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In this paper, the nonlinear modeling of beam energy har-
vester embedded with piezoelectric transducers is presented.
Starting from a multibody dynamics perspective, a fully cou-
pled electromechanical nonlinear beam model was derived
and a geometrically exact finite volume beam element, in-
cluding the circuit equation is developed. In this model, the
beam resultants-strain constitutive law and mass properties
are obtained from a 2D beam cross sectional modeling in
which the electromechanical coupling effects are included.
The results are verified against numerical and experimental
results reported in the literature.
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nonlinear.

1 Introduction
Flexible and lightweight structures are widely used in

industries; this is especially true for beam-like slender struc-
tures, such as morphing wings and rotor blades. These struc-
tures are known to suffer from mechanical vibrations. The
inclusion of smart materials in such structures not only can
help suppressing unwanted vibrations, but it can also pro-
vide a means to harvest energy from the mechanical vibra-
tions. The harvested energy can thus be used to power low-
power electronics on board. Piezoeletric materials do ex-
hibit relatively high electromechanical coupling and are rela-
tively ease to integrate into flexible structures. For these rea-
sons beam structures embedded with piezoelectric devices
are the most common structure utilized in vibration-based
energy harvesting. An advanced application in aerospace is
the multi-functional composite sandwich wing spar of UAVs
(Unmanned Aerial Vehicles), in which the wing spar is de-
signed to harvest energy from the wing vibrations by PZT-
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based harvester, and achieve the wind gust alleviation re-
sponse simultaneously via vibration control by using PZT
actuator, thus realizing a self-contained gust alleviation sys-
tem [1].

Many pioneering works do study piezoelectric beam en-
ergy harvesting systems (PBEHs). Various theoretical model
has been proposed. A single degree of freedom (SDOF)
lumped parameter model of the PBEHs was used to analyze
the system dynamic response [2]; this type of method, how-
ever, provide only a rough estimate of the maximum power
harvesting and is limited to a single vibration mode, cfr. [3].
Based on Euler-Bernoulli beam theory, a theoretical model of
a piezoelectric energy harvesting device was derived in [4]
that is based on the energy method and is solved by the
Rayleigh-Ritz method. Comprehensive theoretical modeling
methods on vibration-based piezoelectric energy harvesting
systems and experiments were reviewed in [5]. The spec-
tral finite elements method was developped in [3] to simulate
bimorph piezoelectric beam energy harvesters based on the
Timoshenko beam theory and on the Euler-Bernoulli beam
theory. Although only one element was used in the numerical
simulation, considerable correlation is achieved with exper-
iment data. Recently the superconvergent elements method
was used to analyze the bimorph beam in [6] and the results
were compared with those obtained using an Euler-Bernoulli
model and a Timoshenko model. All these papers, however,
make use of linear one dimensional beam models; further-
more, the beam stiffness is computed by engineering formu-
las, which is insufficient to accurately model slender com-
posite beams, such as flexible wings, blades and multi-stable
beam based energy harvesters which suffer from large de-
formations. Recently, The variational asymptotic method
(VAM) was used to derive the nonlinear electromechani-
cal model of a rotating beam with embedded piezoelectrics

1 Copyright © by ASME



and an investigation on energy harvesting from helicopter
blades was conducted [7]. A multifunctional flexible wing
was modeled using a strain-based geometrically nonlinear
beam theory in [8]; the electromechanical systems’s equa-
tion, including the electric circuit equation, was formulated
by accounting for the electromechanical effects in the inter-
nal virtual work. Based on VAM, a comprehensive smart
beam analysis framework was proposed in [9]. In their work,
the two dimensional cross sectional analysis tool VABS was
utilized to calculate the beam stiffness and electromechani-
cal coupling coefficients; their in-house program NATASHA
(Nonlinear aeroelastic trim and stability of HALE aircraft),
based on a geometrically exact intrinsic beam theory and
a mixed variational principle, was extended to the case of
smart beams, allowing the simulation of energy harvesting
from beams. A similar beam formulation, also based on
a mixed variational principle, was used also in [10, 11] to
model the nonlinear dynamics of piezo-composite beams.

This paper, starting from a multibody dynamics per-
spective, derives a fully coupled electromechanical nonlin-
ear beam model and develops a geometrically exact finite
volume beam element, including the circuit equation; this el-
ement, needs, as input, the electromechanical cross-section
properties of the beam, that can be obtained by following
either [12], [13] or [14]. Key points of the proposed formu-
lations are to be completely nonlinear, geometrically exact,
intrinsic, and based on a minimal set of nodal unknowns.
Departing from e.g. [15, 16] the present formulation does
not link the cross-section rotation to the transverse displace-
ment derivative, a choice that would limit the formulation
to relatively small rotations; furthermore, the set of nodal
unknowns is minimal, without the need to introduce addi-
tional generalized strain or force and moment unknowns as
in [7–11]. Furthermore, the finite volume beam formulation
is free from shear locking [17]. The content is organizes as
follows: first the finite volume beam formulation account-
ing for energy harvesting is derived in detail; then the circuit
equation is discretized and linearized to accommodate the
multibody dynamics solving procedure; and finally the nu-
merical example is carried out.

