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Abstract

In this work we investigate the optimal proportional reinsurance-investment strategy of an
insurance company which wishes to maximize the expected exponential utility of its termi-
nal wealth in a finite time horizon. Our goal is to extend the classical Cramér-Lundberg
model introducing a stochastic factor which affects the intensity of the claims arrival pro-
cess, described by a Cox process, as well as the insurance and reinsurance premia. The
financial market is supposed not influenced by the stochastic factor, hence it is indepen-
dent on the insurance market. Using the classical stochastic control approach based on the
Hamilton-Jacobi-Bellman equation we characterize the optimal strategy and provide a verifi-
cation result for the value function via classical solutions to two backward partial differential
equations. Existence and uniqueness of these solutions are discussed. Results under various
premium calculation principles are illustrated and a new premium calculation rule is pro-
posed in order to get more realistic strategies and to better fit our stochastic factor model.
Finally, numerical simulations are performed to obtain sensitivity analyses.
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1. Introduction

In this paper we investigate the optimal reinsurance-investment problem of an insurance company
which wishes to maximize the expected exponential utility of its terminal wealth in a finite time
horizon. In the actuarial literature there is an increasing interest in both optimal reinsurance and
optimal investment strategies, because they allow insurance firms to increase financial results and
to manage risks. In particular, reinsurance contracts help the reinsured to increase the business
capacity, to stabilize operating results, to enter in new markets, and so on. Among the traditional
reinsurance arrangements the excess-of-loss and the proportional treaties are of great importance.
The former was studied in [Sheng et al., 2014], [Li et al., 2018] and references therein. The latter
was intensively studied by many authors under the criterion of maximizing the expected utility of
the terminal wealth. Beyond the references contained therein, let us recall some noteworthy pa-
pers: in [Liu and Ma, 2009] the authors considered a very general model, also including consump-
tion, focusing on well posedness of the optimization problem and on existence of admissible strate-
gies; in [Liang et al., 2011] a stock price with instantaneous rate of investment return described by
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an Ornstein-Uhlenbeck process has been considered; in [Liang and Bayraktar, 2014] the problem
has been studied in a partially observable framework by introducing an unobservable Markov-
modulated risk process; in [Zhu et al., 2015] the surplus is invested in a defaultable financial
market; in [Liang and Yuen, 2016] and [Yuen et al., 2015] multiple dependent classes of insur-
ance business are considered. All these works may be considered as attempts to extend both the
insurance risk and the financial market models. In all these articles we can recognize two different
approaches to deal with the surplus process of the insurance company: some authors considered
it as a diffusion process approximating the pure-jump term of the Cramér-Lundberg model
(see for example [Bai and Guo, 2008, Cao and Wan, 2009, Zhang et al., 2009, Gu et al., 2010,
Li et al., 2018] and references therein). This approach is validated by means of the famous
Cramér-Lundberg approximation (see [Grandell, 1991]). Other authors (see [Liu and Ma, 2009,
Zhu et al., 2015, Liang et al., 2011, Sheng et al., 2014, Yuen et al., 2015] and references therein)
took into account the jump term using a compound Poisson risk model with constant intensity,
that is the classical Cramér-Lundberg model. On the one hand this is the standard model for
nonlife insurance and it is simple enough to perform calculations, on the other it is too simple
to be realistic (as noticed by [Hipp, 2004]).
As observed by Grandell, J. in [Grandell, 1991], more reasonable risk models should allow the
insurance firm to consider the so called size fluctuations as well as the risk fluctuations, which
refer to variations of the number of policyholders and to modifications of the underlying risks,
respectively.

This paper aims at extending the classical risk model by modelling the claims arrival process
as a doubly stochastic Poisson process with intensity affected by an exogenous stochastic process
{Yt}t∈[0,T ]. This environmental factor leads us to a reasonably realistic description of any risk
movement (see [Grandell, 1991], [Schmidli, 2018]). For example, in automobile insurance Y
may describe road conditions, weather conditions (foggy days, rainy days, . . . ), traffic volume,
and so on. While in [Liang and Bayraktar, 2014] the authors considered a Markov-modulated
compound Poisson process with the (unobservable) stochastic factor described by a finite state
Markov chain, we consider a stochastic factor model where the exogenous process follows a general
diffusion. However, as in that work, we suppose that the stochastic factor does not influence the
financial market, which remains independent on the insurance market. An additional feature
is that the insurance and the reinsurance premia are not evaluated using premium calculation
principles, contrary to the majority of the literature; moreover, they turn out to be stochastic
processes depending on Y . Furthermore, we highlight that under the most frequently used
premium calculation principles (expected value and variance premium principles) some problems
arise: firstly, the optimal reinsurance strategy turns out to be deterministic (this is a limiting
factor because the main goal of our paper is to consider a stochastic factor model); secondly,
the optimal reinsurance strategy does not explicitly depend on the claims intensity. In order
to fix these problems, we will introduce a new premium calculation principle, which is called
intensity-adjusted variance premium principle.

Finally, the financial market is more general than those usually considered in the literature,
since it is composed by a risk-free bond and a risky asset described by a generalized Geometric
Brownian Motion. For instance, in [Bai and Guo, 2008], [Cao and Wan, 2009], [Zhang et al., 2009]
and [Liang and Bayraktar, 2014] the authors used a geometric Brownian model, in [Gu et al., 2010]
and [Sheng et al., 2014] a CEV model. Nevertheless, some authors considered other general mod-
els: in [Irgens and Paulsen, 2004] and [Li et al., 2018] the risky asset follows a jump-diffusion
process with constant parameters, in [Liang et al., 2011] the instantaneous rate of investment
return follows an Ornstein-Uhlenbeck process, in [Zhu et al., 2015] the authors used the Heston
model, in [Xu et al., 2017] the authors introduced a Markov-modulated model for the financial
market. However, in these papers the authors considered the classical risk model with constant
intensity for the claims arrival process.

Using the classical stochastic control approach based on the Hamilton-Jacobi-Bellman equa-
tion we characterize the optimal strategy and provide a verification result for the value function
via classical solutions to two backward partial differential equations (see Theorem 6.1). More-
over we provide a class of sufficient conditions for existence and uniqueness of classical solutions
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to the PDEs involved (see Theorems 8.1 and 8.2). Results under various premium calculation
principles are discussed, including the intensity-adjusted variance premium principle. Finally,
numerical simulations are performed to obtain sensitivity analyses of the optimal strategies.

The paper is organized as follows: in Section 2 we formulate the main assumptions and
describe the optimization problem; Section 3 contains the derivation of the Hamilton-Jacobi-
Bellman equation. In Section 4 we characterize the optimal reinsurance strategy, discussing in
Subsections 4.1 and 4.2 how the general results apply to special premium calculation principles
(expected value, variance premium and intensity-adjusted variance principles). In Section 5
we provide the optimal investment strategy. Section 6 contains the Verification Theorem. In
Section 7 we illustrate some numerical results and sensitivity analyses. In Section 8 existence and
uniqueness theorems are discussed for the PDEs involved in the problem. Finally, in Appendix A
the reader can find some proofs of secondary results.

2. Problem formulation

Let (Ω,F ,P, {Ft}) be a complete probability space endowed with a filtration {Ft}t∈[0,T ] (shortly
denoted by {Ft}) and T > 0 a fixed time horizon. We suppose that such a filtration satisfies
the usual hypotheses of completeness and right continuity. We introduce the stochastic factor
Y = {Yt}t∈[0,T ] as the solution to the following SDE:

dYt = b(t, Yt) dt+ γ(t, Yt) dW
(Y )
t , Y0 ∈ R, (2.1)

where {W (Y )
t }t∈[0,T ] is a standard Brownian motion on (Ω,F ,P, {Ft}). This stochastic process

represents any environmental factor resulting in risk fluctuations. For instance, as suggested by
Grandell, J. (see [Grandell, 1991], Chapter 2), in automobile insurance, Y may describe road
conditions, weather conditions (foggy days, rainy days, . . . ), traffic volume, and so on.

Assumption 2.1. In the sequel we assume that b(t, y) and γ(t, y) are locally Lipschitz-continuous
in y ∈ R, uniformly in t ∈ [0, T ], i.e. for each n = 1, . . . there exists a positive constant Kn such
that

|b(t, y)− b(t, y′)|+ |γ(t, y)− γ(t, y′)| ≤ Kn|y − y′| ∀y, y′ ∈ [−n, n], t ∈ [0, T ].

Moreover, we assume the sub-linear growth condition in y ∈ R, i.e. for some positive constant
K2 the following inequality holds true:

|b(t, y)|+ |γ(t, y)| ≤ K2(1 + |y|) ∀t ∈ [0, T ], y ∈ R.

Remark 2.1. Under Assumption 2.1, from classical results (see [Gihman and Skorohod, 1972])
it follows that for any initial condition (t, y) ∈ [0, T ] × R there exists a unique strong solution
{Yt,y(s)}s∈[t,T ] (starting from y at time t) such that for any p ≥ 1

E[ sup
s∈[t,T ]

|Yt,y(s)|p] < ∞, (2.2)

which in turn implies
P[ sup

s∈[t,T ]

|Yt,y(s)| < ∞] = 1.

In the sequel we will denote by {Yt}t∈[0,T ] the solution starting from Y0 ∈ R at time t = 0.
Let us observe that (2.2) implies

E
[∫ T

0

|b(t, Yt)| dt+
∫ T

0

γ(t, Yt)
2 dt

]
< ∞. (2.3)

Let us denote by LY the infinitesimal generator of Y :

LY f(t, y) = b(t, y)
∂f

∂y
(t, y) +

1

2
γ(t, y)2

∂2f

∂y2
(t, y) f ∈ C1,2((0, T )× R).
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Let us introduce a strictly positive measurable function λ(t, y) : [0, T ]×R → (0,+∞) and define
the process {λt

.
= λ(t, Yt)}t∈[0,T ] for all t ∈ [0, T ]. Under the hypothesis that

E
[∫ T

0

λu du

]
< ∞, (2.4)

we denote by {Nt}t∈[0,T ] the claims arrival process, which is a conditional Poisson process having
{λt}t∈[0,T ] as intensity. More precisely, we have that for all 0 ≤ s ≤ t ≤ T and k = 0, 1, . . .

P[Nt −Ns = k | FY
T ∨ Fs] =

(∫ t

s
λu du

)k
k!

e−
∫ t
s
λu du,

where {FY
t }t∈[0,T ] denotes the filtration generated by Y . Then it is easy to show that

Nt −
∫ t

0

λs ds

is an {Ft}-martingale1.
Now we define the cumulative claims up to time t as follows:

Ct =

Nt∑
i=1

Zi t ∈ [0, T ],

where the sequence of i.i.d. strictly positive F0-random variables {Zi}i=1,... represents the
amount of the claims. In the sequel we will assume that all the {Zi}i=1,... are distributed
like a r.v. Z, independent on {Nt}t∈[0,T ] and {Yt}t∈[0,T ], with distribution function FZ(dz) such
that FZ(z) = 1 ∀z ≥ D, with D > 0 (eventually D = +∞). Moreover, Z satisfies some suitable
integrability conditions (see Assumption 2.2 below).
Consider the random measure associated with the marked point process {Ct}t∈[0,T ] defined as
follows

m(dt, dz) =
∑

t∈[0,T ]:
∆Ct ̸=0

δ(t,∆Ct)(dt, dz)

=
∑
n≥1

δ(Tn,Zn)(dt, dz)1{Tn≤T}, (2.5)

where {Tn}n=1,... denotes the sequence of jump times of {Nt}t∈[0,T ] and δ(t,z) the Dirac measure
at point (t, z) ∈ R+ × R. Then the process {Ct}t∈[0,T ] can be written as

Ct =

∫ t

0

∫ D

0

zm(ds, dz). (2.6)

The following Lemma will be useful in the sequel.

Lemma 2.1. The random measure m(dt, dz) given in (2.5) has {Ft}-dual predictable projection
ν given by the following expression:

ν(dt, dz) = dFZ(z)λt dt, (2.7)

i.e. for every nonnegative, {Ft}-predictable and [0, D]-indexed process {H(t, z)}t∈[0,T ]

E
[∫ T

0

∫ D

0

H(t, z)m(dt, dz)

]
= E

[∫ T

0

∫ D

0

H(t, z) dFZ(z)λt dt

]
.

1See e.g. [Brémaud, 1981, II]
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Proof. See Appendix A.

