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Abstract—In this paper we prove that Inter-Symbol Inter-
ference (ISI) and Bit Error Rate (BER) of a Diffusion Based
Molecular Communication (DBMC) system depend on the a-
priori probability of the transmitted data by deriving lower
and upper bounds for the number of received molecules. We
also compute the optimal value of a-priori probability for which
ISI and BER are minimized. A source coding technique, called
Modified Inverse Source Coding (MISC), is proposed that allows
to control the a-priori probability of the transmitted data. The
results show that the MISC-DBMC system not only provides a
better BER performance compared to an uncoded one but also
improves the range of communication.

Index Terms—Diffusive channel, molecular communication,
inverse source coding, inter-symbol interference, bit error rate.

I. INTRODUCTION

ENGINEERED biological nanomachines can be used for
applications like health care and genetic engineering,

which requires robust and reliable communication between
them. A biologically inspired communication technology,
called molecular communication (MC), can be used to es-
tablish such a communication by encoding information into
messenger molecules, which act as information carriers [1].
The information can be encoded into the number of molecules
released (Concentration Shift Keying) [2], [3], or the type of
molecules (Molecular Shift Keying) [4], or the release time of
the molecules (Timing modulation) [5], etc.

One of the major challenges in Diffusion Based Molecular
Communication (DBMC) is Inter-Symbol Interference (ISI),
which arises due to the propagation delay caused by the diffu-
sion of molecules from the transmitting to the receiving node.
A method to mitigate the effect of ISI, reported in [6], uses
active enzymes that freely diffuse in the propagation environ-
ment. The enzymes react with the information molecules and
form reaction intermediate and then degrade them so that they
do not interfere with future transmissions. A new modulation
technique called Molecular Transition Shift Keying (MTSK)
along with a low complex decision feedback equalizer was
proposed in [7] to increase the data rate by suppressing the
ISI. An optimal filter was designed in [8] to maximize the
signal to interference plus noise ratio.

Another popular method to counter ISI is by using error
correction coding schemes. The performance of various error
control coding techniques have been compared for different

scenarios for DBMC in [9]. An energy efficient coding tech-
nique for MC was introduced in [10]. An ISI-aware channel
coding technique that incorporates the effect of ISI in channel
code design for DBMC channel was proposed in [11].

In this paper, a new coding technique to reduce the effect
of ISI in DBMC is proposed. This new coding scheme is
inspired by Inverse Source Coding (ISC) technique originally
proposed to control the dimming percentage in visible light
communication [12]. We evaluate the Bit Error Rate (BER)
and perform capacity analysis of the proposed scheme. The
most significant contributions of this paper are the following:

1) Derivation of lower and upper bounds for the number of
received molecules at the end node. Using the derived
bounds we prove that the effect of ISI can be minimized
by reducing the percentage of 1’s in the transmit data.

2) Proposal of a Modified ISC (MISC) scheme for DBMC
system to control the percentage of 1’s and 0’s in the
transmitted data. Capacity and BER performance of
MISC-DBMC system are compared with that of the
uncoded DBMC system.

This paper is organized as follows. The model of the DBMC
system is explained in Sec. II. The upper and lower bound
on the number of molecules at the receiver is derived in
Sec. III and IV, respectively. The MISC scheme is introduced
in Sec. V. Numerical results are presented and discussed in
Sec. VI. Finally, the paper is concluded in Sec. VII.

II. SYSTEM MODEL

A three dimensional DBMC system with a fully absorbing
spherical receiver of radius Rµm separated by a distance
r µm from a point transmitter is considered, as illustrated
in Fig. 1. The information bits are transmitted sequentially
using On-Off Keying (OOK) modulation, where bit 1 is
represented by releasing Ntx number of molecules at the
beginning of the symbol duration (ts) and bit 0 is represented
by releasing no molecules from the transmitter. At the receiver
the information is decoded by measuring the concentration of
received molecules distorted by ISI, diffusion noise, counting
noise, and environment noise for each symbol duration (ts).
The memory of the MC channel, or the length of ISI, is
assumed to be I . The molecular concentration (Nc) measured
at the receiver during the current time slot c is [13]
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Fig. 1. Model of the considered DBMC system: molecules emitted by the
transmitter are shown in blue, interfering molecules are shown in red, and
absorbed molecules are shown in green.