2 Beam theory
This paper modifies a geometrically exact beam element

proposed in [17], that is based on the finite volume method.
The beam element intrinsically accounts for shear deforma-
tion and is free from shear locking. It is here extended to
allow fully-coupled electromechanical simulations of beams
made with piezoelectric patches.

2.1 Equilibrium equation
The beam is represented by a reference line, with local

arc length ξ, and a reference cross section which is perpen-
dicular to the undeformed reference line. The equilibrium
equation can be written as

Fig. 1: Three-node finite volume beam

ϑϑϑ
′−TTT ϑϑϑ+ τττ = 000 (1)

where ϑϑϑ =

{
ttt
mmm

}
is a vector stacking the internal force and

moment, TTT =

[
000 ppp′×
000 000

]
, ppp(ξ) is the position vector of ar-

bitrary point at the beam reference line location ξ in global
reference frame, (·)′ denotes the derivative with respect to
ξ, (·)× denotes the skew symmetric matrix corresponding to
the vector, and τττ is the imposed load vector including the
inertial forces. A weak form of Eqn. (1) can be written as

∫ b

a
w(ξ)(ϑϑϑ′−TTT ϑϑϑ+ τττ)dξ = 000, (2)

with w(ξ) a suitable test function. By using a piecewise
constant discontinuous test function w(ξ) = step(ξ− a)−
step(ξ− b), which has unit value inside the domain [a,b]
and is equal to zero outside this domain, yields

(
III−UUUT (ξ)

)
ϑϑϑ|ba =−

∫ b

a
w(III−UUUT (ξ)+UUUT (ξ0))τττdξ (3)

where ξ0 is a point with respect to which the moment is re-
ferred to, III is the identity matrix, and UUU(ξ) =

∫
TTT dξ refers to

the moment arms of the internal and external forces.
The two points located at Gauss integration points are

used as evaluation points to evaluate the internal forces; thus
the beam element is splitted into three volumes denoted by
the end points V1→I , VI→II and VII→3, as depicted in Figure
1. Applying Eqn. (3) to the above finite volumes , and taking
node 1, 2, 3 as moment reference point ξ0 respectively, yields
the equilibrium equations at the three nodes as follows:

LLLΘΘΘ = FFF (4)

ΘΘΘ = ZZZΘ̃ΘΘ (5)
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where

LLL =


−III 000 000 000

(pppI− xxx1)× −III 000 000
III 000 −III 000

−(pppI− xxx2)× III (pppII− xxx2)× −III
000 000 III 000
000 000 (pppII− xxx3)× III

 (6)

is the moment arm matrix, pppα(α=I, II) is the position vector
of the evaluation point, and xxxi(i=1, 2, 3) is the position vec-
tor of the node in global frame. Here Θ̃ΘΘ is a 12× 1 vector,
stacked by the internal force vectors at points I and II in ma-
terial frame, and ΘΘΘ is its counterpart in the global frame. The
internal force at points I and II can be calculated by using the
generalized constitutive law discussed in Section 2.2. Matrix
ZZZ = diag(RRRI , RRRI , RRRII , RRRII ) , and RRRα(α=I, II) is the transfor-
mation matrix from material frame to global frame at points
I and II. The 18×1 vector FFF is the imposed nodal force vec-
tor at the three nodes, accounting also for the inertial forces
in global frame.

2.2 Generalized beam deformation
The measures of beam linear strain and angular curva-

ture difference in global frame can be defined as

εεε = ppp′−RRRp̃pp′0 (7)

κκκ×= RRR′RRRT −RRRρ̃ρρ0×RRRT (8)

where RRR is the rotation tensor identifying the beam cross-
section orientation, the quantities with subscript (·)0 denote
the initial value of entities, p̃pp0 = RRRT

0 ppp′0, ρ̃ρρ0 is the initial cur-
vature vector in the reference configuration material frame,
ρ̃ρρ0×=RRRT

0 RRR′0, εεε is the beam strain measure and κκκ is the elastic
curvature vector. Since the material constitutive law does not
depend on configurations when expressed in material frame,
the internal force and moment are firstly evaluated in mate-
rial frame and then transformed into current frame of each
point. The strain measures defined in Eqn. (7) and (8) can be
transformed into material frame

ε̃εε = RRRT ppp′− p̃pp′0 (9)

κ̃κκ×= RRRT
ρρρ×RRR− ρ̃ρρ0× (10)

where ˜(·) denote the entities expressed in material frame and
ρρρ× = RRR′RRRT . The strain rate in material frame can be ex-
pressed as:

˙̃εεε = RRRT (l̇ll−ωωω× lll) (11)

˙̃κκκ = RRRT (ρ̇ρρ−ωωω×ρρρ) (12)

lll = ppp′ (13)

l̇ll = ṗpp′ (14)

ρ̇ρρ = ωωω
′+ωωω×ρρρ (15)

where lll = ppp′ is the derivative of the position of point on ref-
erence line with respect to abscissa ξ, which describes how
the line strains in space and ωωω is the angular velocity of the
section.