Remark 2.2. Let us observe that for any {Ft}-predictable and [0, D]-indexed process {H(t, z)}t∈[0,T ]

such that

E
[∫ T

0

∫ D

0

|H(t, z)| dFZ(z)λt dt

]
< ∞,

the process

Mt =

∫ t

0

∫ D

0

H(s, z)
(
m(ds, dz)− dFZ(z)λs ds

)
t ∈ [0, T ]

turns out to be an {Ft}-martingale. If in addition

E
[∫ T

0

∫ D

0

|H(t, z)|2 dFZ(z)λt dt

]
< ∞,

then {Mt}t∈[0,T ] is a square integrable {Ft}-martingale and

E[M2
t ] = E

[∫ t

0

∫ D

0

|H(t, z)|2 dFZ(z)λt dt

]
∀t ∈ [0, T ].

Moreover, the predictable covariation process of {Mt}t∈[0,T ] is given by

⟨M⟩t =
∫ T

0

∫ D

0

|H(t, z)|2 dFZ(z)λt dt,

that is {M2
t − ⟨M⟩t}t∈[0,T ] is an {Ft}-martingale2.

Remark 2.3. Let {Gt}t∈[0,T ] be the filtration defined by Gt = Ft ∨ FY
T . Then m(dt, dz) defined

in (2.5) has {Gt}-dual predictable projection ν given in (2.7). In order to show it, observe that
since {λt}t∈[0,T ] is {Ft}-adapted by definition and Ft ⊆ Gt ∀t ∈ [0, T ], then {λt}t∈[0,T ] is also
{Gt}-adapted. Now notice that {λt}t∈[0,T ] is the {Gt}-intensity of {Nt}t∈[0,T ], because for any
0 ≤ s ≤ t ≤ T

E[Nt | Gs] = Ns + E[Nt −Ns | Gs]

= Ns +
∑
k≥1

k

(∫ t

s
λu du

)k
k!

e−
∫ t
s
λu du

= Ns +

∫ t

s

λu du

and this implies that

E[Nt −
∫ t

0

λu du | Gs] = Ns −
∫ s

0

λu du.

Then our statement follows by the proof of Lemma 2.1 (see Appendix A) by replacing {Ft}-
predictable and [0, D]-indexed processes with {Gt}-predictable and [0, D]-indexed processes.

In this framework we suppose that the gross risk premium rate is affected by the stochastic
factor, i.e. we describe the insurance premium as a stochastic process {ct

.
= c(t, Yt)}t∈[0,T ],

where c : [0, T ] × R → (0,+∞) is a nonnegative measurable function. The insurance company
can continuously purchase a proportional reinsurance contract, transferring at each time t ∈ [0, T ]
a percentage ut of its own risks to the reinsurer, who receives a reinsurance premium qt given by
the definition below.

Definition 2.1. (Proportional reinsurance premium) Let us define a function q(t, y, u) : [0, T ]×
R × [0, 1] → [0,+∞), continuous w.r.t. the triple (t, y, u), having continuous partial derivatives
∂q(t,y,u)

∂u , ∂2q(t,y,u)
∂u2 in u ∈ [0, 1] and such that

2For these results and other related topics see e.g. [Brémaud, 1981, II] and [Bass, 2004].
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1. q(t, y, 0) = 0 for all (t, y) ∈ [0, T ]× R, because a null protection is not expensive;

2. ∂q(t,y,u)
∂u ≥ 0 for all (t, y, u) ∈ [0, T ]×R× [0, 1], since the premium is increasing with respect

to the protection;

3. q(t, y, 1) > c(t, y) for all (t, y) ∈ [0, T ]×R, because the cedant is not allowed to gain a profit
without risk.

In the rest of the paper ∂q(t,y,0)
∂u and ∂q(t,y,1)

∂u should be intended as right and left derivatives,
respectively. Moreover, we assume the following integrability condition:

E
[∫ T

0

q(t, Yt, u) dt

]
< ∞ ∀u ∈ [0, 1]. (2.8)

Then the reinsurance premium associated with a reinsurance strategy {ut}t∈[0,T ] (which is the
protection level chosen by the insurer) is defined as {qt

.
= q(t, Yt, ut)}t∈[0,T ].

In addition, we will use the hypothesis that the insurance gross premium and the reinsurance
premium will never diverge too much (being approximately influenced by the stochastic factor
in the same way), that is there exists a positive constant K such that

|q(t, Yt, u)− c(t, Yt)| ≤ K P-a.s. ∀t ∈ [0, T ], u ∈ [0, 1]. (2.9)

Under these hypotheses the surplus (or reserve) process associated with a given reinsurance
strategy {ut}t∈[0,T ] is described by the following SDE:

dRu
t =

[
c(t, Yt)− q(t, Yt, ut)

]
dt− (1− ut)dCt

=

[
c(t, Yt)− q(t, Yt, ut)

]
dt−

∫ D

0

(1− ut)z m(dt, dz) Ru
0 = R0 ∈ R+. (2.10)

Let us observe that by Remark 2.2, since

E
[∫ T

0

∫ D

0

urzλr dFZ(z) dr

]
≤ E[Z]E

[∫ T

0

λr dr

]
< ∞,

the process
∫ t

0

∫D

0
(1− us)z(m(ds, dz)− λs dFZ(z) ds) turns out to be an {Ft}-martingale.

Furthermore, we allow the insurer to invest its surplus in a financial market consisting of a
risk-free bond {Bt}t∈[0,T ] and a risky asset {Pt}t∈[0,T ], whose dynamics are

dBt = RBt dt B0 = 1, (2.11)

with constant risk-less interest rate R > 0, and

dPt = Pt

[
µ(t, Pt) dt+ σ(t, Pt) dW

(P )
t

]
P0 > 0, (2.12)

respectively, where {W (P )
t }t∈[0,T ] is a standard Brownian motion independent of {W (Y )}t∈[0,T ]

and the random measure m(dt, dz). As a consequence, we assume that the financial and the
insurance markets are independent. Even if a more general formulation may be achieved intro-
ducing the stochastic factor in the risky asset dynamic, the independence is very reasonable in
many cases. For instance, whenever the insurance policies are subscribed in a country and the
risky asset is traded in another (possibly distant) country, this is not so far from the reality.

Let us assume that there exists a unique strong solution to (2.12) such that

E
[∫ T

0

|Ptµ(t, Pt)| dt+
∫ T

0

P 2
t σ(t, Pt)

2 dt

]
< ∞, (2.13)

sup
t∈[0,T ]

E[P 2
t ] < ∞, (2.14)
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(for example, it is true if the coefficients of the SDE (2.12) satisfy the classical Lipschitz and
sub-linear growth conditions, see [Gihman and Skorohod, 1972]). Furthermore, we assume the
Novikov condition:

E
[
e

1
2

∫ T
0

|µ(t,Pt)−R
σ(t,Pt)

|2 dt

]
< ∞, (2.15)

which implies the existence of a risk-neutral measure for {Pt}t∈[0,T ] and ensures that the financial
market does not admit arbitrage.

We will denote by wt the total amount invested in the risky asset at time t ∈ [0, T ], so that
Xt − wt will be the capital invested in the risk-free asset (now Xt indicates the total wealth,
but it will be defined more accurately below, see equation (2.17)). We also allow the insurer to
short-sell and to borrow/lend any infinitesimal amount, so that wt ∈ R.
Finally, we only consider self-financing strategies: the insurer company only invests the surplus
obtained with the core business, neither subtracting anything from the gains, nor adding some-
thing from another business.

The insurer’s wealth {Xα
t }t∈[0,T ] associated with a given strategy αt = (ut, wt) is described

by the following SDE:

dXα
t = dRu

t + wt
dPt

Pt
+
(
Xα

t − wt

)dBt

Bt

=

[
c(t, Yt)− q(t, Yt, ut)

]
dt+ wt

[
µ(t, Pt) dt+ σ(t, Pt) dW

(P )
t

]
+
(
Xα

t − wt

)
Rdt−

∫ D

0

(1− ut)z m(dt, dz), (2.16)

with Xα
0 = R0 ∈ R+. Remember that {ut}t∈[0,T ] and {wt}t∈[0,T ] are the proportion of reinsured

claims and the total amount invested in the risky asset {Pt}t∈[0,T ], respectively.

Remark 2.4. It can be verified that the solution to the SDE (2.16) is given by the following:

Xα
t = Xα

0 e
Rt +

∫ t

0

eR(t−r)
[
c(r, Yr)− q(r, Yr, ur)

]
dr +

∫ t

0

eR(t−r)wr[µ(r, Pr)−R] dr

+

∫ t

0

eR(t−r)wrσ(r, Pr) dW
(P )
r −

∫ t

0

∫ D

0

eR(t−r)(1− ur)z m(dr, dz). (2.17)

Now we are ready to formulate the optimization problem of an insurance company which
subscribes a proportional reinsurance contract and invests its surplus in the financial market
described above. Its main goal is to choose a strategy {αt = (ut, wt)}t∈[0,T ] in order to maximize
the expected utility of the terminal wealth:

sup
α∈U

E
[
U(Xα

T )
]
,

where U denotes a suitable class of admissible controls (see Definition 2.2 below) and U : R →
[0,+∞) is the utility function representing the insurer preferences. We focus on CARA (Constant
Absolute Risk Aversion) utility functions, whose general expression is given by

U(x) = 1− e−ηx x ∈ R,

where η > 0 is the risk-aversion parameter. This utility function is highly relevant in economic
science and in particular in insurance theory, in fact it is commonly used for reinsurance problems
(e.g. see [Bai and Guo, 2008], [Cao and Wan, 2009], [Sheng et al., 2014], and many others).
Using the dynamic programming principle we will consider a dynamic problem which consists in
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finding the optimal strategy αs, for s ∈ [t, T ], for the following optimization problem given the
information available at the time t ∈ [0, T ]:

sup
α∈Ut

E
[
U(Xα

t,x(T )) | Ft

]
t ∈ [0, T ],

where Ut denotes the class of admissible controls in the time interval [t, T ] (see Definition 2.2
below). Here {Xα

t,x(s)}s∈[t,T ] denotes the solution to equation (2.16) with initial condition Xα
t =

x.
For the sake of simplicity, we will reduce ourselves to study the function −e−ηx. Another possible
choice is to focus on the corresponding minimizing problem for the function e−ηx, but the first
choice is usually preferred in the literature.

Definition 2.2. We will denote by U the set of all admissible strategies, which are all the {Ft}-
predictable processes αt = (ut, wt), t ∈ [0, T ], with values in [0, 1]× R, such that

E
[∫ T

0

|wr||µ(r, Pr)−R| dr
]
< ∞, E

[∫ T

0

w2
rσ(r, Pr)

2 dr

]
< ∞.

When we want to restrict the controls to the time interval [t, T ], we will use the notation Ut.

From now on the following assumptions are fulfilled.

Assumption 2.2.

E[eηZeRT

] < ∞, E[ZeηZeRT

] < ∞, E[Z2eηZeRT

] < ∞, (2.18)

E
[
e(E[e

ηeRT Z ]−1)
∫ T
t

λs ds | Ft

]
< ∞, ⟨P = 1⟩ ∀t ∈ [0, T ]. (2.19)

Proposition 2.1. Under the Assumption 2.2 the control (0, 0) is admissible and such that

E[e−ηX
(0,0)
t,x (T ) | Ft] < ∞ ⟨P = 1⟩ ∀(t, x) ∈ [0, T ]× R.

Proof. See Appendix A.

Remark 2.5. Let us observe that Proposition 2.1 implies that

ess sup
α∈Ut

E
[
U(Xα

t,x(T )) | Ft

]
> −∞ ⟨P = 1⟩ ∀t ∈ [0, T ]

and as a consequence that
sup
α∈U

E
[
U(Xα

T )
]
> −∞.

In order to solve this dynamic problem we introduce the value function associated with it:

v(t, x, y, p) = sup
α∈Ut

E
[
−e−ηXα

t,x(T ) | Yt = y, Pt = p

]
, (2.20)

where the function v : V → R is defined in the domain

V
.
= [0, T ]× R2 × (0,+∞).

3. Hamilton-Jacobi-Bellman equation

Let us consider the Hamilton-Jacobi-Bellman equation that the value function is expected to
solve if sufficiently regular:{

sup(u,w)∈[0,1]×R Lαv(t, x, y, p) = 0 ∀(t, x, y, p) ∈ [0, T )× R2 × (0,+∞)

v(T, x, y, p) = −e−ηx ∀(x, y, p) ∈ R2 × (0,+∞),
(3.1)
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where Lα denotes the Markov generator of the triplet (Xα
t , Yt, Pt) associated with a constant

control α = (u,w). In what follows, we denote by C1,2
b all bounded functions f(t, x1, . . . , xn),

with n ≥ 1, with bounded first order derivatives ∂f
∂t ,

∂f
∂x1

, . . . , ∂f
∂xn

and bounded second order

derivatives w.r.t. the spatial variables ∂2f
∂x2

1
, . . . , ∂f

∂x2
n
.

