter 
employed to compute frequency and ROCOF. As for the P-
class algorithm, unbalance leads to unacceptable errors, in 
particular for the estimated ROCOF, since the filters do not 
provide enough attenuation of this double-frequency 
component that acts as a third-harmonic disturbance. On the 
contrary, the P-SV is designed with approximated first and 
second order differentiators that allow a good rejection of the 
third harmonic, even under off-nominal frequency conditions. 

The two-cycle TF filter shows fairly high frequency errors 
that weakly depend on the unbalance level, both in magnitude 
and phase. When looking at (36), this means that the error 
contribution due to a frequency different from the rated one is 
considerably higher than that due to unbalance. Conversely, 
ROCOF estimation is not affected by magnitude unbalance, 
and errors are low even in case of phase-angle unbalance. 

As for the two-cycle IpDFT, results show a weak sensitivity 
to magnitude unbalance, but phase unbalance produces very 
high FE and RFE. 

The analytic formulas allow, generally, a good prediction of 
the errors. Slight discrepancies can be found for the expected 
TVE of the P-C37.118 algorithm because the theoretical 
expressions assume ideal compensation of the scalloping loss. 
Further refinement can be performed by considering the 
empirical one proposed by the standard. The results in terms of 
FE and RFE for the standard algorithm are instead slightly 
affected by the shape of the differentiator filters: ideal 
differentiation was supposed to simplify the analytic 
expressions, but the finite difference frequency response can 
be also easily kept into account. As for the IpDFT, analytic 
expressions predict perfectly zero frequency error without 
phase-angle unbalance. In fact, having linearized (46), the 
errors in the single-phase frequency estimations due to spectral 
leakage perfectly cancel out when the average is computed in 
order to obtain the three-phase frequency. Actually, higher-
order effects may produce bias and alternating components 
having frequency multiple of 6f1 that cannot be erased by 
averaging, thus affecting also the ROCOF estimation as 
evident from the results. In any case, it can be noticed that, as 
expected, FE and RFE do not depend on magnitude unbalance. 

 
Figure 1. TVE % for low-latency algorithms: 49	Hz, different 
unbalance conditions. 

 
Figure 2. FE for low-latency algorithms: 49	Hz, different 
unbalance conditions. 

Table II shows the results for the same test cases, when 
high-accuracy algorithms are considered. Positive-sequence 
synchrophasor estimation is accurate for all the algorithms 
even under off-nominal frequency conditions, as highlighted 
by Fig. 3. The M-C37.118 algorithm achieves the largest 
errors, and this applies also to frequency and ROCOF 
measurements, even at nominal frequency. This is due to the 
characteristics of the M-class filter that is designed with the 
constraint of a minimum attenuation of -57.8 dB in the 
stopband, irrespective of the frequency of the zeros of the 
frequency response. The frequency errors obtained by using 
the six-cycle TF filter are quite large and almost independent 
from the unbalance. Like before, this means that these errors 
are almost only due to the test frequency which is different 
from the rated one. On the contrary, ROCOF errors are small, 
and practically null in case of magnitude unbalance. These 
results highlight, as described by the equations in Section II.C, 
how the errors strongly depend on the derivation filters order 
and shape, in particular when negative frequencies are 
considered. Besides, the effect of averaging among the three 
phases plays a crucial role in canceling balanced errors. The 
six-cycle IpDFT shows excellent frequency estimation, but a 
non-negligible ROCOF error in case of phase-angle unbalance. 

Fig. 4 compares the frequency errors achieved by the 
considered high-accuracy algorithms in presence of unbalance, 
when the frequency is equal to 49 Hz. The SV-based method, 
thanks to the approximated differentiator, results in the lowest 
frequency and ROCOF errors. 
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TABLE II.  IMPACT OF MAGNITUDE AND PHASE UNBALANCE ON HIGH-
ACCURACY PMU ALGORITHMS 

Method 
Freq 
[Hz] 

kx 
[%] 

ka 
[°] 

Max Errors 
TVE 
[%] 

FE 
[mHz] 

RFE 
[Hz/s] 

M-
C37.118 

50 

-10 0 
0.0011 

(0.0011) 
1.03 

(1.14) 
0.683 

(0.719) 

-20 0 
0.0024 

(0.0024) 
2.13 

(2.13) 
1.41 

(1.49) 

0 +20 
0.0039 

(0.0039) 
3.36 

(3.89) 
2.23 

(2.45) 

0 +40 
0.0080 

(0.0080) 
7.04 

(7.99) 
4.67 

(5.02) 

0 +60 
0.0125 

(0.0125) 
11.3 

(12.5) 
7.46 

(7.88) 

49 

0 0 
0.0023 

(0.0023) 
0.000 

(0.000) 
0.000 

(0.000) 

-10 0 
0.0042 

(0.0042) 
1.73 

(1.92) 
1.12 

(1.18) 

-20 0 
0.0063 

(0.0063) 
3.59 

(3.97) 
2.33 

(2.45) 

0 +20 
0.0089 

(0.0089) 
5.90 

(6.53) 
3.82 

(4.02) 

0 +40 
0.0159 

(0.0159) 
12.1 

(13.4) 
7.85 

(8.25) 

0 +60 
0.0237 

(0.0237) 
19.0 

(21.0) 
12.3 

(12.9) 

M-SV 

50 

-10 0 
4.5e-4 

(4.5e-4) 
0.0026 

(0.0026) 
0.26e-4 

(0.26e-4) 

-20 0 
9.4e-4 

(9.2e-4) 
0.0053 

(0.0053) 
0.54e-4 

(0.54e-4) 