Following the semi-analytical approach proposed by e.g.
[14, 18], the internal resultants can be related to the beam
generalized deformations by means of a linear constitutive
law in material frame

 t̃tt
m̃mm
qqq

 =

 AAA BBB −KKKT
ε

BBBT DDD −KKKT
κ

KKKε KKKκ CCCp

 ε̃εε

κ̃κκ

VVV

 (16)

or, in a compact form,

ϑ̃ϑϑ = S̃SSψ̃ψψ, (17)

where t̃tt represents the internal force resultant, m̃mm the internal
moment resultant in material frame, qqq is the electric charge
per unit length, AAA, BBB and DDD are blocks of stiffness matrix,
KKKε and KKKκ are electromechanical coupling coefficients cor-
responding to elastic strains and curvatures respectively, and
CCCp is the electric capacitance matrix, VVV is the electric volt-
age difference vector on the electrode pairs. ϑ̃ϑϑ is the sectional
resultants vector in material frame, S̃SS is the sectional consti-
tutive law, and ψ̃ψψ is the generalized beam deformation vector
in material frame.
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Fig. 2: A cantilever bimorph piezoelectric energy harvester

2.3 Circuit equation
Assume that the whole beam is covered by the piezo-

electric layers, with continuous electrodes. If the electrode is
not continuous then the following equations are meant to be
satisfied for each portion of the beam with an independent
pair of electrodes. The electric charge of the beam is thus
equal to

QQQ =
∫ L

0
qqqdl (18)

where L is the beam length. The electric current entering the
beam is equal to the time derivative of the charge:

Q̇QQ =
∫ L

0
(KKKε

˙̃εεε+KKKκ
˙̃κκκ+CCCpV̇VV )dl (19)

The first two terms of Eqn. 19 represent the electromechani-
cal coupling contribution; the third term is due to the electric
capacitance of piezoelectric materials. The current due to the
external resistance Rl can be calculated by Ir =

Vp
Rl

, and Vp is
the voltage applied on resistance, for the bimorph beam, Vp
is the voltage difference on the two electrodes. For the typ-
ical electric circuit of energy harvesting, as shown in Figure
2, according to the Kirchhoff’s first law, the sum of currents
flowing into the electric node is equal to the sum of currents
flowing out of that node, the electrical equation can be for-
mulated as

∫ L

0
(KKKε

˙̃εεε+KKKκ
˙̃κκκ+CCCpV̇VV )dl = −

Vp

Rl
(20)

Combining Eqn. (4) and Eqn. (20) leads to the fully coupled
electromechanical equation of piezoelectric beam

LLLΘΘΘ = FFF∫ L

0
(KKKε

˙̃εεε+KKKκ
˙̃κκκ+CCCpV̇VV )dl = −

Vp

Rl
(21)

Equation (21) will be discretized in space, and integrated
in time domain using a implicit A/L stable linear multistep
integration scheme, proposed by [19, 20], also reported in
Appendix A for completeness.

3 Circuit equation discretization
The original unknowns of governing Eqn. (21) are the

position ppp and rotation matrix RRR of points on reference line.
The Cayley-Gibbs-Rodrigues (CRG) rotation parameter ggg is
used to represent the rotations; a few details about the ro-
tation treatment are reported in Appendix B. The position
and the rotation parameter of an arbitrary point on the beam
reference line can be interpolated from the nodal values by
using a parabolic shape function:

ppp(ξ) = Ni(ξ)(xxxi +RRRi fi0) (22)

ggg(ξ) = Ni(ξ)gggi (23)

where RRRi is the rotation matrix of node i, and fff i0 is the initial
configuration beam reference line offset at node i . Since the
piezoelectric patches cover the entire beam span, the volt-
age on the same electrode of each beam element keeps same.
Thus we have

VVV = [1 1 ... 1 ]T1×NVp (24)

The discretized form of generalized strains is:

εεε(ξ) = N′i (ξ)(xxxi +RRRi fff i0)−RRR(ξ)p̃pp′ (25)

κκκ(ξ) = GGG(ξ)N′i (ξ)gggi +RRRδ(ξ)κκκr (26)

where RRRδ is the variation of rotation matrix from the pre-
dicted one at the beginning of the current time step, see Ap-
pendix B for details.

Note that Eqn. (20) involves an integration along the
beam span, and that the integral is nothing but the sum of
charges on each element. At each element, the same two
Gauss evaluation points of the three node beam element, lo-
cated at± 1√

3
of the element axis, are used in order to approx-

imate the integral over an element. The summation over all
the elements is implicitly performed during the assembling
process of the global Jacobian matrix and residual vector
since different beam elements are linked to the same elec-
tric node. The discretized circuit equation at element level
can thus be written as:

∑JJJwα(KKKε
˙̃εεεα +KKKκ

˙̃κκκα +CCCpV̇VV α) = −
Vp

Rl
, (27)
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where JJJ is the discretization Jacobian matrix and wα(α=I, II)
is the weight coefficient for second order Gauss quadrature,
wI =wII = 1. The curvature time derivative κ̇κκ is computed as
˙̃κκκ≈ RRRT (GGG(ξ)N′i (ξ)ġgg+ ĠGG(ξ)N′i (ξ)gggi−ωωω×(GGG(ξ)N′i (ξ)gggi))+
κ̇r.