Nc = bcN0 +

I∑
i=1

bc−iNi +W cnt
c +W int

c , (1)

where bc is the information bit transmitted in the current time
slot, bc−i is the information bit transmitted i time slots before
the current one, bc−i, bc ∈ {0, 1}, i = 1, 2, 3, · · · , I , being I
the length of ISI, Ni is a random variable that denotes the
number of molecules received at the receiver in the ith time
slot, out of Ntx molecules released from the transmitter i time
slots before. Ni can be modeled as a Gaussian distributed ran-
dom variable assuming that the expected number of received
information molecules is large [14]:

Ni∼N
(
Ntx(Pi+1−Pi) , Ntx(Pi+1−Pi)(1−Pi+1+Pi)

)
, (2)

where Pi is the capture probability of the molecule at the
receiver until time (i× ts) after it has been released from the
transmitter i time slots before. This probability, which was
derived in [9], [15], is given by

Pi = Phit(r, i× ts) = Pi =
R

r
erfc

(
(r −R)

2
√
D(i× ts)

)
, (3)

where erfc(·) is the complementary error function [16]. In
addition to ISI, the concentration of molecules measured in
the current time slot at the receiver is also affected by the
counting noise and by the interfering molecules in the envi-
ronment or those produced by the other transmitting nodes that
are represented as W cnt

c and W int
c , respectively. Both noise

components can be modeled as Gaussian distributed random
variables assuming that the expected number of interfering
noise molecules is large i.e. W cnt

c ∼ N
(
0, σ2

cnt

)
and W int

c ∼
N
(
0, σ2

int

)
, respectively [14]. The counting noise is a signal

dependent noise with variance σ2
cnt =

(∑I
i=0 bc−iNi

)
/VR,

where VR is the volume of the receiver [3]. Assuming that the
expected number of received information and noise molecules
is large, the total number of molecules received in the current
time slot (Nc) can be approximated as [14]:

Nc ∼ N
(
µc, σ

2
c

)
, (4)

where µc is the expected number of molecules received in the
current time slot given as, µc =

∑I
i=0 bc−iNi = bcNtxP1 +∑I

i=1 bc−iNtx (Pi+1 − Pi) . The second term on the right

bc 0 1 1 1

0 P̂2 P̂3 P̂I

0 P̂b2 = P̂2 0 0

Capture
probability

Lower bound
approximation

Fig. 2. Example of a Transmit bit sequence and the corresponding capture
probabilities (P̂i), and lower bound approximation. bc is the information bit
in the current time slot, and other symbols contribute to ISI.

hand side of the equation is due to ISI, and is given by, σ2
c =∑I

i=0 bc−iNtx (Pi+1 − Pi) (1− Pi+1 + Pi) + σ2
cnt + σ2

int.

III. LOWER BOUND ON THE NUMBER OF RECEIVED
MOLECULES

In this section a lower bound is derived for the num-
ber of molecules received at the receiver node during
the current time slot. Let us define the vector P̂ =
[(P2 − P1) , (P3 − P2) , · · · , (PI+1 − PI)], whose elements
are ordered in non-increasing way as

P̂ =
{(
P̂1,P̂2,P̂3,· · ·P̂I

)
∈RI | P̂1>P̂2 >P̂3· · ·P̂I

}
, (5)

where P̂i=(Pi+1−Pi) , i∈{1, 2, 3, · · · , I} denotes the capture
probability of ISI molecules at the receiver that are released
i time slots before the current one from the transmitter as
shown in Fig. 2. The impulse response of the DBMC channel
reaches its maximum at a time tmax and then decreases
monotonically [3]. By choosing the symbol duration Ts such
that Ts� tmax, we can ensure that P̂i decreases as i increases
from 1 to I . The expression of the lower bound for the number
of molecules received in the current time slot is

NL
c = bcNtxP1 +NtxP̂bi +W c 6 Nc, (6)

where W c =W cnt
c +W int

c , which takes into account the com-
bined noise components, is distributed as W c∼N

(
0, σ2

w

)
,

σ2
w = σ2

cnt + σ2
int is the combined noise variance, and P̂bi

is equal to P̂i corresponding to the first event of bi =1,
as illustrated in Fig. 2. The lower bound approximation of
the received number of molecules in the current symbol slot
follows a Gaussian distribution

NL
c ∼N

(
bcNtxP1 +NtxP̂bi ,

bcNtxP1(1− P1) +NtxP̂bi(1− P̂bi) + σ2
w

)
. (7)

From the expression of the lower bound given in (6), which
is illustrated in Fig. 2, it is clear that in the lower bound
approximation only one bit in the ISI symbols will take a
value equal to 1, i.e., bj = 0,∀j 6= i.

