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 Low thrust satellite missions
• Interplanetary: Mars sample return orbiter
• Earth-orbiting satellites: OneWeb, Starlink

Nonlinear optimal control problems
• Direct/Indirect methods
• Dynamic Programming

–Differential Dynamic Programming

Robustness
• Sensitivity to uncertainties and failures
• Correction manoeuvres

Low-thrust and Differential Dynamic Programming

Mars sample return orbiter. Credit: ESA/ATG medialab

Illustration of a OneWeb satellite. Credit: OneWeb
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 The Differential Dynamic Programming (DDP) is a technique used for solving nonlinear optimal control problem [1].

 It is based on the application of Bellman’s principle of optimality [2]:

[1] Jacobson, D. H., and Mayne, D. Q., Differential Dynamic Programming, Elsevier, 1970.

[2] Bellman, R., Dynamic Programming., Princeton University Press, 1957.

“An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions
must constitute an optimal policy with regard to the state resulting from the first decision.”
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Low-thrust and Differential Dynamic Programming

Differential Dynamic Programming
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 The DDP can be summarised in two steps:
• A backward sweep where the optimality necessary conditions are solved for the control law.
• A forward integration where the new control law is used to check the cost reduction.

 The optimality condition is mathematically expressed using Hamilton-Jacobi-Bellman (HJB) equation:

• Continuous form:

• Discrete form:

−
𝜕𝜕𝜕𝜕 𝒙𝒙; 𝑡𝑡
𝜕𝜕𝜕𝜕

= min
𝒖𝒖

[𝐽𝐽 𝒙𝒙,𝒖𝒖; 𝑡𝑡 + 𝑉𝑉𝑥𝑥 𝒙𝒙; 𝑡𝑡 ,𝒇𝒇 𝒙𝒙,𝒖𝒖; 𝑡𝑡 ]

𝑉𝑉𝑘𝑘∗ 𝒙𝒙𝑘𝑘 = min
𝒖𝒖𝑘𝑘

[𝐽𝐽𝑘𝑘 𝒙𝒙𝑘𝑘 ,𝒖𝒖𝑘𝑘; 𝑡𝑡𝑘𝑘 + 𝑉𝑉𝑘𝑘+1∗ 𝒙𝒙𝑘𝑘+1; 𝑡𝑡𝑘𝑘+1 ]
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Mathematical definition

Differential Dynamic Programming
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 The DDP is based on a linear-quadratic expansion of the HJB equation starting from a nominal
nonoptimal solution.

 Two versions of the DDP algorithm exist according to the initial point of the Taylor expansion:
• Local: the initial point is coincident with a nominal solution used as initial guess.
• Global: the initial point is obtained from the minimisation of the expanded HJB with all the 

variations set equal to zero.

 The optimal feedback control law is obtained by means of differentiation and it is replaced inside the 
expanded HJB equation.

𝒙𝒙 = �𝒙𝒙 + 𝛿𝛿𝒙𝒙 𝒖𝒖 = �𝒖𝒖 + 𝛿𝛿𝒖𝒖 𝒃𝒃 = �𝒃𝒃 + 𝛿𝛿𝒃𝒃

𝒖𝒖∗ = min
𝒖𝒖

𝐽𝐽 �𝒙𝒙,𝒖𝒖, 𝑡𝑡 + 𝑉𝑉𝑥𝑥 𝒙𝒙; 𝑡𝑡 ,𝒇𝒇 𝒙𝒙,𝒖𝒖; 𝑡𝑡

𝛿𝛿𝒖𝒖 = 𝛽𝛽1𝛿𝛿𝒙𝒙 + 𝛽𝛽2𝛿𝛿𝒃𝒃
16th February 2021 Nugnes Marco – 1st Aerospace PhD Day 6

Analytical derivation

Differential Dynamic Programming
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Using a nominal control �𝒖𝒖 𝑡𝑡 run a
nominal �𝒙𝒙(𝑡𝑡) trajectory. Calculate
the nominal cost �𝑉𝑉 �𝒙𝒙0, �𝒃𝒃, 𝑡𝑡0 .

Using the final boundary conditions solve the system of differential
equations backwards from 𝑡𝑡𝑓𝑓 to 𝑡𝑡0, all the while minimising H with
respect to 𝒖𝒖 to obtain𝒖𝒖∗, and storing𝒖𝒖∗ 𝑡𝑡 ,𝛽𝛽1 𝑡𝑡 .

Apply the ‘’step-size adjustment method’’ to
obtain a new improved trajectory. If the current
control is optimal, halts the computation.

If an improved trajectory is obtained, replace the
old nominal �𝒙𝒙, �𝒖𝒖 and �𝑉𝑉 by these new values.

If 𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑡𝑡0 , integrate backwards from the
final boundary conditions the other two
differential equations. Calculate 𝛿𝛿𝒃𝒃. Integrate
state equations with the new control.