To solve the system, the equations needs to be linearized
with respect to the system unknowns, i.e. the nodal position
xxx and rotation parameters ggg. Explicit expressions for the lin-
earization are reported, for completeness, in Appendix C.

4 Numerical validation
The proposed formulation is validated by following nu-

merical examples.

4.1 Bimorph cantilever beam
A bimorph piezoelectric cantilever beam manufactured

by Piezo System Inc is studied, which has already been con-
sidered by [5]. The velocity at beam tip and voltage drop
across the resistance load under the different excitation fre-
quencies and various resistance loads are studied.

The beam is of length 24.53 mm, and composited by
three layer, with a brass core base layer and two PZT-5H
layers on the top and bottom. The beam cross section is as
depicted in Figure 2, is 6.4 mm wide. The brass layer is
0.14 mm thick with Young’s modulus of 105 GPa, density
of 9000 kg/m3, and a Poison ratio 0.33 was assumed during
the simulation. The two piezoelectric layers have the same
thickness of 0.265 mm and the Strain-Charge form properties
of PZT-5H are listed in Table 1. Here the three dimensional
properties of PZT-5H were used rather than reduce properties
adopted by engineering beam models in [3, 5]. In the exper-
iment of [5], the bimorph beam was excited at the clamped
root by an electromagnetic shaker, and the velocity was mea-
sured at 1.5 mm from the free end.

In the simulation, the cross sectional are first com-
puted by leveraging the semi-analytical procedure proposed
by [14], that is based on the solution of the de Saint-Venant
problem. The procedure can deal with beam cross-sections
with arbitrary geometry and materials using triangular or
quadrilateral elements, and a fully electromechanically cou-
pled stiffness matrix and inertial matrix are obtained. Ta-
ble 2 shows the nonzero stiffness coefficients of the 8× 8
stiffness matrix of the cross section. A11, A22, and A33 are
the extension stiffness, the transversal shear stiffness. D11,
D22 and D33 are the torsional stiffness and the two bending
stiffness, respectively. Kε13, Kε23 are extension and electric
load coupling coefficient due to the top and bottom piezo-
electric layer respectively, and Kκ12, Kκ22 are the bending
and electric load coupling coefficient due to the top and bot-
tom piezoelectric layer respectively. The beam is represented
by using 20 three-nodes finite volume beam elements. The
viscous damping ratio of 0.874% of the first order of vibra-
tion frequency identified by [5] is reproduced by an equiva-
lent damping of 5.1693×10−6 s/rad proportional to the beam
stiffness.

The present numerical model is solved in the time do-
main, and its eigenvalues of the system are computed by per-
forming a direct eigeanalysis of the linearized equation [21].
Table 3 lists the fundamental frequencies of the energy har-
vester beam under the short-circuit (R=470 Ω) and open-
circuit (R=995 kΩ) condition. The slight differences with
respect to [3] predicted frequencies are due to the fact that
Wang assumes, just like [5] an axial state of stress for the
beam, while the present approach computes the beam cross-
section stiffness matrix accounting for the complete three di-
mensional stress state; since the Poisson coefficients of the
piezoelectric and passive material are different, and the ac-
tive beam portion is made by gluing together relatively thin
layers, the transverse stress due to an axial load or to bend-
ing is not exactly equal to zero, and accounts for a slightly
higher axial and bending stiffness, thus for the slightly higher
predicted bending frequencies. Figure 3-6 show, for differ-
ent excitation frequencies and an excitation amplitude equal
to one g, the velocity of beam tip, at 1.5 mm from the free
end, and the voltage drop across the resistance load; different
external resistance loads are considered: R = 470Ω (short
circuit), R = 1.2kΩ, R = 44.9kΩ, and R = 995kΩ (open cir-
cuit).

Experimental data from [5] and theoretical results from
[3] are used to validate the present method. Figure 3-6 sug-
gest that the present method achieves a good coincidence
with the experiment both for mechanical and electrical re-
sponses. Figure 7 shows the frequency responses of the
power and current under various resistance loads. It can be
seen that as the resistance load increases, both the fundamen-
tal frequency of the bimorph beam and the voltage increase,
while the current decreases for higher resistance loads. Fig-
ure (7a) shows that the maximum power is harvested for a
resistance load of R = 9.9kΩ.

4.2 Three-layer smart beam
A three layered beam which has been studied in litera-

ture [11] by using VABS and SGEBT (Smart Geometrically
Exact Beam Theory) is investigated to validate the present
method. The substrate of the beam is made of T300/934 fiber
composite; a piezoelectric layer is bounded to the top of the
substrate by an adhesive layer. The beam is 1 m long, has
a large aspect ratio of 39.37, and the cross section geome-
try is depicted in Figure 8. The material properties, taken
from [11], are reported in Table 4. In the work of [11],
the smart beam was discretized by 20 beam elements, and
each beam element was modeled as an independent sensor;
in other word, the top surface of piezoelectric layer is made
of 20 segmented electrodes rather than one continuous elec-
trode. As a comparison, both linear and nonlinear 3D FEM
analysis were also run by using Abaqus in [11]. Both of the
simulations are carried out under the open circuit condition.
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Table 1: Material properties of PZT-5H(www.efunda.com)