Theorem 1: Let the random variable b ∈ {0, 1} have a Prob-
ability Mass Function (PMF) defined by P (1) = p, P (0) =
q = 1−p. If b1, b2, b3, · · · , bI are Independent and Identically
Distributed (i.i.d) with P (b) then the value of p that minimizes
the ISI in (1) is given by p = 1/I , I being the length of ISI.

Proof: Let the random variable X ∈ {1, 2, 3, . . . ., I}
represent the position of the bit in the ISI symbols. The
symbols emitted by the source b1, b2, · · · , bI are assumed
to be i.i.d. Let us define a random experiment of repeated



independent Bernoulli trials until a success is obtained, with
probability of success at each independent trial equal to p.
Then X is considered as a geometric random variable. The
event that the bit bi takes a value of 1 is equivalent to getting
the success in the ith trial of the random experiment. The
probability of that event is given by

P (bi = 1) = P (X = i) = qi−1p. (8)

The mean position at which the first success occurs is given
by E(X) = 1/p. The effect of ISI over the current symbol is
minimum only if the last bit of ISI symbol takes a value of 1
i.e., bI =1, and bi=0, ∀i 6=I . The probability of this event is

P (bI = 1) = P (X = I) = qI−1p. (9)

The effect of ISI can be minimized by maximizing (9) as

argmax
p
{P (bI = 1)} = argmax

p

(
qI−1p

)
. (10)

Taking the logarithm on both sides of (10) will result in

argmax
p

log{P (bI =1)}=argmax
p
{(I − 1)log q+log p} . (11)

The value of p that maximizes (11) is determined by differen-
tiating (11) and equating it to zero. It is found that its value
is p = 1/I . This completes the proof.
The total average probability of error for the DBMC system
using a threshold detector at the receiver is [13]

Pe =

2I∑
j=1

(P01,j + P10,j) , (12)

where

P01,j = qipQ
(
µ01,j − τ
σ01,j

)
, P10,j = qi−1p2 Q

(
τ − µ10,j

σ10,j

)
,

µ01,j = NtxP̂ij , µ10,j = NtxP1 +NtxP̂ij ,

σ01,j =

√
NtxP̂ij

(
1− P̂ij

)
+ σ2

w , and

σ10,j =

√
NtxP1(1− P1) +NtxP̂ij

(
1− P̂ij

)
+ σ2

w

‘j’ being the bit sequence index, Pmn,j is the event of
erroneously decoding bit ‘m’ as ‘n’ when the ISI is jth
bit sequence, (m,n) ∈ {0, 1}, P̂i,j is P̂bi corresponding to
the jth bit sequence, τ is the threshold of the detector at
the receiver, and Q is the cumulative standard Gaussian
distribution function. Thus, it can be concluded that the BER
in the lower bound scenario depends on the position of the
first occurrence of bit 1 in the ISI bit sequence.

Remark 1: The ISI can be made zero by choosing p very
close to zero, but that would mean that there is no information
transfer. Thus the value of p should be chosen such that the
target average rate of transmission is achieved.

IV. UPPER BOUND ON THE NUMBER OF RECEIVED
MOLECULES

The upper bound on the number of received molecules in
the current symbol slot is given by

NU
c = bcNtxP1 +Ntx

√
KP̂bi +W c > Nc, (13)

where K = (I×p) denotes the average number of one’s in the
binary sequence with apriori probability of p. The number of
molecules received in the current time slot in the upper bound
scenario follows a Gaussian distribution

NU
c ∼ N

(
bcNtxP1 +

√
KNtxP̂bi , (14)

bcNtxP1 (1− P1) +KNtx(P̂bi)(1− P̂bi) + σ2
w

)
.