𝐻𝐻 𝒙𝒙,𝒖𝒖,𝑉𝑉𝑥𝑥; 𝑡𝑡 = 𝐽𝐽 𝒙𝒙,𝒖𝒖; 𝑡𝑡 + 𝑉𝑉𝑥𝑥,𝒇𝒇(𝒙𝒙,𝒖𝒖; 𝑡𝑡)

�
−𝑉̇𝑉𝑥𝑥𝑥𝑥 = [𝒇𝒇𝑥𝑥𝑇𝑇 𝒙𝒙∗,𝒖𝒖∗; 𝑡𝑡 + 𝛽𝛽1𝑇𝑇 𝑡𝑡 𝒇𝒇𝑢𝑢𝑇𝑇 𝒙𝒙∗,𝒖𝒖∗; 𝑡𝑡 ]𝑉𝑉𝑥𝑥𝑥𝑥
−𝑉̇𝑉𝑏𝑏𝑏𝑏 = −𝑉𝑉𝑥𝑥𝑥𝑥𝑇𝑇 𝒇𝒇𝑢𝑢 𝒙𝒙∗,𝒖𝒖∗; 𝑡𝑡 𝐻𝐻𝑢𝑢𝑢𝑢−1𝒇𝒇𝑢𝑢𝑇𝑇 𝒙𝒙∗,𝒖𝒖∗; 𝑡𝑡 𝑉𝑉𝑥𝑥𝑥𝑥

𝛿𝛿𝒃𝒃 = −𝜀𝜀𝑉𝑉𝑏𝑏𝑏𝑏−1 𝑡𝑡0 𝜑𝜑(�𝒙𝒙(𝑡𝑡𝑓𝑓); 𝑡𝑡𝑓𝑓)

𝛽𝛽2(𝑡𝑡) = −𝐻𝐻𝑢𝑢𝑢𝑢−1 𝒙𝒙∗,𝒖𝒖∗,𝑉𝑉𝑥𝑥; 𝑡𝑡 𝒇𝒇𝑢𝑢𝑇𝑇 𝒙𝒙∗,𝒖𝒖∗; 𝑡𝑡 𝑉𝑉𝑥𝑥𝑥𝑥

16th February 2021 Nugnes Marco – 1st Aerospace PhD Day 7

�
−𝑎̇𝑎 = 𝐻𝐻 �𝒙𝒙,𝒖𝒖∗,𝑉𝑉𝑥𝑥; 𝑡𝑡 − 𝐻𝐻 �𝒙𝒙, �𝒖𝒖,𝑉𝑉𝑥𝑥; 𝑡𝑡
−𝑉̇𝑉𝑥𝑥 = 𝐻𝐻𝑥𝑥 �𝒙𝒙,𝒖𝒖∗,𝑉𝑉𝑥𝑥; 𝑡𝑡 + 𝑉𝑉𝑥𝑥𝑥𝑥 𝒇𝒇 �𝒙𝒙,𝒖𝒖∗; 𝑡𝑡 − 𝒇𝒇 �𝒙𝒙, �𝒖𝒖; 𝑡𝑡
−𝑉̇𝑉𝑥𝑥𝑥𝑥= 𝐻𝐻𝑥𝑥𝑥𝑥 + 𝒇𝒇𝑥𝑥𝑇𝑇𝑉𝑉𝑥𝑥𝑥𝑥 + 𝑉𝑉𝑥𝑥𝑥𝑥𝒇𝒇𝑥𝑥 − (𝐻𝐻𝑢𝑢𝑢𝑢 + 𝒇𝒇𝑢𝑢𝑇𝑇𝑉𝑉𝑥𝑥𝑥𝑥)𝑇𝑇𝐻𝐻𝑢𝑢𝑢𝑢−1(𝐻𝐻𝑢𝑢𝑢𝑢 + 𝒇𝒇𝑢𝑢𝑇𝑇𝑉𝑉𝑥𝑥𝑥𝑥)

Complete cycle

Differential Dynamic Programming
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 The orbit dynamics is expressed by Gauss’ equations in [�𝒕𝒕, �𝒏𝒏, �𝒉𝒉] and is made adimensional:

𝑑𝑑 �𝑎𝑎
𝑑𝑑𝑡̃𝑡 = 2

�𝑎𝑎3(1 + 2𝑒𝑒 cos𝑓𝑓 + 𝑒𝑒2)
(1 − 𝑒𝑒2)