Properties PZT-5H Properties PZT-5H

sE
11 = sE

22 (×10−12 m2/N) 16.5 d31 = d32 (×10−12 C/N) -274

sE
12 (×10−12 m2/N) -4.78 d33 (×10−12 C/N) 593

sE
13 (×10−12 m2/N) -8.45 d15 = d24 (×10−12 C/N) 741

sE
33 (×10−12 m2/N) 20.7 εT

11/ε0 = ε22/ε0 3130

sE
44 = sE

55 (×10−12 m2/N) 43.5 ε33/ε0 3400

sE
66 (×10−12 m2/N) 42.6 ε0 (×10−12 F/m) 8.854

ρ (kg/m3) 7500

Table 2: Stiffness and mass properties of cross section

Properties Value

A11 (N) 3.00×105

A22 (N) 9.63×104

A33 (N) 1.81×104

D11 (Nm2) 1.42×10−2

D22 (Nm2) 1.01×10−2

D33 (Nm2) 1.02×100

Kε13 = Kε23 (Cm) 1.04×10−1

Kκ12 =−Kκ22 (C) 2.04×10−5

Cp11 =Cp22 (Fm−1) 5.69×10−7

Cp12 =Cp21 (Fm−1) −1.22×10−8

In the following figures and tables, the notations Abaqus Lin-
ear, Abaqus and SGEBT denote the results obtained in [11]
and computed by linear and nonlinear 3D FEM analysis in
Abaqus, and SGEBT respectively.

The 2D cross section analysis is performed firstly. As
shown in Figure 8, the cross section is meshed by 5000 trian-
gle elements using Gmsh [22]. The interface between adhe-
sive layer and piezoelectric layer is grounded. The nonzero
stiffness matrix terms are listed in Table 5, and are compared
with those from [11] which are computed by VABS. It can
be seen that a good correlation exists between the present re-
sults and those reported by [11] except for the capacitance
which shows a relative difference of 2.97%.

In order to keep consistency with [11], the same number
of beam elements are used in present study, and an exter-
nal resistance of 108 Ω is connected to each beam element
to mimic the open circuit condition. A direct eigenanalysis
is performed and the first five vertical bending frequencies
are listed in Table 6. Compared with results from [11] both
calculated by SGEBT and Abaqus, it can be seen that the

present model predicted the natural frequencies accurately.
A vertical sinusoidal dead load F = 103 sin(2π f t) N, f = 19
Hz, which is close to the fundamental bending frequency, is
then applied at the tip of the smart beam. The time response
of the tip vertical displacement and the voltage harvested at
the root element are computed and compared with the results
from [11] in Figure 9 and Figure 10. It can be observed that
present method predicts both the mechanical response and
electrical response accurately, and the results computed by
present method is much closer to the 3D FEM results than
those of SGEBT.

Note that the maximum tip deflection reaches about 0.9
m, 90% of the beam span. The beam is definitely geomet-
rically nonlinear, and suffers large rotation and deforma-
tion. The present method is capable to capture the nonlin-
ear behavior accurately. In addition, according to the re-
ported time consumption of SGEBT and Abaqus in [11],
the nonlinear transient 3D FEM analysis in Abaqus costs
562786.00 s (6.51 days) and SGEBT costs 9596.89 s on a
platform with configuration of 64-bit, Intelr Xeonr CPU
E3-1241 v3 @ 3.50 GHz, 32 GB RAM. However, by us-
ing the present method, only 272.5 s are required (55.6 s for
cross section analysis, 216.9 s for nonlinear beam analysis
with a time step of 0.0001 s) when executed on a desktop
computer with Intelr CoreTM i7-8559U CPU @ 2.70GHz,
32 GB RAM, running a 64-bit Ubuntu distribution. The com-
putational time is remarkably reduced compared to 3D FEM
analysis, still achieving an acceptable accuracy.

The responses under the dead load are also compared
with results computed by linear analysis in Abaqus from
[11]; as shown in Figure 11 and Figure 12, the linear analy-
sis fails to capture the realistic deformation and generates a
nonphysical vertical displacement that greater than the beam
length and whose maximum increase with time.

The dynamic response of smart beam under a follower
load is also investigated. A sinusoidal follower force with
magnitude of 5000 N and period of 0.3142 s is applied at
the tip of the above smart beam. As depicted in Figure 13-
Figure 15, the time response of axis displacement, vertical
displacement at the tip and the voltage measured at the root
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Table 3: Fundamental frequency of the bimorph beam

