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Abstract. Several approaches can be found in the scientific literature when the subject is dam-
age detection based on vibration signals. In the last few years, increasing attention has been
given to the application of Computational Intelligence algorithms in structural novelty identi-
fication. In more details, the powerful data mapping capability of computational deep learn-
ing methods has been recently exploited to develop strategies of structural health monitoring
through appropriate characterization of dynamic responses. Therefore, the present work is
aimed at investigating the capability of a deep learning algorithm called Sparse Auto-Encoder
(SAE) to identify structural alterations of the Z24 bridge, a classical benchmark for integrity
assessment studies. The main idea is to characterize the Z24 dynamic responses via SAE models
and, subsequently, to detect the onset of abnormal behavior through the well-known Shewhart
T control chart (T 2-statistic), calculated with SAE extracted features. An advantage of the
proposed methodology is that data are processed directly in the time domain, avoiding modal
parameters estimation and tracking analysis. Moreover, control charts are considered suitable
tools for continuous monitoring due to their relatively simple implementation. The obtained
results demonstrate that the proposed strategy based on SAE and Shewhart T control chart has
potential to be explored in structural damage detection problems, since it is able to distinguish
between the two investigated scenarios (i.e., undamaged and damaged) of Z24 bridge.
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1 INTRODUCTION

The proper functioning of structural systems and the safety of users are among the main

concerns of engineers throughout the life cycle of any civil engineering construction. In order to

avoid catastrophic failures, it is important to continuously monitor the structural condition and

detect any abnormal behavior at an early stage, especially when dealing with large structures,

such as bridges, viaducts, tall buildings, and towers.

Among the different methodologies available to identify the occurrence of structural anoma-

lies, vibration-based damage detection has been extensively investigated in the scientific liter-

ature (see e.g. [1]). Starting from dynamic time histories obtained through Structural Health

Monitoring (SHM) systems, these approaches are applied to investigate novelties in terms of

structural behavior. In summary, essential features are extracted from measured data and are

successively compared to deduce if a structural change has occurred.

Typically, the structural integrity investigation is performed by employing modal analysis

[2, 3]. The degrading process alters the physical properties of the structure, such as mass and

stiffness, which influence its natural frequencies, mode shapes, and damping ratios. In the last

few years, due to the evolution of computer and information technologies, increasing attention

has been given to the application of Computational Intelligence (CI) in structural novelty iden-

tification [4, 5, 6]. Among all possible CI algorithms, those based on deep learning appear as

promising alternatives to traditional techniques. In this paper, a special highlight is given to

the Sparse Auto-Encoder (SAE), a deep neural network algorithm that automatically extracts

features from data. The SAE reconstructs its inputs through an internal coding - modeled by

linear and nonlinear functions - that transforms them into a “new” group of variables (features)

[7]. Auto-encoders are known not only for the ability to deal with large volumes of data but

also for their capability to provide optimal solutions, particularly for nonlinear problems, such

as structural anomaly detection [8, 9]. Therefore, SAE may be an appropriate method for han-

dling vibration signals. It is important to notice that deep learning algorithms are recent tools in

the SHM area, and studies focused on evaluating them to solve novelty detection problems are

ongoing.

In this context, the present work is aimed at investigating the performance of the SAE algo-

rithm when applied to the identification of structural alterations. The fundamental idea here is

to characterize the structural dynamic responses via SAE models and, subsequently, to detect

the onset of abnormal behavior through the well-known Shewhart T control chart (T 2-statistic)

[10], calculated with SAE extracted features. The Shewhart chart is a sort of statistical pro-

cess control technique frequently used in SHM strategies and applied to the residuals between

measured and predicted (via regression analysis) quantities. Due to the relatively simple imple-

mentation, control charts are considered suitable tools for continuous monitoring. The anomaly

detection approach is exemplified using data collected on the Z24 bridge [11], before and after

damaging the structure.