Lemma 3.1. Let f : V → R be a function in C1,2
b . Then the Markov generator of the stochastic

process (Xα
t , Yt, Pt) for all constant strategies α = (u,w) ∈ [0, 1] × R is given by the following

expression:

Lαf(t, x, y, p) =
∂f

∂t
(t, x, y, p) +

∂f

∂x
(t, x, y, p)

[
Rx+ c(t, y)− q(t, y, u) + w(µ(t, p)−R)

]
+

1

2
w2σ(t, p)2

∂2f

∂x2
(t, x, y, p) + b(t, y)

∂f

∂y
(t, x, y, p) +

1

2
γ(t, y)2

∂2f

∂y2
(t, x, y, p)

+ pµ(t, p)
∂f

∂p
(t, x, y, p) +

1

2
p2σ(t, p)2

∂2f

∂p2
(t, x, y, p) + wσ(t, p)2p

∂2f

∂x∂p
(t, x, y, p)

+

∫ D

0

[
f(t, x− (1− u)z, y, p)− f(t, x, y, p)

]
λ(t, y) dFZ(z). (3.2)

Proof. See Appendix A.

Remark 3.1. Since the triplet (Xα
t , Yt, Pt) is a Markov process, any Markovian control is of

the form αt = α(t,Xα
t , Yt, Pt), where α denotes a suitable function such that α(t, x, y, p) =

(u(t, x, y, p), w(t, x, y, p)). The generator Lαf(t, x, y, p) associated to a general Markovian strat-
egy can be easily obtained by replacing α with αt in (3.2).

Now let us introduce the following ansatz:

v(t, x, y, p) = −e−ηxeR(T−t)

ϕ(t, y, p),

where ϕ does not depend on x and it is a positive function3. Then the original HJB problem
given in (3.1) reduces to the simpler one given by

− ∂ϕ

∂t
(t, y, p)− b(t, y)

∂ϕ

∂y
(t, y, p)− 1

2
γ(t, y)2

∂2ϕ

∂y2
(t, y, p) + ηeR(T−t)c(t, y)ϕ(t, y, p)

− pµ(t, p)
∂ϕ

∂p
(t, y, p)− 1

2
σ(t, p)2p2

∂2ϕ

∂p2
(t, y, p)

+ sup
u∈[0,1]

Ψu(t, y)ϕ(t, y, p) + sup
w∈R

Ψw(t, y, p) = 0, (3.3)

with final condition ϕ(T, y, p) = 1 for all (y, p) ∈ R× (0,+∞), defining

Ψu(t, y)
.
= −ηeR(T−t)q(t, y, u) + λ(t, y)

∫ D

0

[
1− eη(1−u)zeR(T−t)

]
dFZ(z) (3.4)

and

Ψw(t, y, p)
.
= ηeR(T−t)

(
(µ(t, p)−R)ϕ(t, y, p) + pσ(t, p)2

∂ϕ

∂p
(t, y, p)

)
w

− 1

2
σ(t, p)2η2e2R(T−t)ϕ(t, y, p)w2. (3.5)

It should make it clear that we can split the optimal control research in two distinct problems:
the optimization of Ψu will give us the optimal level of reinsurance (see Section 4), while working
with Ψw we will find the optimal investment policy (see Section 5).

3Intuitively, we note that Xα
t,x(T ) = Xα

t,0(T ) + xeR(T−t) and we use the exponential form of the function v.
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4. Optimal reinsurance strategy

In this section we discuss the problem

sup
u∈[0,1]

Ψu(t, y), (t, y) ∈ [0, T ]× R, (4.1)

with Ψu(t, y) given in (3.4).
First, let us observe that Ψu(t, y) is continuous w.r.t. u ∈ [0, 1], for any (t, y) ∈ [0, T ] × R

and admits continuous first and the second order derivatives w.r.t. u ∈ [0, 1]

∂Ψu(t, y)

∂u
= −ηeR(T−t)

[
∂q(t, y, u)

∂u
− λ(t, y)

∫ D

0

zeη(1−u)zeR(T−t)

dFZ(z)

]
,

∂2Ψu(t, y)

∂u2
= −ηeR(T−t)

[
∂2q(t, y, u)

∂u2
+ ηeR(T−t)λ(t, y)

∫ D

0

z2eη(1−u)zeR(T−t)

dFZ(z)

]
.

Notice that these derivatives are well defined thanks to (2.18).

Now we are ready for the main result of this section.

Proposition 4.1. Let us suppose that Ψu(t, y) given in (3.4) is strictly concave in u ∈ [0, 1]
∀(t, y) ∈ [0, T ] × R. Then there exists a unique measurable function u∗(t, y) for all (t, y) ∈
[0, T ]× R solution to (4.1). Moreover, it is given by

u∗(t, y) =

⎧⎪⎨⎪⎩
0 (t, y) ∈ A0

û(t, y) (t, y) ∈ (A0 ∪A1)
C

1 (t, y) ∈ A1,

(4.2)

where

A0
.
=

{
(t, y) ∈ [0, T ]× R | λ(t, y)E[ZeηZeR(T−t)

] ≤ ∂q(t, y, 0)

∂u

}
,

A1
.
=

{
(t, y) ∈ [0, T ]× R | ∂q(t, y, 1)

∂u
≤ E[Z]λ(t, y)

}
,

and û(t, y) is the unique solution to the following equation:

∂q(t, y, u)

∂u
= λ(t, y)

∫ D

0

zeη(1−u)zeR(T−t)

dFZ(z). (4.3)

Proof. Since Ψu(t, y) is continuous and strictly concave in u ∈ [0, 1], there exists a unique maxi-
mizer u∗(t, y) of (4.1), whose measurability follows by classical selection theorems.
Now observe that A0 ∩A1 = ∅. In fact, we have that

A0 =

{
(t, y) ∈ [0, T ]× R | ∂Ψ

0(t, y)

∂u
≤ 0

}
,

A1 =

{
(t, y) ∈ [0, T ]× R | ∂Ψ

1(t, y)

∂u
≥ 0

}
.

Let us assume for sake of contradiction that (t, y) ∈ A0 ∩ A1. Since ∂Ψu(t,y)
∂u is decreasing in

u ∈ [0, 1], we have that

∂Ψ0(t, y)

∂u
=

∂Ψu(t, y)

∂u
=

∂Ψ1(t, y)

∂u
= 0,∀u ∈ (0, 1),

hence Ψu(t, y) is constant ∀u ∈ [0, 1], but this is absurd, because Ψu(t, y) is strictly concave.
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As a consequence, A0∪̇(A0 ∪A1)
C∪̇A1 = [0, T ]× R.

Now we have three cases. If (t, y) ∈ A0 then Ψu(t, y) is decreasing in u ∈ [0, 1], hence no
reinsurance is chosen, i.e. u∗(t, y) = 0.

If (t, y) ∈ Â then there exists a unique u∗(t, y) ∈ (0, 1) such that ∂Ψu(t,y)
∂u = 0, and it is the

unique solution to equation (4.3).
Finally, if (t, y) ∈ A1 then Ψu(t, y) is increasing in u ∈ [0, 1], hence u∗(t, y) = 1.

Remark 4.1. In our model λ(t, y) > 0. Nevertheless, for the sake of completeness we observe
that if λ(t, y) had been vanished for some (t, y), then we would have obtained

{ (t, y) ∈ [0, T ]× R | λ(t, y) = 0 } ⊆ A0,

i.e. u∗(t, y) = 0. In fact, λ(t, y) = 0 corresponds to a degenerate situation: the risk premia are
paid, but there is no ”real” risk to be insured.

From the economic point of view, we could say that if the reinsurance is not too much
expensive (more precisely, if the price of an infinitesimal protection is below a certain dynamic
threshold) and if full reinsurance is not optimal, then the optimal strategy is provided by (4.3),
i.e. by equating the marginal cost and the marginal gain.

Now we provide some sufficient conditions in order to guarantee existence and uniqueness of
a solution to (4.1).

Lemma 4.1. Suppose that the following condition holds true:

∂2q(t, y, u)

∂u2
≥ 0 ∀(t, y, u) ∈ [0, T ]× R× [0, 1].

Then Ψu(t, y) given in (3.4) is strictly concave in u ∈ [0, 1] ∀(t, y) ∈ [0, T ]×R. As a consequence,
there exists a unique solution to (4.1).

Proof. Since η > 0 and λ(t, y) > 0 ∀(t, y) ∈ [0, T ]× R, we have that

∂2Ψu(t, y)

∂u2
= −ηeR(T−t)

[
∂2q(t, y, u)

∂u2
+ ηeR(T−t)λ(t, y)

∫ D

0

z2eη(1−u)zeR(T−t)

dFZ(z)

]
< 0,

which implies that Ψu(t, y) is strictly concave in u ∈ [0, 1]. Now we use Proposition 4.1.

Remark 4.2. Under the hypotheses that ∂2q(t,y,u)
∂u2 ≥ 0 and c(t, y) > E[Z]λ(t, y) for all (t, y, u) ∈

[0, T ] × R × (0, 1), the full reinsurance is never optimal. In fact, for any arbitrary couple (t, y)
we have that

q(t, y, 1) = q(t, y, 0) +

∫ 1

0

∂q(t, y, u)

∂u
du.

Being q(t, y, 0) = 0 and q(t, y, 1) > c(t, y) > E[Z]λ(t, y) (because the reinsurance is not cheap
and using the net-profit condition for the insurance premium), we obtain that∫ 1

0

∂q(t, y, u)

∂u
du > E[Z]λ(t, y).

Since ∂q(t,y,u)
∂u is continuous in u ∈ [0, 1] by hypothesis, from the mean value theorem we know

that there exists u0 ∈ (0, 1) such that

∂q(t, y, u0)

∂u
> E[Z]λ(t, y).

Under the hypothesis that ∂2q(t,y,u)
∂u2 ≥ 0 for all u ∈ (0, 1), ∂q(t,y,u)

∂u is an increasing function of u,
and this implies that

∂q(t, y, 1)

∂u
≥ ∂q(t, y, u0)

∂u
> E[Z]λ(t, y).
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From this result we deduce that

∂Ψ1(t, y)

∂u
= −ηeR(T−t)

[
∂q(t, y, 1)

∂u
− E[Z]λ(t, y)

]
< 0, (t, y) ∈ [0, T ]× R,

which implies that A1 = ∅, i.e. the full reinsurance is never optimal.

Let us observe that the preceding remark requires two special conditions. The first one
concerns the concavity of the reinsurance premium and in Subsection 4.1 we will show that it
is fulfilled by the most famous premium calculation principles. The second hypothesis is the so
called net-profit condition (e.g. see [Grandell, 1991]) and it is usually assumed in insurance risk
models to ensure that the expected gross risk premium covers the expected losses.

In the following remark we point out a consequence of the preceding result in order to better
appreciate the generality of Proposition 4.1.

Remark 4.3. In the actuarial literature, full reinsurance is mostly considered never optimal.
The main reason is that most authors use premium calculation principles. In consequence, the
reinsurance premium turns out to be convex with respect to the protection level. By Remark 4.2,
this property leads to neglect the full reinsurance case. Our result in Proposition 4.1 (see the
third case in (4.2)) allows the insurer to choose full reinsurance as long as (t, y) ∈ A1. From
a technical point of view, this result follows from the generality of Definition 2.1. From the
economic point of view, it is reasonable that the insurance firm could regard full reinsurance as
convenient for a limited period of time and in some particular scenarios, because the objective is
to maximize the expected utility of the wealth at the end of the period.

Now we investigate how Proposition 4.1 applies to a special case.

Example 4.1. (Exponentially distributed claims)
Let Z to be an exponential r.v. with parameter ζ > 0, then for any fixed (t, y) ∈ [0, T ] × R
equation (4.3) becomes

λ(t, y)

∫ ∞

0

zeη(1−u)zeR(T−t)

ζe−ζz dz =
∂q(t, y, u)

∂u
.