�𝑢𝑢𝑡𝑡
�𝑚𝑚

𝑑𝑑𝑒𝑒
𝑑𝑑𝑡̃𝑡 =

�𝑎𝑎(1 − 𝑒𝑒2)
(1 + 2𝑒𝑒 cos 𝑓𝑓 + 𝑒𝑒2) 2 𝑒𝑒 + cos 𝑓𝑓

�𝑢𝑢𝑡𝑡
�𝑚𝑚 −

(1 − 𝑒𝑒2)sin𝑓𝑓
1 + 𝑒𝑒 cos 𝑓𝑓

�𝑢𝑢𝑛𝑛
�𝑚𝑚

𝑑𝑑𝑖𝑖
𝑑𝑑𝑡̃𝑡 = �𝑎𝑎(1 − 𝑒𝑒2)

cos(𝜔𝜔 + 𝑓𝑓)
1 + 𝑒𝑒 cos𝑓𝑓

�𝑢𝑢ℎ
�𝑚𝑚

𝑑𝑑Ω
𝑑𝑑𝑡̃𝑡 = �𝑎𝑎(1 − 𝑒𝑒2)

sin(𝜔𝜔 + 𝑓𝑓)
(1 + 𝑒𝑒 cos𝑓𝑓) sin 𝑖𝑖

�𝑢𝑢ℎ
�𝑚𝑚

𝑑𝑑𝜔𝜔
𝑑𝑑𝑡̃𝑡 =

1
𝑒𝑒

�𝑎𝑎(1 − 𝑒𝑒2)
(1 + 2𝑒𝑒 cos 𝑓𝑓 + 𝑒𝑒2) 2 sin𝑓𝑓

�𝑢𝑢𝑡𝑡
�𝑚𝑚 + 2𝑒𝑒 +

1 − 𝑒𝑒2

1 + 𝑒𝑒 cos 𝑓𝑓 cos 𝑓𝑓
�𝑢𝑢𝑛𝑛
�𝑚𝑚 − �𝑎𝑎(1− 𝑒𝑒2)

sin(𝜔𝜔 + 𝑓𝑓) sin 𝑖𝑖
(1 + 𝑒𝑒 cos 𝑓𝑓) cos 𝑖𝑖

�𝑢𝑢ℎ
�𝑚𝑚

𝑑𝑑𝑓𝑓
𝑑𝑑𝑡̃𝑡

=
1

�𝑎𝑎3 1− 𝑒𝑒2 3 1 + 𝑒𝑒 cos 𝑓𝑓 2 −
1
𝑒𝑒

�𝑎𝑎(1 − 𝑒𝑒2)
(1 + 2𝑒𝑒 cos 𝑓𝑓 + 𝑒𝑒2) 2 sin𝑓𝑓

�𝑢𝑢𝑡𝑡
�𝑚𝑚 + 2𝑒𝑒 +

1 − 𝑒𝑒2

1 + 𝑒𝑒 cos 𝑓𝑓 cos 𝑓𝑓
�𝑢𝑢𝑛𝑛
�𝑚𝑚

𝑑𝑑 �𝑚𝑚
𝑑𝑑𝑡̃𝑡 = −

𝜇𝜇
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟

( �𝑢𝑢𝑡𝑡2 + �𝑢𝑢𝑛𝑛2 + �𝑢𝑢ℎ2)
1
2

𝐼𝐼𝐼𝐼𝐼𝐼 � 𝑔𝑔0

 Reference quantities used for the 
adimensionalisation:

• 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎0 𝑜𝑜𝑜𝑜 𝑎𝑎𝑓𝑓

• 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟3 /𝜇𝜇

• 𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚0
𝑛𝑛

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜇𝜇𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟/𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟2
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Orbit Dynamics

16th February 2021 Nugnes Marco – 1st Aerospace PhD Day 8



 In the Cartesian representation the following endpoint constraints are imposed:
• Position vector
• Velocity vector
• Position and velocity vectors