An advantage of the proposed methodology is that data are processed directly in the time

domain, avoiding modal parameters estimation and tracking. Another interesting aspect of such

an approach is the unsupervised analysis, which means that it does not use previously labeled

observations or desired output variables. Although many methods in the literature are based on

the pre-establishment of different degradation levels (supervised analysis), it is difficult to have

prior knowledge of the structure’s health condition in actual SHM systems.
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2 THEORETICAL BACKGROUND

2.1 Deep Learning and Sparse Auto-Encoder

Deep Learning encompasses a variety of machine learning techniques based on Artificial

Neural Network (ANN) theory (see e.g. [12]), mainly characterized by their multiple processing

layers. As already stated, the present work is focused on the deep learning algorithm called

Sparse Auto-Encoder (SAE). In general terms, an Auto-Encoder (AE) is an Artificial Neural

Network (ANN) built to return an approximation of its input. According to Goodfellow et al.
(2016) [7], this network consists of an internal coding layer described by the function h = f(x),
which learns the characteristics h of input data x, and a decoding layer defined by y = g(h),
which rebuilds the vector x from the self-learned vector features h, as suggested by the network

architecture shown in Figure 1. Since the cost function evaluates the difference between x
and its own output y ≈ x (x reconstructed), the learning of an AE is unsupervised. It is worth

mentioning that an AE may have several layers between x and h, as well as between h and y
(the AE structure has to be symmetric). However, for didactic purposes, Figure 1 represents an

AE with only one encoder and decoder layer.

Figure 1: The basic structure of an Auto-Encoder [7].

Nevertheless, the main interest is not in the replicated output of the AE, but in exploring

its ability to extract characteristics from “raw data”. If the AE is used for data mapping only,

without feature reconstruction, it is designed to produce h with a smaller dimension than x and is

known as Undercomplete Auto-Encoder. The great advantage of reducing the data from x vector

dimension to h vector dimension is the identification of relevant parameters at a high-level of

abstraction, helpful for recognizing patterns in datasets. In this context, the learning of the AE

network is accomplished by minimizing a function Z(x, g(f(x))) that penalizes the differences

between x and g(f(x)). In cases where the coding function is linear, and Z is the mean quadratic

error, the Undercomplete Auto-Encoder behaves like the Principal Component Analysis (PCA)

[13]. Conversely, when employing nonlinear functions for f and g, the Undercomplete Auto-

Encoder may be more powerful than PCA to reduce the dimensionality of a problem [14].

Despite their efficiency in characterizing data, the encoders and decoders may acquire an

excessive ability to approximate y ≈ x, resulting in a vector h with high dimensionality, which

many times is not able to provide interesting parameters for modeling the problem. In order to

improve the performance of this deep machine learning technique, the Sparse Auto-Encoder

(SAE) was proposed. The SAE is an undercomplete auto-encoder where a sparse penalty

Γ(f(x)) is incorporated into the function Z in the training process. In summary, this penalty

allows the AE model to represent large datasets with a small number of h components, control-

ling the amount of active neurons in the layers (most weights equal to zero). Consequently, the

addition of sparsity-inducing term to auto-encoders usually leads to an increase in the model

performance and to a reduction of processing time.
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2.2 Shewhart T Control Chart

The Control Chart is a graphical statistical tool used to monitor the variability of a problem’s

parameters over time. The charts usually depict several data points, which are formed by a

specific statistical characteristic and horizontal lines (control limits) responsible for indicating

the extreme values of such characteristic when the problem is in-control state. Any point that

is beyond these predetermined limits, on the other hand, reveals unusual sources of variability,

suggesting an out-of-control situation. [10].

Due to their relatively simple implementation, intuitive interpretation, and effective results,

control charts are considered suitable tools for structural on-line monitoring and anomaly de-

tection. The multivariate control technique used herein is the Shewhart T Control Chart. The

characteristic plotted in this chart is the Hotelling’s T 2-statistic. The T 2-statistic represents the

distance between a new data observation and the corresponding sample mean vector - the higher

T 2 value, the greater the distance of the new data from the mean. This metric is based on the

relationship among the variables and on the scatter of data (covariance matrix). By assuming

that matrix Hn×m represents a dataset during a certain time period (which in this paper are the

SAE extracted features), the T 2-statistic may be calculated as follows:

T 2 = r(h − h)TS−1(h − h) (1)

where h is the sample mean vector of them available features, obtained from a submatrix of H
with r observations (Hr×m, r < n); h and S are the vector of reference averages and the mean of

the reference covariance matrices, respectively, both estimated using s preliminary submatrices

collected during the in-control state of the problem. In this work, the Upper Control Limit

(UCL) is defined as the 95th percentile of the T 2 values of the training data (values greater than

UCL may be observed only 5% of the time by chance). The Lower Control Limit (LCL) is zero.