Taking k = η(1− u)eR(T−t) − ζ it can be written as

λ(t, y)

∫ ∞

0

zekzζ dz =
∂q(t, y, u)

∂u

and requiring that
ζ

η
> eRT , (4.4)

which implies k < 0, finally equation (4.3) reads as

λ(t, y)
ζ

(η(1− u)eR(T−t) − ζ)2
=

∂q(t, y, u)

∂u
. (4.5)

Summarizing, if Z is an exponential r.v. with parameter ζ > ηeRT , if Ψu(t, y) given in (3.4) is
strictly concave, then we have that expression (4.2) holds true with

A0
.
=

{
(t, y) ∈ [0, T ]× R | λ(t, y) ζ

(ηeR(T−t) − ζ)2
≤ ∂q(t, y, 0)

∂u

}
,

A1
.
=

{
(t, y) ∈ [0, T ]× R | ∂q(t, y, 1)

∂u
≤ λ(t, y)

ζ

}
,

and with û(t, y) being the unique solution to equation (4.5).
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4.1. Expected value and variance premium principles

Proposition 4.1 clarifies that the optimal reinsurance strategy crucially depends on the reinsur-
ance premium. In this subsection we specialize that result using two of the most famous premium
calculation principles: the expected value principle and the variance premium principle. We will
show that in both cases we loose the dependence of the optimal reinsurance strategy on the
stochastic factor. Moreover, the optimal reinsurance strategy does not explicitly depend on the
claims intensity. These will be our motivations for introducing the intensity-adjusted variance
premium principle in Subsection 4.2.

Lemma 4.2. Under the expected value principle, i.e. if the reinsurance premium admits the
following expression

q(t, y, u) = (1 + θr)E[Z]λ(t, y)u ∀(t, y, u) ∈ [0, T ]× R× [0, 1] (4.6)

for some constant θr > 0 (which is called the reinsurance safety loading), there exists a unique
maximizer u∗(t) for all (t, y) ∈ [0, T ]× R for the problem (4.1). In particular,

u∗(t) =

{
0 t ∈ A0

û(t) t ∈ [0, T ] \A0,
(4.7)

where
A0

.
=

{
t ∈ [0, T ] | E[ZeηZeR(T−t)

] ≤ (1 + θr)E[Z]
}

and û(t) is the unique solution to the following equation:

(1 + θr)E[Z] =

∫ D

0

zeη(1−u)zeR(T−t)

dFZ(z). (4.8)

Proof. From (4.6) we get

∂q(t, y, u)

∂u
= (1 + θr)E[Z]λ(t, y),

∂2q(t, y, u)

∂u2
= 0 ∀u ∈ (0, 1),

which implies that Ψu(t, y) is strictly concave in u ∈ (0, 1) thanks to Lemma 4.1. Moreover, by
the means of Remark 4.2 we know that the full reinsurance is always sub-optimal, in fact the set
A1 in Proposition 4.1 is empty. Now we only have to apply Proposition 4.1.

Note that we always have E[ZeηZeR(T−t)

] > E[Z] for each t ∈ [0, T ], thus A0 could be an
empty set when the reinsurer’s safety loading is close to 0.

Example 4.2. (Exponentially distributed claims under the expected value principle)
Let us come back to example 4.1. Under the expected value principle (4.6) the result for expo-
nential claims is even more simplified, in fact we find the following explicit solution:

u∗(t) =

⎧⎨⎩1− ζ
η

(
1− 1√

1+θr

)
e−R(T−t) t ∈ [0, t0 ∧ T )

0 t ∈ [t0 ∧ T, T ],
(4.9)

where

t0 = T − 1

R
log

[
ζ

η

(
1− 1√

1 + θr

)]
. (4.10)

The expression for t0 can be derived from the characterization of the set [0, T ] × R \ A0, which
in this case reads as follows:

ζ −
√

ζ
(1+θr)E[Z]

η
< eR(T−t) <

ζ +
√

ζ
(1+θr)E[Z]

η
,

where the second inequality is always fulfilled in view of (4.4), hence we get t0 only from the first
inequality.
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Lemma 4.3. Under the variance premium principle, i.e. if the reinsurance premium admits the
following expression

q(t, y, u) = E[Z]λ(t, y)u+ θrE[Z2]λ(t, y)u2 (4.11)

for some constant reinsurance safety loading θr > 0, the optimization problem (4.1) admits a
unique maximizer u∗(t) ∈ (0, 1) for all (t, y) ∈ [0, T ]× R , which is the solution to the following
equation:

2θrE[Z2]u =

∫ D

0

zeη(1−u)zeR(T−t)

dFZ(z)− E[Z]. (4.12)

Proof. Using the expression (4.11) we get that

∂q(t, y, u)

∂u
= E[Z]λ(t, y) + 2θrE[Z2]λ(t, y)u ∀u ∈ (0, 1)

and
∂2q(t, y, u)

∂u2
= 2θrE[Z2]λ(t, y) > 0 ∀u ∈ (0, 1).

By Lemma 4.1 Ψu(t, y) is strictly concave w.r.t. u and the full reinsurance is never optimal
because of Remark 4.2. Moreover, in order to apply Proposition 4.1 we notice that

E[ZeηZeR(T−t)

] > E[Z] ⇒ A0 = ∅,

thus the optimal strategy is unique and it belongs to (0, 1). In order to find such a solution, we
turn the attention to the first order condition, which is exactly the equation (4.12).

The same result was obtained in [Liang and Bayraktar, 2014], Lemma 3.1.

Example 4.3. (Exponentially distributed claims under the variance premium principle)
Under the variance premium principle (4.11), suppose that the claims are exponentially dis-
tributed with parameter ζ > ηeRT . Then it is easy to show that the optimal strategy is given
by

u∗(t) = 1− ζ

η

(
1−

√
ζ

ζ + 4θr

)
e−R(T−t) t ∈ [0, T ]. (4.13)

4.2. Intensity-adjusted variance premium principle

We have shown that both the expected value principle (see Lemma 4.2) and the variance pre-
mium principle (see Lemma 4.3) lead to deterministic optimal reinsurance strategies, which do
not depend on the stochastic factor. Since the main objective of our paper is to analyze the
maximization problem under a stochastic factor model, we would like to keep that dependence.
In addition, in both cases the optimal reinsurance strategy does not explicitly depend on the
claims intensity. As a consequence, there is a paradox that we clarify with the following example.
Let us consider two identical insurers (i.e. with the same risk-aversion, time horizon, and so on)
who work in the same insurance business line, for example in automobile insurance, but in two
distinct territories with different riskiness. More precisely, let us assume that the two companies
insure claims which have the same distribution FZ but occur with different probabilities. Hence
it is a reasonable assumption that the claims arrival processes have two different intensities.
Now let us suppose that both the insurers use Lemma 4.2 (or Lemma 4.3) in order to solve the
maximization problem (4.1). Then they will obtain the same reinsurance strategy, but this is not
what we expect. Hence the optimal reinsurance strategy should explicitly depend on the claims
intensity.
In order to fix these two problems, in this subsection we introduce a new premium calculation
principle, which will be referred as the intensity-adjusted variance premium principle.

Let us first formalize that there exists a special class of premium calculation principles that
lead us to deterministic strategies which do not depend on the claims intensity.
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Remark 4.4. For any reinsurance premium {qt}t∈[0,T ] admitting the following representation

q(t, y, u) = λ(t, y)Q(t, u) (4.14)

for a suitable4 function Q : [0, T ] × [0, 1] → [0,+∞), the optimal reinsurance strategy u∗
t =

u∗(t, Yt) given in Proposition 4.1 turns out to be deterministic. Moreover, it does not explicitly
depend on the claims intensity. For example, the expected value principle and the variance
premium principle admit the factorization (4.14) with Q(t, u) = (1 + θr)E[Z]u and Q(t, u) =
E[Z]u+ θrE[Z2]u2, respectively.

Now the basic idea is to find a reinsurance premium {qt}t∈[0,T ] (see Definition 2.1) such that

E
[∫ t

0

q(s, Ys, us) ds

]
= E

[∫ t

0

us dCs

]
+ θr var

[∫ t

0

us dCs

]
∀t ∈ [0, T ] (4.15)

for a given reinsurance safety loading θr in order to dynamically satisfy the original formulation
of the variance premium principle5. For this purpose, we give the following result.

Lemma 4.4. For any {FY
t }t∈[0,T ]-predictable reinsurance strategy {ut}t∈[0,T ] we have that for

any t ∈ [0, T ]

var

[∫ t

0

us dCs

]
= E[Z2]E

[∫ t

0

u2
sλs ds

]
+ E[Z]2 var

[∫ t

0

usλs ds

]
. (4.16)

Proof. Let us denote by {Mu
t }t∈[0,T ] the following {Ft}-martingale:

Mu
t =

∫ D

0

∫ t

0

usz
(
m(ds, dz)− dFZ(z)λs ds

)
.

Recalling that {Ct}t∈[0,T ] is defined in (2.6), the variance of the reinsurer’s cumulative losses at
the time t ∈ [0, T ] is given by

var

[∫ t

0

us dCs

]
= E

[(∫ t

0

us dCs

)2]
− E

[∫ t

0

us dCs

]2
= E

[
|Mu

t |2 +
(∫ t

0

usλsE[Z] ds

)2

+ 2Mu
t

∫ t

0

usλsE[Z] ds

]
− E

[∫ t

0

us dCs

]2
.

Denoting with ⟨Mu⟩t the predictable covariance process of Mu
t , using Remark 2.2, we find that

var

[∫ t

0

us dCs

]
= E[⟨Mu⟩t] + E[Z]2E

[(∫ t

0

usλs ds

)2]
− E[Z]2E

[∫ t

0

usλs ds

]2
= E[Z2]E

[∫ t

0

u2
sλs ds

]
+ E[Z]2 var

[∫ t

0

usλs ds

]
∀t ∈ [0, T ]. (4.17)

Here we have used that E
[
Mu

t

∫ t

0
usλsE[Z] ds

]
= 0. In fact we notice that

E
[
Mu

t

∫ t

0

usλsE[Z] ds

]
= E

[
E
[
Mu

t

∫ t

0

usλsE[Z] ds | FY
T

]]
= E

[
E
[
Mu

t | FY
T

] ∫ t

0

usλsE[Z] ds

]
and being G0 = F0 ∨ FY

T ⊇ FY
T (see Remark 2.3) we have that

E
[
Mu

t | FY
T

]
= E

[
E
[
Mu

t | G0

]
FY

T

]
= E

[
Mu

0 | FY
T

]
= 0

and the proof is complete.
4I.e. Q is such that q fulfills the Definition 2.1.
5See e.g. [Young, 2006].
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Remark 4.5. We highlight that Lemma 4.4 applies to {FY
t }t∈[0,T ]-predictable reinsurance strate-

gies, but this is not restrictive. In fact, from Proposition 4.1 we know that the optimal strategy
belongs to the class of {FY

t }t∈[0,T ]-predictable processes.

Remark 4.6. In the classical Cramér-Lundberg model, i.e. λ(t, y) = λ, for any deterministic
strategy ut = u(t)

var

[∫ t

0

usλ ds

]
= 0,

thus in this case we choose expression (4.11) and the equation (4.15) is satisfied.

Under any risk model with stochastic intensity the formula (4.11) neglects the term

E[Z]2 var

[∫ t

0

usλs ds

]
in the equation (4.16). In order to capture the effect of this term, we can find the following
estimate:

var

[∫ t

0

usλs ds

]
≤ E

[(∫ t

0

usλs ds

)2]
≤ E

[
T

∫ t

0

u2
sλ

2
s ds

]
.

As a consequence, we can choose as premium calculation rule

q(t, y, u) = E[Z]λ(t, y)u+ θrE[Z2]
[
λ(t, y) + Tλ(t, y)2

]
u2, (4.18)

which will be called intensity-adjusted variance principle in this work; using this formula, we
ensure that

E
[∫ t

0

q(s, Ys, us) ds

]
≥ E

[∫ t

0

us dCs

]
+ θr var

[∫ t

0

us dCs

]
∀t ∈ [0, T ]

for all {FY
t }t∈[0,T ]-predictable reinsurance strategies and for any arbitrary level of reinsurance

safety loading θr > 0.

Lemma 4.5. Under the intensity-adjusted variance premium principle (4.18), the optimization
problem (4.1) admits a unique maximizer u∗(t, y) ∈ (0, 1) for all (t, y) ∈ [0, T ]× R, which is the
solution to the following equation:

2θrE[Z2]
[
1 + Tλ(t, y)

]
u =

∫ D

0

zeη(1−u)zeR(T−t)

dFZ(z)− E[Z]. (4.19)

Proof. From the expression (4.18) we get

∂q(t, y, u)

∂u
= E[Z]λ(t, y) + 2θrE[Z2]

[
λ(t, y) + Tλ(t, y)2

]
u ∀u ∈ (0, 1)

and
∂2q(t, y, u)

∂u2
= 2θrE[Z2]

[
λ(t, y) + Tλ(t, y)2

]
> 0 ∀u ∈ (0, 1).