0 +20 
0.0016 

(0.0015) 
0.0083 

(0.0087) 
0.85e-4 

(0.89e-4) 

0 +40 
0.0034 

(0.0031) 
0.018 

(0.018) 
1.8e-4 

(1.8e-4) 

0 +60 
0.0056 

(0.0049) 
0.028 

(0.028) 
2.9e-4 

(2.9e-4) 

49 

0 0 
0.0000 

(0.0000) 
0.000 

(0.000) 
0.000 

(0.000) 

-10 0 
2.1e-4 

(2.1e-4) 
0.0035 

(0.0035) 
0.36e-4 

(0.36e-4) 

-20 0 
4.4e-4 

(4.4e-4) 
0.0073 

(0.0073) 
0.75e-4 

(0.75e-4) 

0 +20 
7.3e-4 

(7.2e-4) 
0.012 

(0.012) 
1.2e-4 

(1.2e-4) 

0 +40 
0.0015 

(0.0015) 
0.025 

(0.025) 
2.5e-4 

(2.5e-4) 

0 +60 
0.0025 

(0.0023) 
0.039 

(0.039) 
4.0e-4 

(4.0e-4) 

6-TF 49 

0 0 
0.0069 

(0.0069) 
14.3 

(14.4) 
0.000 

(0.000) 

-10 0 
0.0073 

(0.0073) 
14.3 

(14.4) 
0.000 

(0.000) 

-20 0 
0.0077 

(0.0077) 
14.3 

(14.4) 
0.000 

(0.000) 

0 +20 
0.0083 

(0.0083) 
14.4 

(14.5) 
0.014 

(0.012) 

0 +40 
0.0098 

(0.0098) 
14.5 

(14.6) 
0.026 

(0.023) 

0 +60 
0.0114 

(0.0114) 
14.5 

(14.8) 
0.035 

(0.030) 

6-IpDFT 49 

0 0 
0.0000 

(0.0000) 
1.9e-5 
(0.000) 

0.000 
(0.000) 

-10 0 
2.5e-4 

(2.5e-4) 
1.9e-5 
(0.000) 

0.000 
(0.000) 

-20 0 
5.1e-4 

(5.1e-4) 
1.9e-5 
(0.000) 

0.000 
(0.000) 

0 +20 
0.0011 

(0.0011) 
0.302 

(0.302) 
0.186 

(0.186) 

0 +40 
0.0022 

(0.0022) 
0.568 

(0.568) 
0.349 

(0.350) 

0 +60 
0.0032 

(0.0032) 
0.765 

(0.765) 
0.471 

(0.471) 

Except for the slight differences due to the discrete 
differentiators, the theoretical expressions presented in Section 
II.D ensure a good prediction of the errors in the presence of 
unbalance and can help in the design of suitable filters for the 
PMUs. Also in this case, it can be noticed that the IpDFT 
algorithm does not result in exactly zero frequency and 
ROCOF errors: the reason has been previously explained. 

From the analytic expressions, it is possible to see how the 
level of unbalance can clearly affect the frequency and 
ROCOF measurements in practical conditions. For instance, at 
48 Hz (the limit of the P-class frequency range) a 1.6% 
negative sequence component is sufficient, when P-C37.118 
algorithm is used, to violate the limit (0.4 Hz/s) prescribed by 
[3] for the RFE of P-class in steady-state conditions, without 
considering any other disturbance such as input noise or 
residual harmonic distortion. For the M-class, all the limits for 
RFE in case of harmonic or interharmonic disturbances have 
been suspended by the amendment [4], but when the reference 
algorithm is concerned, a 0.5% negative sequence component 
leads, even at nominal frequency and without harmonics, to a 
maximum RFE higher than the 0.1 Hz/s limit for steady-state 
conditions. 

 
Figure 3 - TVE % for high-accuracy algorithms: 49	Hz, 
different unbalance conditions. 

 
Figure 4 - FE for high-accuracy algorithms: 49	Hz, different 
unbalance conditions. 

IV. CONCLUSION 

The paper presents analytic expressions that allow 
predicting the impact of unbalanced three-phase inputs on the 
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performance of different PMU algorithms, designed to 
measure the positive sequence synchrophasor, frequency and 
ROCOF. Four techniques that have recently risen in the 
context of synchrophasor measurements are investigated. Their 
performance in terms of TVE, FE and RFE are assessed by 
means of simulations using the test signals suggested by IEEE 
C37.242-2013 guide. 

The theoretical analysis indicates that the influence of 
unbalance is radically different for each algorithm, depending 
on its capability to reject the equivalent harmonic disturbance. 
All the methods relying on a filtering approach for 
synchrophasor estimation (C37.118, SV and TF algorithms) 
are directly affected by the harmonic pollution induced by the 
negative sequence component due to unbalance. IpDFT 
instead starts from the estimation of frequency and thus the 
influence of amplitude and phase-angle unbalance on phasor 
estimation is more cumbersome and becomes more evident in 
case of phase-angle impairments. It is not possible to define a 
general rule, but it is obvious that the choice of filters and 
windows is of crucial importance in this context. 

Frequency and ROCOF measurements are particularly 
sensitive to unbalance (especially to phase-angle unbalance), 
but to a different extent, depending on filter characteristics or 
on the procedure to evaluate compensation terms. The 
presented analytic expressions allow predicting different error 
contributions, thus helping the design of modern PMUs that 
are expected to be employed also in distribution systems, 
where voltages and currents unbalance levels are considerably 
higher. 
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