3 THE VIBRATION-BASED ANOMALY DETECTION APPROACH

The present work proposes a structural assessment framework based on SAE models for au-

tomatic vibration-data feature learning. Such a framework includes the use of the Hotelling’s T 2

control chart applied to SAE extracted characteristics to investigate novelties in terms of struc-

tural behavior. Figure 2 shows a general scheme of the suggested anomaly detection methodol-

ogy.

SHM systems usually comprise a number of accelerometers that record dynamic responses

over time. Therefore, it is initially necessary to rearrange the acceleration time histories col-

lected in each measurement point by setting an appropriate window length (duration time) to

analyze each measured signal. The vibration measurements are organized in a matrix consider-

ing the structural responses of each accelerometer k (1 ≤ k ≤ K) separately, as illustrated in

Figure 3. The rows I indicate each rearranged signal, and the columns J represent the respec-

tive dynamic response sampled in time. The definition of the signal duration time should con-

sider the measurements’ capacity to represent the current structural condition and the amount

of available data. Moreover, since the present approach is focused on continuous monitoring, it

is also important to keep the chronological order of the collected signals. In order to make the

detection model less sensitive to data scale, after the input matrix is assembled, all data values

are divided by the maximum absolute amplitude, leading to acceleration signals between [-1;1].

The developed strategy relies on creating a model with data from the system working in

normal conditions, which is named as SAE/T 2-statistic reference model. At this point, the

reference matrix previously organized is divided into training and testing data, respecting their
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Figure 3: Input data organization for structural anomaly detection approach.

position in time. These two submatrices are used to construct and adjust the SAE/T 2 model

through an iterative procedure, described in the following steps:

1. Firstly, the training data are randomized, as usual in algorithms based on ANN theory.

This shuffling has the objective of reducing data variance, guaranteeing a greater gener-

alization power for the artificial intelligence model. It is important to emphasize that the

randomization is herein performed only on data used to create the artificial intelligence

model. After the training task, the data, or rather the SAE extracted features, must be

placed in chronological order again;

2. Initial training parameters for the SAE model are defined. These parameters are number

of processing layers, number of features to be extracted from time domain responses

(number of neurons), optimization method, activation and error functions, maximum

number of training iterations (epochs), sparsity proportion ρ and the coefficients β and
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λ, related to the sparsity and weights regularization terms of the cost function, respec-

tively. The parameters ρ, β, and λ are related to the sparse penalty function Γ (defined

in section 2.1) and assist in the determination of the best solution by the SAE (see e.g.

[15]);

3. By using the training data, the SAE model is generated. In the proposed approach, the

SAE model is applied to transform the structural signals into a few representative charac-

teristics;

4. The m extracted SAE features are reorganized in chronological sequence (as mentioned

in step 1) and used to calculate the T 2-statistic points and the UCL, as shown in Figure 4;

I
m

- + ............

Figure 4: Graphical representation of the T 2-statistic calculation procedure.

5. In order to evaluate the training performance, the SAE/T 2 model is fed with testing data.

Since the SAE features are also derived from time measurements collected when the

structural system is assumed to be under normal conditions, it is expected that the cor-

responding T 2-statistic points are below the UCL value. If this statement is not verified,

the SAE training parameters are readjusted (empirically), and a new model is created by

returning to step 1.

The reference model definition is complete when the SAE/T 2 model developed with the

training data is able to correctly represent the current structural behavior by using the testing

data. It means that the steps above shall be repeated until all or practically all reference data

produce T 2-statistic values bellow the UCL.

Finally, once the SAE/T 2 reference model is properly established, newly acquired data may

be classified as being from the normal or abnormal structural condition. SAE features and their

T 2-statistics are calculated from monitoring data and plotted in the control chart for comparing

the reference structural responses with the newly collected ones. The entire anomaly-detection

approach was developed using toolboxes and built-in functions available in Matlab R© R2017a.

4 APPLICATION I: Z24 BRIDGE

The Z24 bridge was a highway overpass located at Canton Bern near Solothurn, in Switzer-

land, built in the early 1960s to connect Koppigen and Utzenstorf. This post-tensioned structure

was 58m long composed of three continuous spans with 14m, 30m and 14m, supported on four
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piers, as it can be seen in Figure 5. Due to the construction project of a new railway line un-

derneath the highway, the bridge had to be demolished. Therefore, before the structure was

completely knocked down, it was instrumented and gradually damaged [11].