By Lemma 4.1 Ψu(t, y) is strictly concave w.r.t. u and full reinsurance is never optimal because
of Remark 4.2. Moreover, we notice that A0 = ∅ as in Lemma 4.3, thus the optimal strategy is
unique and it belongs to (0, 1). In order to find such a solution, we turn the attention to the first
order condition, which is exactly equation (4.19).
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Through the numerical simulations in Section 7 we will show that the intensity-adjusted
variance premium principle leads to optimal strategies which are consistent with the desired
properties obtained under the other premium calculation principles. Moreover, the reinsurance
strategies under the intensity-adjusted variance premium principle are not deterministic and ex-
plicitly depend on the (stochastic) intensity. Hence the problems described in the beginning of
this subsection are fixed.

Using the result given in Example 4.3, it is easy to specialize Lemma 4.5 to the case of
exponentially distributed claims.

Example 4.4. (Exponentially distributed claims under the intensity-adjusted variance premium
principle)
Under the intensity-adjusted variance premium principle (4.18), suppose that the claims are
exponentially distributed with parameter ζ > ηeRT . Then the optimal strategy u∗(t, y) ∈ (0, 1) is
given by

u∗(t, y) = 1− ζ

η

(
1−

√
ζ

ζ + 4θr
[
1 + Tλ(t, y)

])e−R(T−t) (t, y) ∈ [0, T ]× R. (4.20)

Remark 4.7. In [Liang and Yuen, 2016] and [Yuen et al., 2015] the authors used the variance
premium and the expected value principles, respectively, to obtain optimal reinsurance strategies
in a risk model with multiple dependent classes of insurance business. In those papers the optimal
strategies explicitly depend on the claims intensities, but it is due to the presence of more than
one business line, hence our arguments are not valid there. Nevertheless, in [Yuen et al., 2015]
the authors realized that in the diffusion approximation of the classical risk model the variance
premium principle leads to optimal strategies which do not depend on the claims intensities. In
fact, this was the main motivation of their work. Their observation confirms our perplexities of
strategies independent on the claims intensity.

5. Optimal investment policy

Lemma 5.1. The problem
sup

w(t,y,p)∈R
Ψw(t, y, p),

where Ψw(t, y, p) is defined in (3.5), admits a unique solution w∗(t, y, p) for all (t, y, p) ∈ [0, T ]×
R× (0,+∞) given by

w∗(t, y, p) =
µ(t, p)−R

ησ(t, p)2eR(T−t)
+

p

ηeR(T−t)

∂ϕ
∂p (t, y, p)

ϕ(t, y, p)
. (5.1)

Proof. Since ϕ(t, y, p) > 0, Ψw(t, y, p) is strictly concave w.r.t. w and the result follows from the
first order condition.

We emphasize that the optimal w∗ is the sum of the classical solution6 plus an adjustment
term due to the dependence of the risky asset price coefficients on the stochastic process {Pt}.

Remark 5.1. If µ, σ are continuous function and ϕ ∈ C1,2, then w∗ is a continuous function
w.r.t. (t, y, p).

Corollary 5.1. Suppose that there exist two functions f(t, y) : [0, T ]×R → (0,+∞) and g(t, p) :
[0, T ] × (0,+∞) → R such that ϕ(t, y, p) = f(t, y)eg(t,p) for all (t, y, p) ∈ [0, T ] × R × (0,+∞),
with f(t, y) > 0. Then the optimal investment strategy (5.1) reads as follows:

w∗(t, p) =
µ(t, p)−R

ησ(t, p)2eR(T−t)
+

p

ηeR(T−t)

∂g

∂p
(t, p). (5.2)

6See e.g. [Merton, 1969].
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Remark 5.2. Different dynamics for the risky-asset prices could be considered. For instance, in
the case of pure jump processes, explicit formulas for optimal investment strategies can be found
in [Ceci, 2009] and [Ceci and Gerardi, 2009]. See also [Ceci and Gerardi, 2010] in the case of
power utility.

6. Verification Theorem

Now we conjecture a solution to equation (3.3) of the form ϕ(t, y, p) = f(t, y)eg(t,p), with
f(t, y) > 0. Using Lemma 5.1, replacing all the derivatives and performing some calculations,
the equation (3.3) reads as follows⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− ∂f

∂t
(t, y)− b(t, y)

∂f

∂y
(t, y)− 1

2
γ(t, y)2

∂2f

∂y2
(t, y) +

[
ηeR(T−t)c(t, y) + max

u(t,y)∈[0,1]
Ψu(t, y)

]
f(t, y)

+ f(t, y)

[
−∂g

∂t
(t, p)− pR

∂g

∂p
(t, p)− 1

2
p2σ(t, p)2

∂2g

∂p2
(t, p) +

1

2

(
µ(t, p)−R

)2
σ(t, p)2

]
= 0

f(T, y)eg(T,p) = 1 ∀(y, p) ∈ R× (0,+∞)
(6.1)

It is easy to show that if f, g are two solutions to the following Cauchy problems⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− ∂f

∂t
(t, y)− b(t, y)

∂f

∂y
(t, y)− 1

2
γ(t, y)2

∂2f

∂y2
(t, y)

+

[
ηeR(T−t)c(t, y) + max

u(t,y)∈[0,1]
Ψu(t, y)

]
f(t, y) = 0

f(T, y) = 1,

(6.2)

⎧⎪⎨⎪⎩− ∂g

∂t
(t, p)− pR

∂g

∂p
(t, p)− 1

2
p2σ(t, p)2

∂2g

∂p2
(t, p) +

1

2

(
µ(t, p)−R

)2
σ(t, p)2

= 0

g(T, p) = 0,

(6.3)

then they solve the Cauchy problem (6.1) and v(t, x, y, p) = −e−ηxeR(T−t)

f(t, y)eg(t,p) solves the
original HJB equation given in (3.1).
Before we prove a verification theorem, we must show that our proposed optimal controls are
admissible strategies.

Lemma 6.1. Suppose that (6.2) and (6.3) admit classical solutions with ∂g
∂p satisfying the fol-

lowing growth condition:⏐⏐⏐⏐∂g∂p (t, p)
⏐⏐⏐⏐ ≤ C(1 + |p|β) ∀(t, p) ∈ [0, T ]× (0,+∞) (6.4)

for some constants β > 0 and C > 0. Moreover, assume that

E
[∫ T

0

|µ(t, Pt)|P β+1
t dt+

∫ T

0

σ(t, Pt)
2P 2β+2

t dt

]
< ∞. (6.5)

Let be u∗(t, y) as given in Proposition 4.1 and w∗(t, p) in Lemma 5.1. Let us define the processes
u∗
t
.
= u∗(t, Yt) and w∗

t
.
= w∗(t, Pt); then the pair (u∗

t , w
∗
t ) is an admissible strategy, i.e. (u∗

t , w
∗
t ) ∈

U .

Proof. First let us observe that both u∗
t , w

∗
t are {Ft}-predictable processes since u∗(t, u) and

w∗(t, p) are measurable functions of their arguments and Y is {Ft}-adapted. Moreover, they
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take values in [0, 1] and in R, respectively. Furthermore, using the expression (5.2) we have that

E
[∫ T

0

|w∗
t ||µ(t, Pt)−R| dt

]
≤ E

[∫ T

0

(µ(t, Pt)−R)2

ησ(t, Pt)2eR(T−t)
dt

]
+ E

[∫ T

0

|µ(t, Pt)−R|Pt

ηeR(T−t)

⏐⏐⏐⏐∂g∂p (t, Pt)

⏐⏐⏐⏐ dt]
≤ E

[∫ T

0

(µ(t, Pt)−R)2

ησ(t, Pt)2eR(T−t)
dt

]
+ C E

[∫ T

0

|µ(t, Pt)|(1 + P β
t )Pt dt

]
< ∞

and

E
[∫ T

0

(w∗
t σ(t, Pt))

2 dt

]
= E

[∫ T

0

(µ(t, p)−R)2

η2σ(t, p)2e2R(T−t)
dt

]
+ E

[∫ T

0

σ(t, Pt)
2P 2

t

η2e2R(T−t)

(
∂g

∂p
(t, Pt)

)2

dt

]
+ 2E

[∫ T

0

(µ(t, p)−R)Pt

η2e2R(T−t)

∂g

∂p
(t, Pt) dt

]
≤ E

[∫ T

0

(µ(t, p)−R)2

η2σ(t, p)2e2R(T−t)
dt

]
+ C E

[∫ T

0

σ(t, Pt)
2P 2

t

η2e2R(T−t)

(
1 + P β

t

)2

dt

]
+ C E

[∫ T

0

|µ(t, p)−R|Pt

η2e2R(T−t)
(1 + P β

t ) dt

]
< ∞,

where C denotes any positive constant and the expectations are finite because of the Novikov
condition (2.15) together with (6.4) and (6.5).

Now we are ready for the verification argument.

Theorem 6.1 (Verification Theorem). Suppose that (6.2) and (6.3) admit bounded classical
solutions f ∈ C1,2((0, T )×R))∩C([0, T ]×R)) and g ∈ C1,2((0, T )×(0,+∞))∩C([0, T ]×(0,+∞)),
respectively.
Let us assume that the conditions (6.4) and (6.5) hold and suppose that⏐⏐⏐⏐∂f∂y (t, y)

⏐⏐⏐⏐ ≤ C̃(1 + |y|β) ∀(t, y) ∈ [0, T ]× R (6.6)

for some constants β > 0 and C̃ > 0. As an alternative, the conditions (6.4), (6.5) and (6.6)
may be replaced by the boundedness of ∂g

∂p and ∂f
∂y .

Then the function v : V → R defined by the following

v(t, x, y, p) = −e−ηxeR(T−t)

f(t, y)eg(t,p) (6.7)

is the value function of the reinsurance-investment problem and

α∗(t, Yt, Pt) = (u∗(t, Yt), w
∗(t, Pt))

with u∗(t, y) given in (4.2) and w∗(t, p) in (5.2) is an optimal control.

Proof. Let f(t, y) : [0, T ]×R → (0,+∞) and g(t, p) : [0, T ]×(0,+∞) → R be functions satisfying
the assumptions required by Theorem 6.1 and suppose that they are solutions to the Cauchy
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problems (6.2) and (6.3). Now consider the function ϕ(t, y, p) = f(t, y)eg(t,p). As already ob-
served, it satisfies equation (3.3), i.e. it is a solution to the problem⎧⎨⎩ sup

(u,w)∈[0,1]×R
Hαϕ(t, y, p) = 0

ϕ(t, y, p) = 1 ∀(y, p) ∈ R× (0,+∞).
(6.8)

Now, taking v(t, x, y, p) = −e−ηxeR(T−t)

ϕ(t, y, p), we have that v is a solution to the Cauchy
problem (3.1). This implies that, for any (t, x, y, p) ∈ [0, T ]× R× R× (0,+∞)

Lαv(s,Xα
t,x(s), Yt,y(s), Pt,p(s)) ≤ 0 ∀s ∈ [t, T ]

for all α ∈ Ut, where {Yt,y(s)}s∈[t,T ] denotes the solution to equation (2.1) with initial condition
Yt = y and, similarly, {Pt,p(s)}s∈[t,T ] denotes the solution to equation (2.12) with initial condition
Pt = p.
Now, from Itô’s formula we have that

v(T,Xα
t,x(T ), Yt,y(T ), Pt,p(T ))−v(t, x, y, p) =

∫ T

t

Lαv(s,Xα
t,x(s), Yt,y(s), Pt,p(s)) ds+MT , (6.9)

where {Mr}r∈[t,T ] is the following stochastic process:

Mr =

∫ r

t

wsσ(s, Ps)
∂v

∂x
(s,Xα

s , Ys, Ps) dW
(P )
s

+

∫ r

t

Psσ(s, Ps)
∂v

∂p
(s,Xα

s , Ys, Ps) dW
(P )
s +

∫ r

t

γ(s, Ys)
∂v

∂y
(s,Xα

s , Ys, Ps) dW
(Y )
s

+

∫ D

0

∫ r

t

[
v(s,Xα

s − (1− us)z, Ys, Ps)− v(s,Xα
s , Ys, Ps)

](
m(ds, dz)− dFZ(z)λ(s, Ys)ds

)
.