Experiment [5] Ref [3] Present

short-circuit R=470 Ω (Hz) 502.5 507.8 509.3

open-circuit R=995 kΩ (Hz) 524.7 528.3 530.1

Table 4: Material properties

Properties T300/934 Adhesive PZT-4

E11 = E22 (GPa) 126 6.9 68.9

E33 (GPa) 7.9 6.9 48.3

G12 = G13 = G23 (GPa) 27.6 2.459 31.0

ν12 = ν13 = ν23 0.275 0.4 0.25

e31 = e32 (Cm−2) 0 0 -7.99

e33 (Cm−2) 0 0 14.86

ε11 (Fm−1) 3.089×10−11 5.429×10−9 5.429×10−9

ε22 (Fm−1) 2.560×10−11 5.429×10−9 5.429×10−9

ε33 (Fm−1) 2.560×10−11 5.320×10−9 5.320×10−9

Thickness (mm) 15.24 0.254 1.524

Width (mm) 25.4 25.4 25.4

Table 5: Cross section stiffness of the three-layer beam

Properties VABS Present

A11 (N) 5.149×107 5.149×107

A22 (N) 9.872×106 9.874×106

A33 (N) 9.423×106 9.425×106

B12 (Nm) −2.238×104 −2.238×104

B21 (Nm) −1.421×103 −1.422×103

D11 (Nm2) 6.671×102 6.673×102

D22 (Nm2) 1.145×103 1.145×103

D33 (Nm2) 2.768×103 2.768×103

Kε1 (Cm) −2.430×100 −2.430×100

Kκ2 (C) 1.881×10−2 1.882×10−2

Cp (Fm−1) 1.840×10−7 1.787×10−7

is compared with the results obtained by nonlinear 3D FEM
analysis in Abaqus and SGEBT; the results show a consider-
able agreement.

4.3 Bistable vertical beam energy harvester
From Section 4.1 it can be seen that the energy harvest-

ing efficiency is dramatically reduced when the excitation
frequency departs away from the natural frequency. In order
to maximize the harvested energy from a wide range of vi-
bration frequency many innovative energy harvester configu-
rations have been proposed, such as the piezomagnetoelastic
energy harvester [5], bistable beams [15,16, 23] and bistable
plates [5, 24]. These devices make use of the nonlinear re-
sponse of the structure, which have two or three equilibrium
positions. In this section, a bistable bulked vertical beam
configuration is studied. The beam near bulking configura-
tion undergoes large deformation and presents a markedly
nonlinear dynamic response. Since the present beam model
is geometrically exact and intrinsically nonlinear, it is a good
choice for the simulation of such a problem.

The beam is a vertical cantilever of length L=200 mm,
and mounted with a tip mass on the free end, as shown in
Figure 16. The beam is made of steel of 0.1 mm thick,
and two PZT-5H layers of length Lp=40 mm are mounted
on the top and bottom at the clamped root with a thickness of
0.254 mm each . Both the beam and the piezoelectric patches
are 16 mm wide. An additional mass of 2.65 g is attached at
the tip of the beam. The electrodes are connected serial, and
the resistance load is R = 1000 kΩ.

The base is excited in the transversal direction by a har-
monic excitation z = z0 sin(ωt) . The initial condition is
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Table 6: Vertical bending natural frequencies under the open circuit condition

Frequency (Hz) Abaqus SGEBT Difference Present Difference

1 20.114 20.10 0.0696% 20.097 0.0845%

2 125.78 124.39 1.1051% 125.659 0.0962%

3 351.01 349.25 0.5014% 350.774 0.0672%

4 684.51 685.75 0.1812% 684.561 0.0075%

5 1124.5 1136.11 1.0325% 1125.94 0.1281%

(a) Tip velocity frequency response

(b) Voltage frequency response

Fig. 3: FRFs of beam tip velocity and voltage, R=470Ω

z = 0 and ż = 0. The first natural frequency of the beam
is of about 1.28 Hz. First, a low amplitude excitation with
z0 = 18.5 mm, f = 1.40 Hz, is applied. Figure 17 shows the
transversal displacement, phase trajectory of the tip point of
the beam and open-circuit voltage responses. It can be seen
that the response is chaotic: the tip point sometimes oscil-
lates around one of the stable buckled position, and some-

(a) Tip velocity frequency response

(b) Voltage frequency response

Fig. 4: FRFs of beam tip velocity and voltage, R=1.2 kΩ

times exhibits large oscillations between the two extreme
positions. As it can also be seen from Figure 17c the tra-
jectory is oscillating between two potential wells. When the
trajectory is transitioning from one bulked equilibrium posi-
tion to the other, the higher electric power is harvested. The
responses under the same amplitude at frequencies of 0.5 Hz,
1.0 Hz, 1.4 Hz and 2.0 Hz are studied, and the Root Mean
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(a) Tip velocity frequency response

(b) Voltage frequency response

Fig. 5: FRFs of beam tip velocity and voltage, R=44.9 kΩ

Square (RMS) output voltages at these frequencies, com-
puted after the first 40 s to get rid of initial transient effects,
are equal to 1.34 V, 0.58 V, 0.74 V, and 1.86 V respectively.
For comparison, the RMS voltages for the same beam but
without accounting for gravity, thus without any instability,
are equal to 0.16 V, 0.84 V, 2.84 V and 0.89 V, respectively,
with a maximum resonance voltage of 4.4 V, see Figure 18.
This confirms that the bistable beam is able to extract more
energy when the forcing frequency differs from the beam
bending frequency, at the expense of a reduced harversting
efficiency at resonance.