Figure 5: The Z24 bridge - Top view and experimental setup.

The present study evaluates the proposed SHM approach through dynamic signals of forced

vibration tests conducted within two structural conditions: undamaged and damaged (settlement

of pier - 40mm). Two vertical shakers were used to generate a flat force spectrum excitation

with 3-30Hz bandwidth. In each damage scenario, nine dynamic tests were performed consid-

ering five accelerometers installed at three measurement points, R1, R2 and R3, as described

in Figure 5. Vibration responses have 65535 data points, acquired at a frequency sampling of

100Hz for approximately 11 minutes. The structure’s natural frequencies and the temperature

variation - before and after the damage - are given in Table 1 for information purposes. The

evolution of the eigenfrequencies, as well as the structural modes (see Figure 6), are derived

from data of ambient vibration tests by the stochastic subspace identification method [11].

Structural
condition Temperature

1st
natural

frequency

2nd
natural

frequency

3rd
natural

frequency

4th
natural

frequency

5th
natural

frequency
Undamaged 17oC 3.92Hz 5.12Hz 9.93Hz 10.52Hz 12.69Hz

Damaged 29oC 3.86Hz 4.93Hz 9.74Hz 10.25Hz 12.48Hz

Table 1: Variation of the Z24 eigenfrequencies (values extracted from the work of De Roeck et al. (2000) [11]).

For this application, each accelerometer measurement is rearranged into 10-second sig-

nals, providing an input matrix [1070×1000]: 1070 dynamic time histories (65 signals per

accelerometer × 9 dynamic tests × 2 structural conditions = 1070 ) composed of 1000 data

points (100Hz × 10s = 1000). Henceforth, maintaining its chronological order, the input matrix

is subdivided as follows:

• Reference data (undamaged state):

Training data → matrix [450×1000]

Testing data → matrix [135×1000]

• Monitoring data (damaged state) → matrix [585×1000]
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(a) (b)

(c) (d) (e)

Figure 6: Reference mode shapes of the Z24 bridge - undamaged condition (draws extracted from the work of De

Roeck et al. (2000) [11]). (a) 1st mode - symmetrical bending mode. (b) 2nd mode - transversal mode. (c) 3rd

mode - combined torsional/antisymmetrical bending mode. (d) 4th mode - combined torsional/antisymmetrical

bending mode. (e) 5th mode - symmetrical bending mode.

The anomaly detection approach is investigated for each accelerometer channel separately.

For all analyses, the achieved SAE model was implemented employing one encoder and de-

coder layer constituted by 100 neurons (vector h with 100 components), which reduces the

dimensionality of the problem from 1000 data points to 100 features. The other parameters

were set to: the sparsity proportion (ρ) = 0.050; the sparsity regularization (β) = 4.000; the

weight regularization (λ) = 0.001; the training function = Scaled Conjugate Gradient (SCG)

optimization method [16] with gradient maximum value of 1.00 × 10−6; the encoder and de-

coder activation functions = logarithmic sigmoid and linear function, respectively; the error

metric = mean square; and the maximum number of training epochs = 1000. The Hotelling’s

T 2-statistic was calculated using data subgroups composed of 15 observations (r = 15) with

the 100 SAE characteristics (m = 100). The UCL was estimated considering 30 subgroups of

data (s = 30 = 450 training examples / 15 observations).

4.1 Results

The results of the proposed approach for the Z24 bridge are shown from Figure 7 to Fig-

ure 11. In total, 78 data subgroups were evaluated for each accelerometer channel, considering

training (30 subgroups - blue points), testing (9 subgroups - green points), and monitoring data

(39 subgroups - red points). In addition to the control chart plotted for one SAE/T 2 model,

another control chart was also constructed representing the T 2-statistic for 30 different SAE

models. In this case, the UCL is calculated considering the UCL’s mean from the 30 models.

This practice of examining the performance of various models is usual in ANN-based algo-

rithms. It aims to identify that a specific data ordering (possible correlated samples) is not

influencing the model performance.