(6.10)

Now we prove that {Mr}r∈[t,T ] is an {Fr}-local martingale. In particular, we need to show that

E
[∫ T∧τn

t

(
wsσ(s, Ps)

∂v

∂x
(s,Xα

s , Ys, Ps)

)2

ds

]
< ∞,

E
[∫ T∧τn

t

(
Psσ(s, Ps)

∂v

∂p
(s,Xα

s , Ys, Ps)

)2

ds

]
< ∞,

E
[∫ T∧τn

t

(
γ(s, Ys)

∂v

∂y
(s,Xα

s , Ys, Ps)

)2

ds

]
< ∞,

E
[∫ D

0

∫ T∧τn

t

|v(s,Xα
s − (1− us)z, Ys, Ps)− v(s,Xα

s , Ys, Ps)| dFZ(z)λ(s, Ys)ds

]
< ∞,

for a suitable non-decreasing sequence of stopping times {τn}n=1,... such that limn→+∞ τn = +∞.
Taking into account the expression (6.7), we note that

∂v

∂x
(t, x, y, p) = ηeR(T−t)e−ηxeR(T−t)

f(t, y)eg(t,p),

∂v

∂y
(t, x, y, p) = −e−ηxeR(T−t)

eg(t,p)
∂f

∂y
(t, y),

∂v

∂p
(t, x, y, p) = −e−ηxeR(T−t)

f(t, y)eg(t,p)
∂g

∂p
(t, p).

Let us define a sequence of random times {τn}n=1,... as follows:

τn
.
= inf{s ∈ [t, T ] | Xα

s < −n ∨ |Ys| > n} n = 1, . . .
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In the sequel of the proof we denote by Cn any constant depending on n = 1, . . . .
Then we have that

E
[∫ T∧τn

0

(
wsσ(s, Ps)

∂v

∂x
(s,Xα

s , Ys, Ps)

)2

ds

]
= E

[∫ T∧τn

0

(
wsσ(s, Ps)ηe

R(T−s)e−ηXα
s eR(T−s)

f(s, Ys)e
g(s,Ps)

)2

ds

]
≤ Cn E

[∫ T

0

(
wsσ(s, Ps)

)2

ds

]
< ∞ ∀n = 1, . . . ,

because wt is admissible and f and g are bounded by hypothesis. Moreover, we have that

E
[∫ T∧τn

0

(
γ(s, Ys)

∂v

∂y
(s,Xα

s , Ys, Ps)

)2

ds

]
= E

[∫ T∧τn

0

(
γ(s, Ys)e

−ηXα
s eR(T−s)

eg(s,Ps)
∂f

∂y
(s, Ys)

)2

ds

]
≤ C̃E

[∫ T∧τn

0

(
γ(s, Ys)e

−ηXα
s eR(T−s)

eg(s,Ps)

)2

(1 + |Ys|β)2 ds
]

≤ Cn E
[∫ T

0

γ(s, Ys)
2 ds

]
< ∞ ∀n = 1, . . . ,

because g is bounded and using the assumptions (2.3) and (6.6). Further, we obtain that

E
[∫ T∧τn

0

(
Psσ(s, Ps)

∂v

∂p
(s,Xα

s , Ys, Ps)

)2

ds

]
= E

[∫ T∧τn

0

P 2
s σ(s, Ps)

2

(
e−ηXα

s eR(T−s)

f(s, Ys)e
g(s,Ps)

∂g

∂p
(s, Ps)

)2

ds

]
≤ CE

[∫ T∧τn

0

P 2
s σ(s, Ps)

2

(
e−ηXα

s eR(T−s)

f(s, Ys)e
g(s,Ps)

)2

(1 + |Ps|β)2 ds
]

≤ CnE
[∫ T

0

σ(s, Ps)
2(P 2

s + P 2β+2
s ) ds

]
< ∞ ∀n = 1, . . . ,

because f and g are bounded by hypothesis and using conditions (2.13), (6.4) and (6.5). Finally,

E
[∫ D

0

∫ T∧τn

t

|v(s,Xα
s − (1− us)z, Ys, Ps)− v(s,Xα

s , Ys, Ps)| dFZ(z)λ(s, Ys)ds

]
≤ E

[∫ D

0

∫ T∧τn

t

e−ηXα
s eR(T−s)

f(s, Ys, Ps)e
g(s,Ps)|e(1−us)ηze

R(T−s)

− 1| dFZ(z)λ(s, Ys)ds

]
≤ CnE

[∫ D

0

∫ T∧τn

t

eηze
RT

dFZ(z)λ(s, Ys)ds

]
≤ CnE

[
eηZeRT

]
E
[∫ T

t

λ(s, Ys)ds

]
< ∞,

thanks to (2.4) and (2.18). Thus {Mr}r∈[t,T ] is an {Fr}-local martingale and {τn}n=1,... is a
localizing sequence for {Mr}r∈[t,T ].

Taking the expected value of both sides of (6.9) with T replaced by T ∧ τn, we obtain that

E[v(T ∧ τn, X
α
t,x(T ∧ τn), Yt,y(T ∧ τn), Pt,p(T ∧ τn)) | Ft] ≤ v(t, x, y, p)
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for any α ∈ Ut, t ∈ [0, T ∧ τn], n ≥ 1. Now notice that

E[v(T ∧ τn, X
α
t,x(T ∧ τn), Yt,y(T ∧ τn), Pt,p(T ∧ τn))

2]

= E[e−2ηXα
t,x(T∧τn)e

R(T∧τn−t)

f(T ∧ τn, YT∧τn)
2e2g(T∧τn,PT∧τn )]

≤ C e−2ηneR(T∧τn)

≤ C,

thus {v(T ∧ τn, X
α
t,x(T ∧ τn), Yt,y(T ∧ τn), Pt,p(T ∧ τn))}n=1,... is a family of uniformly integrable

random variables. Hence it converges almost surely. Observing that {τn}n=1,... is a bounded and
non-decreasing sequence, since P[|Xα

t | < +∞] = 1 (see (2.17)) and using (2.2) and (2.14), taking
the limit for n → +∞, we conclude that

E[v(T,Xα
t,x(T ), Yt,y(T ), Pt,p(T )) | Ft]

= lim
n→+∞

E[v(T ∧ τn, X
α
t,x(T ∧ τn), Yt,y(T ∧ τn), Pt,p(T ∧ τn)) | Ft]

≤ v(t, x, y, p) ∀α ∈ Ut, t ∈ [0, T ]. (6.11)

To be precise, we have that

lim
n→+∞

Xα
t,x(T ∧ τn) = Xα

t,x(T−) = Xα
t,x(T ) P-a.s.,

since the jump of {Nt}t∈[0,T ] occurs at time T with probability zero. Using the final condition
of the HJB equation (3.1), from (6.11) we get

E[U(Xα
t,x(T ))] ≤ v(t, x, y, p) ∀α ∈ Ut, t ∈ [0, T ].

Now note that α∗(t, y, p) was calculated in order to obtain Lα∗
v(t, x, y, p) = 0; replicating the

calculations above, replacing Lα with Lα∗
, we find the equality:

sup
α∈Ut

E[U(Xα
t,x(T )) | Yt = y, Pt = p] = v(t, x, y, p),

thus α∗(t, Yt, Pt) is an optimal control.

After the characterization of the value function, we provide a probabilistic representation by
means of the Feynman-Kac formula. In preparation for this result, let us introduce a new prob-
ability measure Q equivalent to P. Novikov condition (2.15) implies that the process {Lt}t∈[0,T ]

defined by

Lt = e−
(

1
2

∫ t
0
|µ(s,Ps)−R

σ(s,Ps)
|2 ds+

∫ t
0

µ(s,Ps)−R
σ(s,Ps)

dW (P )
s

)
is an {Ft}-martingale and we can introduce the following probability measure Q:

dQ
dP

⏐⏐⏐⏐
Ft

= Lt t ∈ [0, T ]. (6.12)

By Girsanov theorem we know that W̃
(P )
t = W

(P )
t +

∫ t

0
µ(s,Ps)−R
σ(s,Ps)

ds is a Q-Brownian motion and

we can rewrite the risky asset dynamic as

dPt = Pt

[
Rdt+ σ(t, Pt) dW̃

(P )
t

]
. (6.13)

Since the discounted price {P̃t = Pte
−Rt}t∈[0,T ] turns out to be an {Ft}-martingale, then Q is a

martingale or risk-neutral measure for {Pt}7. We will denote by EQ the conditional expectation
with respect to Q.

7Let us observe that under Q the dynamics of {Yt} and {Rt} do not change.
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Proposition 6.1. Suppose that (6.2) and (6.3) admit classical solutions f ∈ C1,2((0, T )×R))∩
C([0, T ]×R)) and g ∈ C1,2((0, T )× (0,+∞))∩C([0, T ]× (0,+∞)), respectively, both bounded with
∂f
∂y and ∂g

∂p satisfying the growth conditions (6.6) and (6.4). Then f and g admit the following
Feynman-Kac representations:

f(t, y) = E
[
e−

∫ T
t

(
ηeR(T−s)c(s,Ys)+Ψu∗

(s,Ys)
)
ds | Yt = y

]
, (6.14)

g(t, p) = −EQ
[∫ T

t

1

2

(
µ(s, Ps)−R

)2
σ(s, Ps)2

ds | Pt = p

]
, (6.15)

where Ψu∗
(t, y) is the function defined by (3.4), replacing u with u∗(t, y), and Q is the probability

measure introduced in (6.12).

Proof. The result is a simple consequence of the Feynman-Kac theorem.

In Section 8 we will provide sufficient conditions which ensure that the functions f and g
given in (6.14) and (6.15) are C1,2((0, T )×R) and C1,2((0, T )× (0,+∞)) solutions to the Cauchy
problems (6.2) and (6.3), respectively.

7. Simulations and numerical results

Here we illustrate some numerical results based on the theoretical framework developed in the
previous sections. In particular, we perform sensitivity analysis of the optimal reinsurance-
investment strategy in order to study the effect of the model parameters on the insurer’s decision.

7.1. Reinsurance strategy

In this subsection we compare the optimal reinsurance strategy under the variance premium prin-
ciple (see Lemma 4.3) and the intensity-adjusted variance premium principle (see Lemma 4.5).
They will be shortly referred as VP and IAVP, respectively. The main difference is that under
VP we loose the dependence on the stochastic factor, while under IAVP we keep this dependence.

In what follows we assume that {Zi}i=1,... is a sequence of i.i.d. positive random variables
Pareto distributed with shape parameter 1.8182 and scale parameter 0.0545. The stochastic
factor is described by the SDE (2.1) with constant parameters b = 0.3, γ = 0.3 and initial

condition Y0 = 1. For the sake of simplicity, we assume that λ(t, y) = λ0e
1
2y, that is {λt =

λ(t, Yt)}t∈[0,T ] solves

dλt = λt
1

2
dYt λ0 = 0.1,

which guarantees that the intensity is positive. Finally, we consider the model parameters in
Table 1, using the notation introduced in Section 2.

Table 1: Simulation parameters

Parameter Value

T 5 Y
η 0.5
θr 0.1
R 5%

In the sequel, the dashed line refers to the VP case, while the normal line represents the
IAVP case.

From Figure 1 we observe that the optimal reinsurance strategy is positively correlated to
the risk-aversion parameter; moreover, the strategy under VP seems to be more sensitive to any
variation of the risk-aversion.
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Figure 1: The effect of the risk-aversion parameter η on the optimal initial strategy under VP (dashed)
and IAVP (normal).

Moreover, we observe that under VP the strategy is always more conservative (i.e. the pro-
tection level is higher) than under IAVP. There are at least two reasons: firstly, in Subsection 4.2
we noticed that under VP the reinsurer underestimates the variance of her losses, hence the pre-
mium will be underestimated; secondly, under IAVP the insurer overestimates the reinsurance
premium. As a consequence of the well-known law of demand, under IAVP the insurer will buy
a lower protection level. This fact keeps happening in the next figures, but it will not be pointed
out again.

In Figure 2 we notice that any increase in the reinsurance safety loading leads to a decrease
of the reinsured risks. It is a simple consequence of the well-known law of demand: the higher
the price, the lower the quantity demanded. It is worth noting that under our assumptions the
strategy under IAVP is more sensitive than under VP.

Figure 2: The effect of the reinsurance safety loading θr on the optimal initial strategy under VP
(dashed) and IAVP (normal).

Finally, in Figure 3 we can see that the insurer increases the protection when the time horizon
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is higher. Again, the strategy under VP turns out to be more sensitive to any change of the time
horizon.

Figure 3: The effect of the time horizon T on the optimal initial strategy under VP (dashed) and IAVP
(normal).