5 Conclusions
In this paper, a finite volume beam theory is extended

to fully coupled electromechanical beam energy harvester
within a multibody dynamics framework. It provides a
generalized procedure to analysis smart beams. A semi-
analytical approach is utilized to compute the beam cross
sectional stiffness, electromechanical coupling coefficients

(a) Tip velocity frequency response

(b) Voltage frequency response

Fig. 6: FRFs of beam tip velocity and voltage, R=995 kΩ

and mass inertial properties. By taking these as known the
fully couple electromechanical beam analysis is carried out,
and the mechanical and electrical response of complex beam
systems can be investigated. Although only configurations
with simple cross section are studied in this paper, the pro-
posed beam model is capable to model smart beams with
arbitrary geometry and arbitrary material. Furthermore, the
proposed method can be coupled with aerodynamics codes
to study the energy harvesting from aeroelastic vibration.
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Appendix A: Prediction-Correction approach
The governing equation is described in a mixed

differential-algebraic equation (DAE)

rrr(yyy, ẏyy, t) = 000 (28)

A prediction-correction approach is used in the time
marching procedure. A implicit A/L stable linear multistep
integration scheme proposed by [19, 20] expressed as Eqn.
(29) is used first to generate a prediction yyy(0)k based on the

extrapolated derivative ẏyy(0)k ,

yyyk = ∑
i=1,2

aaaiyyyk−i +h ∑
i=0,2

bbbiẏyyk−i (29)

Where h is the time step. yyyk, ẏyyk are the unknown values
and time derivatives at current time tk. yyyk−i, ẏyyk−i(i=1, 2) are
the values and time derivatives at time tk− h and tk− 2h re-
spectively, and can be regarded as constants at current time
tk. aaai and bbbi are the weight factors. And then according to
the perturbation of Eqn. (29)

4yyyk = hbbb04ẏyyk (30)

the correction to predicted value can be solved itera-
tively by using the Newton-Raphson method.

(hb0rrr/yyy + rrr/ẏyy)4ẏyyk = −rrr(yyy( j)
k , ẏyy( j)

k , tk) (31)

ẏyy( j+1)
k = 4ẏyyk + ẏyy( j)

k (32)

yyy( j+1)
k = hb04ẏyy( j)

k + yyy( j)
k (33)

where j refers to the iterations, rrr/yyy and rrr/ẏyy are the partial
derivatives with respect to yyy and ẏyy. hb0rrr/yyy + rrr/ẏyy forms the

Jacobian matrix and −rrr(yyy( j)
k , ẏyy( j)

k , tk) is the residual.

Appendix B: Rotation representation
The rotation matrix is handled in a incremental man-

ner, which is updated using the incremental Cayley-Gibbs-
Rodrigues rotation parameter ggg ,

RRR = III +
4

4+gggT ggg
(ggg×+

1
2

ggg×ggg×) (34)

= III +GGGggg×

GGG =
4

4+gggT ggg
(III +

1
2

ggg×) (35)

ggg = 2tan(
θ

2
)nnn (36)

nnn is the direction of the rotation axis, and θ is the magni-
tude. An Updated-Updated approach which refers the rota-
tion unknowns ggg to the predicted configuration at the end of
the current time step rather than the corrected configuration
at the beginning of the current time step, calculated from the
solution at the previous time steps. In this manner, the rota-
tion unknowns represents the corrections with respect to the
predicted state, and can be reasonably approximated, for the
linearization of the system of nonlinear equations, as small
rotations with respect to the predicted orientation [17, 20].

Thus the corrected orientation is RRR = RRRδRRRr, RRRr is the
predicted rotation, RRRδ is the variation of rotation matrix from
the predicted one at the beginning of the current time step.
The angular velocity and curvature at current time step can
be expressed as:

ωωω = ṘRRδRRRT
δ
+RRRδṘRRrRRRrRRRT

δ

= ωωωδ +RRRδωωωr = GGGġgg+RRRδωωωr (37)

κκκ = κκκδ +RRRδκκκr = GGGggg′+RRRδκκκr (38)

RRRδ = GGGgggδ× (39)

where ωωωδ and κκκδ are angular velocity and curvature pertuba-
tions with respect to the predicted one.
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Appendix C: Linerazition of circuit equation
The solution requires to linearize Eqn. (20) with respect

to the predicted phase. The linearization of the first equi-
librium equation in Eqn. (21) has already been discussed
in [17]. The only modification lies in the constitutive law,
the stiffness matrix of fully coupled electromechanical con-
stitutive law is shaped as a (6+N)× (6+N) matrix, N is
the number of electrode pairs, rather than a 6× 6 matrix
in classical constitutive law(without piezoelectric materials).
Thus the contribution of external electric potentials to inter-
nal forces should be taken into account. Here we only focus
on the circuit equation of Eqn. (21).

The unknowns are the nodal displacements xxx, rotation
parameters ggg and voltage differences at electrode pairs VVV .
The linearized circuit equation at element level can be writ-
ten as:

∑
α=I,II

(
KKKε4 ˙̃εεεα +KKKκ4 ˙̃κκκα +CCCp4V̇α

+KKKε
˙̃εεεα +KKKκ

˙̃κκκα +CCCpV̇α

)
=−

Vp

R
(40)

Here α= I, II is the evaluation point index, ∆(·) refers
to the perturbation with respect to predicted phase which ex-
pressed with a subscript (·)r. The corresponding relations are
linearized around the predicted configuration, thus assuming
ggg = ġgg = 000 and dropping any term that is at least linear with
respect to either ggg of ġgg.