By analyzing the results, a good performance was achieved for dynamic responses from

accelerometers 1 (Figure 7) and 5 (Figure 11). In both cases, during the training and testing

periods (undamaged condition), most T 2-statistic values are below the limit line (a small num-

ber of false alarms). In the monitoring period (damaged condition), the T 2-statistic abruptly
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Figure 7: Anomaly detection approach - Output for the accelerometer 1. (a) Control chart for one SAE/T 2 model.

(b) Control for 30 SAE/T 2 models.
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Figure 8: Anomaly detection approach - Output for the accelerometer 2. (a) Control chart for one SAE/T 2 model.

(b) Control for 30 SAE/T 2 models.
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Figure 9: Anomaly detection approach - Output for the accelerometer 3. (a) Control chart for one SAE/T 2 model.

(b) Control for 30 SAE/T 2 models.

exceeds the UCL value, laying outside of the in-control region and correctly indicating the

presence of the structural anomaly. These outcomes may be attributed to the relation between

the position of sensors and the structure’s mode shapes. In general, higher natural frequencies

are more affected in absolute terms by damage, as seen in Table 1. For this reason, since ac-
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Figure 10: Anomaly detection approach - Output for the accelerometer 4. (a) Control chart for one SAE/T 2 model.

(b) Control for 30 SAE/T 2 models.
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Figure 11: Anomaly detection approach - Output for the accelerometer 5. (a) Control chart for one SAE/T 2 model.

(b) Control for 30 SAE/T 2 models.

celerometers 1 and 5 are in positions where the amplitudes related to higher magnitude modes

are more significant (absolute difference of 0.27Hz for the 4th frequency and of 0.21Hz for the

5th frequency), they may have had better performance.

The same idea can be used to justify the T 2-statistic of data collected by the accelerometer 2.

Even though this channel is more affected by the first vibration mode, due to its location at the

midspan, the absolute difference between the natural frequencies is small (0.06Hz), maybe not

sufficient for the SAE/T 2 model detects the damage occurrence. Regarding the sensors 3 and 4,

they were positioned to capture transversal and longitudinal movements, respectively. There-

fore, since the shakers generated components predominantly in the vertical direction and, the

structure was considerably rigid on the longitudinal direction, it was expected that the control

charts related to these measurement positions would have inconclusive results.

The Mean Square Error (MSE) between original and reconstructed dynamic signals for the

30 SAE models are exhibited in Table 2. It should be noted that the MSE values of training data

are smaller than the MSE values of testing and monitoring data, as expected, since the first group

of data was used to train the SAE, and the second and third ones were unknown by the created

models. Figure 12 displays an example of the SAE reconstructed response in comparison with

its respective original signal. Instead of perfectly reconstructs signals, the idea behind the SAE

consists of modeling key features of data that are sensitive to structural novelties. Based on
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the assumption that lower MSEs are evidence of better signal reconstruction, the slight upward

trend in the T 2-statistic verified for testing data of accelerometer 1 may be associated with these

values. Table 2 reveals that the responses related to accelerometer 1 have a reconstruction error

almost twice as large as the error found for the responses of accelerometer 5, the other channel

with good results, where this trend does not appear.

Accelerometer 1 2 3 4 5
Training

data 0.0129 0.0074 0.0057 0.0021 0.0076

Testing and
monitoring data 0.0222 0.0120 0.0092 0.0026 0.0138

Table 2: MSE values between original structural responses and corresponding reconstructed signals for the 30 SAE

models (units: m2/s4).
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Figure 12: An original response of the Z24 bridge and its respective signal reconstructed by SAE.

5 CONCLUSIONS

The paper presented a structural anomaly detection approach based on Sparse Auto-Encoder

and Shewhart T control chart. Features extracted by SAE models, directly from time-domain

accelerations, were passed along as input variables of the control chart to detect the onset of

abnormal behavior in structures. The developed method was exemplified using experimental

data from dynamic tests performed on the Z24 bridge.

According to the obtained control charts, the T 2-statistic calculated with the SAE extracted

characteristics were efficient in detecting the two different structural states of the Z24 bridge.

The results are in agreement with the respective structural scenarios since the damage imposed

on the bridge was clearly identified. Nevertheless, more investigation is required to validate

the proposed anomaly detection strategy. In particular, the next steps in this work include

analyzing the temperature influence on SAE characteristics and applying the methodology in

other structures.
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