We conclude this subsection investigating the dynamical properties of the reinsurance strate-
gies under VP and IAVP8. Figure 4 shows that the mean behavior of the optimal reinsurance
strategy is decreasing over the time interval (as expected from Figure 3); nevertheless, under
IAVP the strategy crucially depends on the stochastic factor, hence the insurer will react to any
movement of the claims intensity, while under VP she will follow a deterministic strategy.

Figure 4: Dynamical reinsurance strategies in [0, T ] under VP (dashed) and IAVP (normal).

Summarizing the main results of our numerical simulations, we can conclude that, from a
qualitative point of view, any variation of the model parameters has the same effect on the
optimal strategy under VP and IAVP. Using our model parameters, regarding modifications
of risk-aversion and time-horizon, we observed that under VP the strategy seems to be more

8Under a practical point of view, we simulated the stochastic processes using the classical Euler’s approxima-
tion method, with dt = T

500
.
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sensitive than under IAVP; for the safety loading, we observed the opposite behavior. In addition,
under VP the strategy is dynamically more stable over the time interval [0, T ], because it does
not take into account any variation of the claims intensity. Finally, under VP the insurer will
follow a more conservative strategy than under IAVP, i.e. she will buy more protection.

7.2. Investment strategy

Now we illustrate a sensitivity analysis for the investment strategy based on the Corollary 5.1.
In our simulations we assumed that the risky asset follows a CEV model, that is

dPt = Pt

[
µdt+ σP β

t dW
(P )
t

]
P0 = 1,

with µ = 0.1, σ = 0.1, β = 0.5, while the risk-free interest rate is R = 5% as in the previous
subsection. Let us observe that this model corresponds to (2.12) assuming that µ(t, p) = µ
and σ(t, p) = σpβ , with constant µ, σ > 0. The numerical computation of the function g(t, p)
and its partial derivative ∂g

∂p (t, p) is required by the equation (5.2); for this purpose we used

the Feynman-Kac representation given in (6.15) evaluated through the standard Monte Carlo
method.

In figure 5 we show that the higher is the insurer’s risk aversion, the lower is the total amount
invested in the risky asset.

Figure 5: The effect of the risk-aversion parameter η on the optimal initial strategy.
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Figure 6 illustrates that if the volatility increases, then an increasing portion of the insurer’s
wealth is invested in the risk-free asset.

Figure 6: The effect of the volatility parameter σ on the optimal initial strategy.

Finally, if the risk-free interest rate grows up, then the insurer will find it more convenient
to invest its surplus in the risk-free asset, as shown in figure 7.

Figure 7: The effect of the risk-free interest rate R on the optimal initial strategy.

Similar results can be found in [Sheng et al., 2014]. In particular, figure 6 confirms the result
obtained in Figure 3a of that paper; in addition, figures 5 and 7 complete the sensitivity analyses
performed there.
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8. Existence and uniqueness of classical solutions

In this section we are interested in providing sufficient conditions for existence and uniqueness
of the solutions to the PDEs involved in the reinsurance-investment problem, see the Cauchy
problems (6.2) and (6.3) and as a consequence of a classical solution to HJB equation associated
with our problem.
Let us start from the PDE (6.3).

Theorem 8.1. Suppose that σ(t, p)p is locally Lipschitz-continuous in p, uniformly in t ∈ [0, T ]
and for any n ∈ N the PDE⎧⎪⎨⎪⎩− ∂w

∂t
(t, p)− pR

∂w

∂p
(t, p)− 1

2
p2σ(t, p)2

∂2w

∂p2
(t, p) +

1

2

(
µ(t, p)−R

)2
σ(t, p)2

= 0 ∀(t, p) ∈ (0, T )×Dn

w(t, p) = g(t, p) ∀(t, p) ∈ (0, T )× ∂Dn ∪ {T} ×Dn,

with Dn
.
= ( 1n , n) and g(t, p) given in (6.15), has a classical solution wn(t, p).

Then the function g(t, p) satisfies the Cauchy problem (6.3) and there exists a unique classical
solution to (6.3). Moreover, we have that g ∈ C1,2((0, T )× (0,+∞)).

Proof. The proof is based on [Heath and Schweizer, 2000, Theorem 1]. Let us recall that un-
der the martingale measure Q (defined in (6.12)) the risky asset dynamic is given by (6.13).
Thanks to our assumption on σ(t, p)p, the SDE (6.13) admits a unique solution up to a pos-
sibly finite explosion time. Since Q is equivalent to P by definition, by (2.14) we get that
Q[sups∈[t,T ]Pt,p(s) < +∞] = 1. It implies that the expectation in (6.15) is well posed.

Now fix arbitrary (t, p) ∈ (0, T ) × (0,+∞). Since
⋃

n∈N Dn = (0,+∞), then ∃n ∈ N such
that p ∈ Dn. Let us denote by τn

.
= inf {s ≥ t | Pt,p(s) /∈ Dn} ∧ T the first exit time from Dn

before T . We have that (τn, Pt,p(τn)) ∈ (0, T ) × ∂Dn ∪ {T} ×Dn, because of the continuity of
{Pt,p(s)}s∈[t,T ]. It turns out that g(τn, Pt,p(τn)) < ∞.

By a simple application of the Itô’s formula to the process {wn(s, Pt,p(s))}s∈[t,T ], using the
PDE above, it is easy to show that9

wn(t, p) = EQ
[
g(τn, Pt,p(τn))−

∫ τn

t

1

2

(
µ(s, Pt,p(s))−R

)2
σ(s, Pt,p(s))2

ds

]
.

Taking into account the expression of g, given in (6.15), we have that

wn(t, p) = EQ
[
−
∫ T

τn

1

2

(
µ(s, Pt,p(s))−R

)2
σ(s, Pt,p(s))2

ds−
∫ τn

t

1

2

(
µ(s, Pt,p(s))−R

)2
σ(s, Pt,p(s))2

ds

]
= −EQ

[∫ T

t

1

2

(
µ(s, Pt,p(s))−R

)2
σ(s, Pt,p(s))2

ds

]
= g(t, p),

Hence wn and g coincide on (0, T ) × Dn ∀n ∈ N and this implies that g satisfies (6.3) on
(0, T ) × (0,+∞). The boundary condition g(T, p) = 0 immediately follow by the definition of
g.

Remark 8.1. In [Sheng et al., 2014] the authors found an explicit solution to the Cauchy prob-
lem (6.3) in the particular case of the CEV model, i.e. when µ(t, p) = µ and σ(t, p) = kpβ.

Let us observe that it is not easy to check whether the main hypothesis of Theorem 8.1,
i.e. the existence of wn for any n, is fulfilled or not. Thus we need to provide more palatable
assumptions. This is the motivation of Corollary 8.1, which is preceded by a preparation result.

Lemma 8.1. Let us define the set Dn
.
= ( 1n , n) for n = 1, . . . and assume that the functions

µ(t, p), σ(t, p) are continuous in (t, p) ∈ [0, T ] × (0,+∞) and Lipschitz-continuous in p ∈ Dn,

9For details, see [Friedman, 1975, Theorem 6.5.2].
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uniformly in t ∈ [0, T ]. Moreover, assume that σ(t, p) is locally bounded from below, i.e. there
exists a constant δσ(n) > 0 such that σ(t, p) ≥ δσ(n) ∀(t, p) ∈ [0, T ]×Dn.
Then for each n = 1, . . . the function k : [0, T ]× (0,+∞) → R defined by

k(t, p) =

(
µ(t, p)−R

)2
σ(t, p)2

(8.1)

is uniformly Lipschitz-continuous on [0, T ]×Dn.

Proof. Since µ(t,p)−R
σ(t,p) is bounded, we have that

|k(t, p)− k(t′, p′)| =

⏐⏐⏐⏐⏐
(
µ(t, p)−R

σ(t, p)

)2

−
(
µ(t′, p′)−R

σ(t′, p′)

)2
⏐⏐⏐⏐⏐

≤ Kn

⏐⏐⏐⏐µ(t, p)−R

σ(t, p)
− µ(t′, p′)−R

σ(t′, p′)

⏐⏐⏐⏐
= Kn

⏐⏐⏐⏐σ(t′, p′)[µ(t, p)−R]− σ(t, p)[µ(t′, p′)−R]

σ(t, p)σ(t′, p′)

⏐⏐⏐⏐
for a positive constant Kn > 0 which depends on n. Now, σ(t, p) being bounded from below,
setting K̃n = Kn

δ2σ
we have that

|k(t, p)− k(t′, p′)| ≤ K̃n|σ(t′, p′)[µ(t, p)−R]− σ(t, p)[µ(t′, p′)−R]|
≤ K̃nR|σ(t, p)− σ(t′, p′)|+ K̃n|σ(t′, p′)µ(t, p)− σ(t, p)µ(t′, p′)|
≤ K̃nR|σ(t, p)− σ(t′, p′)|+ K̃n|σ(t′, p′)µ(t, p)− σ(t′, p′)µ(t′, p′)|
+ K̃nµ(t

′, p′)|σ(t′, p′)− σ(t, p)|

and, observing that any Lipschitz-continuous function on a bounded domain is also bounded,
the result is a consequence of our hypotheses.

Corollary 8.1. Let us assume that µ(t, p), σ(t, p) are bounded, continuous in (t, p) ∈ [0, T ] ×
(0,+∞) and Lipschitz-continuous in p ∈ Dn, uniformly in t ∈ [0, T ]. In addition, let σ(t, p)
be Lipschitz-continuous in t ∈ [0, T ] and locally bounded from below, i.e. ∃ δσ(n) > 0 such that
σ(t, p) ≥ δσ(n) ∀(t, p) ∈ [0, T ]×Dn. Then g(t, p) given in (6.15) solves the Cauchy problem (6.3)
and there exists a unique classical solution to (6.3). Moreover, we have that g ∈ C1,2((0, T ) ×
(0,+∞)).

Proof. As discussed in [Heath and Schweizer, 2000] after Theorem 1, the main hypothesis of our
Theorem 8.1 is implied by the combination of the following conditions:

• there exists a sequence of bounded sets {Dn}n∈N, with Dn ⊆ (0,+∞) ∀n ∈ N, such that⋃
n∈N Dn = (0,+∞); in our case we define Dn

.
= ( 1n , n);

• pR and σ(t, p)p are uniformly Lipschitz-continuous in (t, p) ∈ [0, T ]×Dn; it is implied by
our hypotheses;

• σ(t, p) is bounded from below, i.e. there exists a constant δσ > 0 such that σ(t, p) ≥ δσ for
all (t, p) ∈ [0, T ]× (0,+∞), which is fulfilled by hypothesis in this corollary;

• the integrand function in (6.15) is Hölder-continuous on [0, T ] × Dn; this is implied by
Lemma 8.1, whose assumptions are clearly satisfied here;

• the function g(t, p) defined by equation (6.15) is finite and continuous on (0, T ) × ∂Dn ∪
{T} × D̄n.
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We only need to check the last requirement. By [Heath and Schweizer, 2000, Lemma 2], it is
sufficient to prove that the function k(t, p) given in (8.1), i.e. the integrand of (6.15), is continuous
and bounded. By the continuity of µ(t, p), σ(t, p), we get the former requirement. Moreover, k
is bounded because µ(t, p), σ(t, p) are bounded and σ(t, p) is bounded from below.

Now we turn the attention to the second PDE involved in the reinsurance-investment problem,
see the Cauchy problem (6.2). Before proving the existence theorem, let us state some preliminary
results.

Lemma 8.2. Given a compact set K ∈ R let us assume that H(t, y, u) : [0, T ] × R × K → R
is continuous in u ∈ K and Hölder-continuous in (t, y) ∈ [0, T ] × R uniformly in u ∈ K with
exponent 0 < ξ ≤ 1. Then maxu∈K H(t, y, u) is Hölder-continuous in (t, y) ∈ [0, T ] × R with
exponent 0 < ξ ≤ 1.

Proof. Given t, t′ ∈ [0, T ] and y, y′ ∈ R, let us define

h1(u) = H(t, y, u) h2(u) = H(t′, y′, u).