𝜑𝜑 =

�𝑎𝑎 1 − 𝑒𝑒2

1 + 𝑒𝑒 cos 𝑓𝑓 cos 𝜔𝜔 + 𝑓𝑓 cosΩ − sin 𝜔𝜔 + 𝑓𝑓 cos 𝑖𝑖 sinΩ − �𝑥𝑥𝑓𝑓

�𝑎𝑎 1 − 𝑒𝑒2

1 + 𝑒𝑒 cos 𝑓𝑓 cos 𝜔𝜔 + 𝑓𝑓 sinΩ − sin 𝜔𝜔 + 𝑓𝑓 cos 𝑖𝑖 cosΩ − �𝑦𝑦𝑓𝑓

�𝑎𝑎 1− 𝑒𝑒2

1 + 𝑒𝑒 cos𝑓𝑓 sin 𝜔𝜔 + 𝑓𝑓 sin 𝑖𝑖 − 𝑧̃𝑧𝑓𝑓

𝑒𝑒 sin 𝑓𝑓

�𝑎𝑎 1− 𝑒𝑒2
cos 𝜔𝜔 + 𝑓𝑓 cosΩ − sin 𝜔𝜔 + 𝑓𝑓 cos 𝑖𝑖 sinΩ +

1 + 𝑒𝑒 cos 𝑓𝑓

�𝑎𝑎 1 − 𝑒𝑒2
− sin 𝜔𝜔 + 𝑓𝑓 cosΩ − cos 𝜔𝜔 + 𝑓𝑓 cos 𝑖𝑖 sinΩ − �𝑣𝑣𝑥𝑥𝑓𝑓

𝑒𝑒 sin𝑓𝑓

�𝑎𝑎 1− 𝑒𝑒2
cos 𝜔𝜔 + 𝑓𝑓 sinΩ + sin 𝜔𝜔 + 𝑓𝑓 cos 𝑖𝑖 cosΩ +

1 + 𝑒𝑒 cos 𝑓𝑓

�𝑎𝑎 1 − 𝑒𝑒2
− sin 𝜔𝜔 + 𝑓𝑓 sinΩ + cos 𝜔𝜔 + 𝑓𝑓 cos 𝑖𝑖 cosΩ − �𝑣𝑣𝑦𝑦𝑓𝑓

𝑒𝑒 sin𝑓𝑓

�𝑎𝑎 1 − 𝑒𝑒2
sin 𝜔𝜔 + 𝑓𝑓 sin 𝑖𝑖 +

1 + 𝑒𝑒 cos 𝑓𝑓

�𝑎𝑎 1 − 𝑒𝑒2
cos 𝜔𝜔 + 𝑓𝑓 sin 𝑖𝑖 − �𝑣𝑣𝑧𝑧𝑓𝑓
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 In the research the Euclidean norm of the difference between the final state and the prescribed final orbital elements
is used.

 The constraints are adjoint to the cost function using Lagrange multipliers.

 The Euclidean norm formulation ensures that the value function is always positive.

 Orbital elements introduce angles as state variables which are periodic and limited in [0,2π].

𝜑𝜑 =

�𝑎𝑎 𝒙𝒙 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 − �𝑎𝑎𝑓𝑓
2

𝑒𝑒 𝒙𝒙 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 − 𝑒𝑒𝑓𝑓
2

𝑖𝑖 𝒙𝒙 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 − 𝑖𝑖𝑓𝑓
2

Ω 𝒙𝒙 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 − Ω𝑓𝑓
2

𝜔𝜔 𝒙𝒙 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 − 𝜔𝜔𝑓𝑓
2

𝑓𝑓 𝒙𝒙 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 − 𝑓𝑓𝑓𝑓
2
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Orbits elements formulation
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 A Mars interplanetary transfer has been considered as first reference scenario.

 The initial condition has been slightly modified to avoid the singularity for the inclination.
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Mars interplanetary transfer

Results
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Mars interplanetary transfer: optimal trajectory

Results
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 A near-Earth asteroid interplanetary transfer has been considered as second reference scenario.

 The problem has been solved using non-singular elements to remove the inclination singularity.
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Apophis interplanetary transfer

Results
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Apophis interplanetary transfer: optimal trajectory

Results
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 An Earth-satellite orbit raising has been considered as last example.

 The problem has been solved considering the effect of J2 orbital perturbation inside the dynamics.
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Earth-satellite orbit raising

Results
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Earth-satellite orbit raising: optimal trajectory

Results
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 The DDP optimisation algorithm in terms of orbital elements as state representation has been
presented.

 The algorithm works very well removing the fast variable (true anomaly). This suggests the application
to averaged equations.

 New techniques for the computation of the partials are to be investigated (e.g., State Transition
Matrix).

 Coupling of the DDP algorithm with classic indirect methods for Lagrange multipliers initialisation.

16th February 2021 Nugnes Marco – 1st Aerospace PhD Day 17

Conclusions

16th February 2021 Nugnes Marco – 1st Aerospace PhD Day 17



Politecnico di Milano, Italy

@COMPASS_ERC

www.compass.polimi.it

Thank you for your attention! 
This project is funded by the European Research Council (ERC) under the European 

Union’s Horizon 2020 research and innovation programme (grant agreement No 
679086 – COMPASS)

Low-thrust Optimal Trajectories using Differential Dynamic 
Programming enhancing the effects of Orbital Perturbations

Marco Nugnes

marco.nugnes@polimi.it


	Diapositiva numero 1
	Diapositiva numero 2
	Diapositiva numero 3
	Diapositiva numero 4
	Diapositiva numero 5
	Diapositiva numero 6
	Diapositiva numero 7
	Diapositiva numero 8
	Diapositiva numero 9
	Diapositiva numero 10
	Diapositiva numero 11
	Diapositiva numero 12
	Diapositiva numero 13
	Diapositiva numero 14
	Diapositiva numero 15
	Diapositiva numero 16
	Diapositiva numero 17
	Diapositiva numero 18