Theorem 2: If the number of received molecules is given by
NU

c < bcNP1+N
√
KP̂bi , then the value of p that minimizes

the magnitude of ISI is given by p = 1/{I + log(q)}.
Proof: The proof is similar to that illustrated for theo-

rem 1 in Sec. III. Moreover, it is important to consider that
according to Asymptotic Equi-partition Property (AEP), the
typical binary sequence in the ISI symbols will contain K
number of 1’s [17]. From this understanding it is straightfor-
ward to show that when there are K 1’s in the ISI symbols,
minimum ISI occurs when the first 1 occurs at bit bI−K . The
probability of this event is given by

P (bI−K = 1) = qI−K−1p. (15)

To reduce the effect of ISI this probability should be maxi-
mized as

argmax
p
{P (bI−K = 1)} = argmax

p

{
qI−K−1p

}
. (16)

Taking the logarithm on both sides of (16) will result in

argmax
p
{log (P (bI−K = 1))} (17)

= argmax
p
{(I −K − 1) log(1− p) + log(p)} .

Differentiating (17) with respect to p and equating to zero

(I−Ip−1)× 1

(1− p)
×(−1)+(−I)×log(1−p)+1

p
= 0. (18)

From (18), we can find that, (15) is maximized by ‘p = 1/{I+
log(q)}’, which completes the proof.
The probability of error for the upper bound scenario is
calculated using (12) with the following parameters

µ01,j =
√
KNtxP̂ij , µ10,j = NtxP1 +

√
KNtxP̂ij ,

σ01,j =

√
KNtx(P̂ij)(1− P̂ij) + σ2

w ,

σ10,j=

√
NtxP1(1− P1)+KNtx(P̂ij)(1− P̂ij) + σ2

w . (19)

From (19), it is clear that the BER for the upper bound scenario
not only depend on the position of bit 1 in the ISI bit sequence
but also depend on the number of 1’s in the ISI symbol.



TABLE I
HUFFMAN CODING FOR p = 0.2.

Symbol/Length Probability Codeword/Length

00 / 2 0.64 1 / 1

01 / 2 0.16 00 / 2

10 / 2 0.16 011 / 3

11 / 2 0.04 010 / 3

TABLE II
INVERSE HUFFMAN CODING FOR p = 0.2.

Symbol/Length Probability Codeword/Length

010 / 3 0.125 1 / 1

011 / 3 0.125 01 / 2

00 / 2 0.25 001 / 3

1 / 1 0.5 000 / 3

V. MODIFIED INVERSE SOURCE CODING FOR DBMC

In this section the MISC technique is introduced, which
can be used to control the percentage of 1’s and 0’s in the
transmitted data. In conventional source coding techniques, the
highly probable information symbols are assigned codewords
with shorter length and the less probable ones are assigned
codewords with longer length, thus reducing the average code-
word length and resulting in better spectral efficiency [17]. In
MISC, the highly probable information symbols are assigned
codewords with higher length and smaller codeword weight
and vice versa. The MISC results in reduction of ISI, and better
BER performance in DBMC systems with OOK modulation.
But a major disadvantage of this technique is that MISC results
in decompression of transmit data that leads to reduction in
the capacity of the DBMC system.

In this paper Huffman coding is used to construct Inverse
Huffman codes. Let us assume that the desired percentage of
1’s and 0’s should be 20% and 80% respectively. Huffman
encoding is used to generate codewords with optimal length.
These codewords are then used to construct inverse Huffman
codes by assigning largest length code to symbols with high
probability of occurrence and smallest length codes to symbols
with less probability of occurrence. In MISC the highly prob-
able symbols are assigned 0’s instead of 1’s as is the normal
case in Huffman coding. Huffman code and corresponding
inverse Huffman code for p = 0.2 and q = 0.8 are shown in
Tables I and II. MISC achieves the desired target percentage
of 1’s in the codeword

1× 0.125 + 1× 0.125 + 1× 0.25

3× 0.5 + 2× 0.25 + 1× 0.125
≈ 0.235 (' 20%),

where the numerator is the average number of 1’s in the
codeword and the denominator is the average codeword length.