4ωωωα = 4(GGGġgg)+4RRRωωωr

= GGG4ġgg+(GGG4ggg)×ωωωr

= 4ġgg+4ggg×ωωωr

= Nαi4ġggi−ωωωrα×Nαi4gggi (41)

4RRRα = 4ggg×RRRr

= Nαi4gggi×RRRr

= Nαi4gggi×RRRr (42)

4RRRT
α = −RRRT

r 4ggg×
= −(RRRT

rαNαi4gggi)× (43)

4lllα = 4ppp′ = N′αi(4xxxi +4RRRα f̃ff i) (44)
= N′αi(4xxxi− (RRRi f̃ff i)×4gggi) (45)

ṘRR = ωωω×RRR (46)

4ṘRRα = 4ωωω×RRR+ωωω×4RRR

= 4ġgg×RRR−ωωωr×4ggg×RRR+ωωω×4ggg×RRRr

= Nαi4ġggi×RRRi−ωωωri×Nαi4gggi×RRRi

+ωωωi×Nαi4gggi×RRRri (47)
= (Nαi4ġggi−ωωωri×Nαi4gggi)×RRRi

+ωωωi×Nαi4gggi×RRRri (48)
= Nαi4ġggi×RRRi−Nαi4gggi �ωωωriRRRi

+ωωωri �Nαi4gggiRRRi +ωωωi×Nαi4gggi×RRRri (49)

4l̇llα = N′αi pppi = N′αi(4ẋxxi +4ṘRRi f̃ff i)

= N′αi4ẋxxi

+N′αi

(
4ġggi×RRRi−4gggi �ωωωriRRRi
+ωωωr �RRRT

i 4gggi +ωωωi×4gggi×RRRri

)
f̃ff i

= N′αi(4ẋxxi− (RRRi f̃ff i)×4ġggi− (ωωωriRRRi f̃ff i)4gggi

+ωωωri � (RRRT
i f̃ff i)4gggi−ωωωi× (RRRri f̃ff i)×4gggi) (50)

4 ˙̃εεεα = 4RRRT (l̇ll−ωωω× lll)+RRRT (4l̇ll−4ωωω× lll−ωωω×4lll)

= RRRT
rα(l̇llα−ωωωα× lllα)×Nαi4gggi

+RRRT
αN′αi(4ẋxxi− (RRRi f̃ff i)×4ġggi)

−RRRT
αN′αi(ωωωriRRRi f̃ff i)4gggi +RRRT

αN′αiωωωri � (RRRT
i f̃ff i)4gggi

−RRRT
αN′αiωωωi× (RRRri f̃ff i)×4gggi

+RRRT
α lllα×Nαi4ġggi−RRRT

αωωωα×Nαi4gggi× lllα

−RRRT
αωωωα×N′αi(4xxxi− (RRRi f̃ff i)×4gggi)

= RRRT
rα(l̇llα−ωωωα× lllα)×Nαi4gggi

+RRRT
αN′αi(4ẋxxi− (RRRi f̃ff i)×4ġggi)

−RRRT
αN′αi(ωωωriRRRi f̃ff i)4gggi +RRRT

αN′αiωωωri � (RRRT
i f̃ff i)4gggi

−RRRT
αN′αiωωωi× (RRRri f̃ff i)×4gggi

+RRRT
α lllα×Nαi4ġggi +(ωωωα · lllα)RRRT

αNαi4gggi

−RRRT
αωωωα � lllα ·Nαi4gggi

−RRRT
αωωωα×N′αi(4xxxi− (RRRi f̃ff i)×4gggi) (51)

4 ˙̃κκκα = 4RRRT
α(GGGġgg′−ωωωα×GGGggg′)

+RRRT
α

(
4GGGġgg′+GGG4ġgg′−4ωωωα×GGGggg′

+∆ĠGGggg′−ωωωα×4GGGggg′−ωωωα×GGG4ggg′

)
= 4RRRT

α(GGGN′αiġggi−ωωωα×GGGN′αigggi)

+RRRT
α

4GGGN′
αiġggi +GGGN′

αi4ġggi
−4ωωωα×GGGN′

αigggi +∆ĠGGN′
αigggi

−ωωωα×4GGGN′
αi4gggi−ωωωα×GGGN′

αi4gggi


= RRRT

α(GGGN′αi4ġggi−ωωωα×GGGN′αi4gggi)

= RRRT
αN′αi4ġggi−RRRT

αωωωα×N′αi4gggi (52)
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According to Eqn. (30), the perturbation of unknown
state variables can be expressed in terms of its time derivative
in correction phase

4xxxi = hb04ẋxxi

4gggi = hb04ġggi (53)
4VVV = hb04V̇VV

Substituting Eqn. (25)(26)(51)(52) and Eqn. (53) into
Eqn. (40), yields the Jacobian matrix, and finally the time
marching solution can be solved iteratively by using Newton-
Raphson method.

(a) Displacement

(b) Voltage

(c) Displacement-velocity

Fig. 17: Bistable beam response under low amplitude exci-
tation (z = 18.5 mm, f = 1.4 Hz)

14 Copyright © by ASME



Fig. 18: Voltage RMS as a function of the excitation fre-
quency for both the bistable and the stable beam
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