Then we have that

|max
u∈K

h1(u)−max
u∈K

h2(u)| ≤ max
u∈K

|h1(u)− h2(u)|. (8.2)

In fact, observing that

|max
u∈K

h1(u)−max
u∈K

h2(u)| =

{
maxu∈K h1(u)−maxu∈K h2(u) if maxu∈K h1(u) ≥ maxu∈K h2(u)

maxu∈K h2(u)−maxu∈K h1(u) if maxu∈K h1(u) < maxu∈K h2(u),

we notice that in the first case

max
u∈K

h1(u)−max
u∈K

h2(u) = max
u∈K

[h1(u)− h2(u) + h2(u)]−max
u∈K

h2(u)

≤ max
u∈K

[h1(u)− h2(u)]

≤ max
u∈K

|h1(u)− h2(u)|,

and in the second case we have that

max
u∈K

h2(u)−max
u∈K

h1(u) ≤ max
u∈K

[h2(u)− h1(u)]

≤ max
u∈K

|h1(u)− h2(u)|.

Now, using inequality (8.2), we have that

|max
u∈K

H(t, y, u)−max
u∈K

H(t′, y′, u)| ≤ max
u∈K

|H(t, y, u)−H(t′, y′, u)|

≤ L(|t− t′|ξ + |y − y′|ξ)

and this completes the proof.

Corollary 8.2. Let us assume that the following hypotheses hold:

• q(t, y, u) is bounded and Hölder-continuous in (t, y) ∈ [0, T ]×R uniformly in u ∈ [0, 1] with
exponent 0 < ξ ≤ 1;

• λ(t, y) is bounded and Hölder-continuous in (t, y) ∈ [0, T ]× R with exponent 0 < ξ ≤ 1.

Then maxu(t,y)∈[0,1] Ψ
u(t, y) is Hölder-continuous in (t, y) ∈ [0, T ]× R with exponent 0 < ξ ≤ 1.
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Proof. In view of Lemma 8.2, it is sufficient to show that Ψu(t, y) is Hölder-continuous in (t, y) ∈
[0, T ]× R uniformly in u ∈ [0, 1] with exponent 0 < ξ ≤ 1. Let us recall equation (3.4):

Ψu(t, y) = −ηeR(T−t)q(t, y, u) + λ(t, y)

∫ D

0

[
1− eη(1−u)zeR(T−t)

]
dFZ(z).

Since eR(T−t) is differentiable and bounded on t ∈ [0, T ], our first hypothesis ensures that the
first term ηeR(T−t)q(t, y, u) is Hölder-continuous in (t, y) ∈ [0, T ]×R uniformly in u ∈ [0, 1] with
exponent 0 < ξ ≤ 1. For the second term we notice that it is a product of two bounded and
Hölder-continuous functions, in fact⏐⏐⏐⏐⏐

∫ D

0

eη(1−u)zeR(T−t)

dFZ(z)−
∫ D

0

eη(1−u)zeR(T−t′)
dFZ(z)

⏐⏐⏐⏐⏐
≤ E

[⏐⏐⏐eη(1−u)ZeR(T−t)

− eη(1−u)ZeR(T−t′)
⏐⏐⏐].

Using Lagrange’s theorem, there exists t̄ ∈ [0, T ] such that

E
[⏐⏐⏐eη(1−u)ZeR(T−t)

− eη(1−u)ZeR(T−t′)
⏐⏐⏐]

≤ E
[⏐⏐⏐Rη(1− u)ZeR(T−t̄)eη(1−u)ZeR(T−t̄)

⏐⏐⏐]|t− t′|

≤ RηeRTE
[
ZeηZeRT

]
|t− t′|

and the proof is complete.

The following theorem is based on the main result of [Heath and Schweizer, 2000].

Theorem 8.2. Suppose that for any n ∈ N the following PDE⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− ∂w

∂t
(t, y)− b(t, y)

∂w

∂y
(t, y)− 1

2
γ(t, y)2

∂2w

∂y2
(t, y)

+

[
ηeR(T−t)c(t, y) + max

u(t,y)∈[0,1]
Ψu(t, y)

]
w(t, y) = 0 ∀(t, y) ∈ (0, T )×Dn

w(t, y) = f(t, y) ∀(t, y) ∈ (0, T )× ∂Dn ∪ {T} ×Dn,

with Dn
.
= (−n, n), admits a classical solution wn(t, y). Then the function f(t, y) defined

in (6.14) satisfies the Cauchy problem (6.2) and there exists a unique classical solution to (6.2).
Moreover, we have that f ∈ C1,2((0, T )× R).

Proof. By Assumption 2.1, the stochastic process {Yt}t∈[0,T ] does not explode and the expec-
taion (6.14) is well defined.

Now fix arbitrary (t, y) ∈ (0, T ) × R. Since
⋃

n∈N Dn = R by construction, ∃n ∈ N such
that y ∈ Dn. Let us denote by τn

.
= inf {s ≥ t | Yt,y(s) /∈ Dn} ∧ T the first exit time from Dn

before T . We have that (τn, Yt,y(τn)) ∈ (0, T ) × ∂Dn ∪ {T} ×Dn, because of the continuity of
{Yt,y(s)}s∈[t,T ]. It turns out that f(τn, Yt,y(τn)) < ∞.

By a simple application of the Itô’s formula to the process {wn(s, Yt,y(s))}s∈[t,T ], using the
PDE above, we can verify that

wn(t, y) = E
[
e−

∫ τn
t

(
ηeR(T−s)c(s,Ys)+Ψu∗

(s,Ys)
)
ds | Yt = y

]
.

Using the Markov property of {Yt}t∈[0,T ] and the expression of f(t, y) given in (6.14), it imme-
diately follows that

wn(t, y) = f(t, y) ∀(t, y) ∈ (0, T )×Dn.

The boundary condition is evident and this completes the proof.
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Similarly to Theorem 8.1, even in Theorem 8.2 the main assumption is not so clear. In
practice, it may be difficult to check whether the solution wn exists or not. Nevertheless, in the
following result we provide sufficient conditions in order to guarantee that it is fulfilled.

Corollary 8.3. Suppose that c(t, y) and λ(t, y) are bounded and Lipschitz-continuous in (t, y) ∈
[0, T ] × R and q(t, y, u) is bounded and Lipschitz-continuous in (t, y) ∈ [0, T ] × R uniformly in
u ∈ [0, 1]. In addition, let us assume that γ(t, y) is bounded from below, i.e. there exists a
constant δγ > 0 such that γ(t, y) ≥ δγ for all (t, y) ∈ [0, T ] × R. Then f(t, y) defined in (6.14)
satisfies the Cauchy problem (6.2) and there exists a unique classical solution to (6.2). Moreover,
we have that f ∈ C1,2((0, T )× R).

Proof. As discussed in [Heath and Schweizer, 2000] after Theorem 1, the main hypothesis of our
Theorem 8.2 is implied by the combination of these conditions:

• there exists a sequence of bounded sets {Dn}n∈N, with Dn ⊆ R ∀n ∈ N, such that⋃
n∈N Dn = R; in our case we define Dn

.
= (−n, n);

• b(t, y), γ(t, y) satisfy the (local) Lipschitz continuity given in our Assumption 2.1;

• γ(t, y) is bounded from below; this is true by hypothesis in this corollary;

• the integrand function in (6.15) is Hölder-continuous on [0, T ] × Dn; this is implied by
Lemma 8.1, whose assumption are fulfilled by hypotheses here;

• the function f(t, y) defined by equation (6.14) is finite and continuous on (0, T ) × ∂Dn ∪
{T} × D̄n.

In order to complete the proof, we need to check the last requirement. In particular, by the
cited [Heath and Schweizer, 2000, Lemma 2], we need to prove that the integrand function
of (6.14), i.e.

ηeR(T−t)c(t, y) + max
u(t,y)∈[0,1]

Ψu(t, y),

is continuous and bounded from above. By our hypotheses it is clearly bounded. Moreover, by
Corollary 8.2, it is also continuous.

A. Appendix

Proof of Lemma 2.1. First, let us start considering all the [0, D]-indexed processes {H(t, z)}t∈[0,T ]

of this type:
H(t, z) = H̃t1A(z) t ∈ [0, T ], A ∈ [0, D],

where {H̃t}t∈[0,T ] is a nonnegative and {Ft}-predictable process. By the independence between
{Nt}t∈[0,T ] and {Zn}n≥1 we have that

E
[∫ T

0

∫ D

0

H(t, z)m(dt, dz)

]
= E

[∑
n≥1

H̃Tn
1A(Zn)1{Tn≤T}

]

=
∑
n≥1

P[Zn ∈ A]E
[
H̃Tn

1{Tn≤T}

]

= P[Z ∈ A]E
[∑
n≥1

H̃Tn
1{Tn≤T}

]

= P[Z ∈ A]E
[∫ T

0

H̃tλt dt

]
= E

[∫ D

0

∫ T

0

H(t, z) dFZ(z)λt dt

]
.
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Using [Brémaud, 1981, App. A1, T4 Theorem, p.263] this result can be extended to all non-
negative, {Ft}-predictable and [0, D]-indexed process {H(t, z)}t∈[0,T ] and this completes the
proof.

Proof of Proposition 2.1. For any constant strategy αt = (u,w) with u ∈ [0, 1] and w ∈ R we
have that

E[e−ηXα
t,x(T ) | Ft] =

= e−ηxeR(T−t)

E[e−η
∫ T
t

eR(T−s)[c(s,Ys)−q(s,Ys,u)] dseη
∫ T
t

∫ D
0

eR(T−r)(1−u)z m(dr,dz) | Ft]×

× E[e−η
∫ T
t

eR(T−s)w[µ(s,Ps)−R] dse−η
∫ T
t

eR(T−s)wσ(s,Ps) dW
(P )
s | Ft], (A.1)

because of the independence between the financial and the insurance markets. In particular, for
the null strategy αt = (0, 0), using the inequality (2.9), we have that

E[e−ηX
(0,0)
t,x (T ) | Ft] ≤

≤ e−ηxeR(T−t)

eη
K
R (eR(T−t)−1)E[eη

∫ T
t

∫ D
0

eR(T−r)z m(dr,dz) | Ft].

Now let us notice that

E[eηe
RT

∫ T
t

∫ D
0

z m(dr,dz) | Ft] = E[eηe
RT ∑NT

i=Nt
Zi | Ft]

=
∑
n≥Nt

E[eηe
RT ∑n

i=Nt
Zi | Ft]P[NT = n | Ft]

=
∑
n≥Nt

E
[ n∏
i=Nt

eηe
RTZi | Ft

]
P[NT = n | Ft]

=
∑
n≥Nt

E[eηe
RTZ | Ft]

(n−Nt) P[NT = n | Ft]

=
∑
n≥0

E[eηe
RTZ ]n P[NT −Nt = n | Ft]

=
∑
n≥0

E[eηe
RTZ ]n E

[(∫ T

t
λs ds

)n
n!

e−
∫ T
t

λs ds | Ft

]
= E

[
e(E[e

ηeRT Z ]−1)
∫ T
t

λs ds | Ft

]
< ∞ ⟨P = 1⟩ ,

because of the Assumption 2.2.

Proof of Lemma 3.1. Looking at (2.1), (2.12) and (2.16), we apply Itô’s formula to the stochastic
process f(t,Xα

t , Yt, Pt):

f(t,Xα
t , Yt, Pt) = f(0, Xα

0 , Y0, P0) +

∫ t

0

Lαf(s,Xα
s , Ys, Ps) ds+mt,

where

mt =

∫ t

0

wsσ(s, Ps)
∂f

∂x
(s,Xα

s , Ys, Ps) dW
(P )
s

+

∫ t

0

Psσ(s, Ps)
∂f

∂p
(s,Xα

s , Ys, Ps) dW
(P )
s +

∫ t

0

γ(s, Ys)
∂f

∂y
(s,Xα

s , Ys, Ps) dW
(Y )
s

+

∫ D

0

∫ t

0

[
f(s,Xα

s − (1− u)z, Ys, Ps)− f(s,Xα
s , Ys, Ps)

](
m(ds, dz)− λ(s, Ys) dFZ(z)

)
.

(A.2)
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We only need to prove that this is an {Ft}-martingale. Let us observe that

E
[∫ T

0

(
wsσ(s, Ps)

∂f

∂x
(s,Xα

s , Ys, Ps)

)2

ds

]
< ∞,

E
[∫ T

0

(
Psσ(s, Ps)

∂f

∂p
(s,Xα

s , Ys, Ps)

)2

ds

]
< ∞,

E
[∫ T

0

(
γ(s, Ys)

∂f

∂y
(s,Xα

s , Ys, Ps)

)2

ds

]
< ∞,

because all the partial derivatives are bounded and using the definition of the set U , (2.13)
and (2.3), respectively.
Thus the first three integrals in (A.2) are well defined and, according to the Itô integral theory,
they are martingales. Finally, the jump term in (A.2) is a martingale too, being the function f
bounded.
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