VI. RESULTS AND DISCUSSIONS

In this section, we first present the performance of DBMC
system model shown in Fig. 1, considering the lower and upper
bound scenarios. Then, the performance of the MISC-DBMC
system for a simple threshold detector is analyzed. In all the
cases, BER is considered as the performance metric. To show
that the MISC technique improves the communication range

TABLE III
SIMULATION PARAMETERS

Description Variable Value

Diffusion coefficient of the medium D 79.4 µm2/s

Radius of the spherical receiver R 1 µm

Distance between transmitter and receiver r 4 µm, 6 µm, 8 µm

Symbol duration Ts 4× tmax = 4× r2

6D

Channel memory / ISI length I 10
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Fig. 3. BER performance lower and upper bound approximations compared
with uncoded DBMC for different values of ‘p’ and r = 4µm.

of DBMC, a performance comparison of coded and uncoded
systems is done for multiple values of r. The simulation
parameters used in this paper are given in Table III. Normal-
ization of symbol duration ts and average number of molecules
Ntx to emit for bit 1 for a coded system is performed for a
fair comparison between coded and uncoded systems [11].

The BER of uncoded DBMC system is compared with
that produced by the lower and upper bounds in Fig. 3. The
numerical results clearly show the performance improvement
in both upper and lower bounds as the value of a-priori
probability p decreases. It is also shown that the lowest
BER for the lower bound performance is achieved when
p = 0.1, i.e., p = 1/I , and the best performance in the upper
bound scenario is achieved when p = 1/{I + log(q)}. The
performance of the upper bound matches with the lower bound
when q = 0.9 =⇒ p=0.1 as expected.

The performance comparison of the MISC-DBMC system
using a threshold detector for different values of p and r is
shown in Fig. 4. This figure shows that, the BER performance
of the MISC-DBMC system improves as the value of p
reduces. Coding gain as defined in [9] can be used to measure
the performance improvement of the MISC coding scheme.
At BER = 10−2 the coding gain of MISC-DBMC system
with p = 0.2 and r = 4µm, 6µm, 8µm are shown to be
3 dB, 3.25 dB, and 1.63 dB, respectively. Similarly, for p = 0.3
the coding gain are shown to be 1.24 dB, 1.6 dB, and 0.9 dB,
respectively. As the range r increases from 2µm to 4µm the
coding gain increases slightly and reduces to almost half at
r = 8µm in both cases of p = 0.2, 0.3. It is also worth
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Fig. 5. Channel capacity comparisons between DBMC, and MISC-DBMC
for different values of ‘p’.

noting that as p decreases from 0.3 to 0.2 the coding gain
almost doubles for all values of r. Clearly from Fig. 4, it can
be observed that the MISC-DBMC system with larger range
performs better than the uncoded system with a shorter range
till certain value of Ntx. For example, MISC-DBMC system
with p = 0.2 and r = 8µm performs better than the uncoded
DBMC system with range r = 6µm till Ntx =900 after that
the performance degrades slightly.

The capacity of the MISC-DBMC system for different
values of p is shown in Fig. 5. MISC affects the data rate
due to the decompression of coded data. The average length
before and after inverse Huffman coding given in Table II
is 1.75 and 2.625, respectively, with decompression ratio of
2.625/1.75' 1.5. This decompression directly affects the data
rate of the MISC-DBMC system. The capacity of DBMC sys-
tem is given in [13]. It is shown in Fig. 5 that, in comparison to
an uncoded DBMC system, the capacity of the MISC-DBMC
system is less and the reduction in capacity depends on the
decompression ratio of the corresponding MISC scheme.

VII. CONCLUSION

In this paper, we have derived lower and upper bound
approximations for the number of molecules observed at
the receiver. These bounds are used to prove that the BER
performance of a DBMC system depends on the a-priori

probability of transmitted data and on the length of ISI.
It is also proved that the BER performance improves by
reducing the percentage of 1’s in the transmitted data. Through
mathematical derivations and simulations, we proved that the
best BER performance of the DBMC system occurs when
the value of p is inverse of the ISI length. MISC technique
proposed in this paper assigns code words of longer length
and a smaller weight to symbols with high probability and
vice versa. The MISC technique reduces the effect of ISI
and improves the BER performance of the communication
link. It is also shown through simulation that the MISC-
DBMC systems with larger distance of separation between
transmitting and receiving nanomachines in comparison to
uncoded systems display a superior BER performance, thus
providing a reliable communication over longer distance.
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