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Abstract 

The availability of accurate day-ahead energy prices forecasts is crucial to achieve a successful 

participation to liberalized electricity markets. Moreover, forecasting systems providing prediction 

intervals and densities (i.e. probabilistic forecasting) are fundamental to enable enhanced bidding and 

planning strategies considering uncertainty explicitly. Nonetheless, the vast majority of available 

approaches focus on point forecast. Therefore, we propose a novel methodology for probabilistic 

energy price forecast based on Bayesian deep learning techniques. A specific training method has 

been deployed to guarantee scalability to complex network architectures. Moreover, we developed a 

model originally supporting heteroscedasticity, thus avoiding the common homoscedastic assumption 

with related preprocessing effort. Experiments have been performed on two day-ahead markets 

characterized by different behaviors. Then, we demonstrated the capability of the proposed method 

to achieve robust performances in out-of-sample conditions while providing forecast uncertainty 

indications. 
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1. Introduction

Since the last two decades, many countries worldwide performed the transition from traditional 

government-controlled to competitive electricity markets [1]. Within a deregulated environment, day-

ahead trading is initiated by producers/consumers submitting bidding proposals to the market operator 

for selling/buying energy blocks. Afterwards, the market operator applies specific strategies for 

clearing the market while guaranteeing proper balancing and respect of the transmission network 

constraints, resulting in a market price and acknowledged selling/buying proposals [2]. Consequently, 

a strong competition emerged between an increasing number of market participants trying to exploit 

new opportunities by reducing costs and risks while increasing margins [3], [4], [5].  

In this context, a robust day-ahead energy price forecast (EPF) represents a key strategic tool for 

both utilities, retailers, aggregators and consumers to succeed within the liberalized framework by 

performing effective bidding strategies. On one hand, purchasers could properly reshape consumption 

patterns trying to target lower price profiles. Indeed, energy-intensive companies are increasingly 

integrating day-ahead prices forecasting within decision-making strategies [6]. On the other hand, 

producers need proper prices predictions within simulation and optimization tools for generation asset 

management, so to perform accurate costs/benefits estimates and adjust production plans and bids 

accordingly [7], [8], [9]. 
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Besides, prices volatility is strictly related to stable grid balancing. Indeed, precise forecasting 

indirectly contributes to overall system stability by supporting the creation of a converging win-win 

situation between the system operator and market participants [10], [11].  

At current time, day-ahead forecast constitutes a fundamental ingredient for further research and 

technological developments areas such as optimal commitment of generation units, energy-aware 

production scheduling, and power system simulation [12]. 

Unluckily, achieving a highly accurate prediction is quite challenging due to several issues. 

Compared to other types of commodities, electricity is still not economically storable and a closed 

equilibrium between production and consumption is mandatory for power network stability [13], [14], 

[15]. Besides, both consumption and production profiles strongly depend on multiple exogenous 

variables such as weather conditions (e.g. temperature, wind, solar radiations, etc.), human activities 

and business related consumption patterns (e.g. weekdays, holidays, peak hours, etc.), and fuel price 

fluctuations [16]. Indeed, it has been shown that the power markets exhibit a very specific behavior 

which is quite uncommon compared to other commodities. Typical characteristics include strong-

nonlinearity, non-constant mean and variance, significant short-term peaks, daily/weekly seasonality 

and higher volatility, usually two orders of magnitude higher than other financial trading or utilities 

[3], [17],[18],[19]. Moreover, the extending exploitation of power generation systems from renewable 

sources represent a further complexity to be properly tackled [20]. Indeed, technologies as wind and 

solar power plants are characterized by higher volatility and short-time fluctuations, with consequent 

uncertainties on effective hourly available power. 

A lot of scientific effort is being dedicated to develop enhanced techniques for day-ahead energy 

prices forecast, representing a highly active and continuously improving field of research [21], [22], 

[3].  

1.1. Literature review  

Several methods have been proposed within the quite wide research literature on this topic, each 

with specific strengths and weaknesses, typically emerged as application specific. Different 

classification approaches have been followed in survey papers. Here we adopt the mostly considered 

arrangement of [3] organized into five groups, namely fundamental, reduced-form, multi-agent, 

statistical, and computational intelligence models. 

Fundamental models exploit explicit formulations of the backbone relationship between the major 

drivers of electricity trading, including a detailed characterization of demand and generation 

dynamics, e.g. [23], [24], [25], [26]. Despite their potential capabilities, practical applications are 

limited by the lack of information accessible to properly set-up the models. Indeed, plant 

characteristics and costs, as well as detailed transmission capabilities, are often available as 

weekly/monthly aggregated data [27]. Therefore, a lot of effort is usually required to properly collect 

and structure needed technical information and run-time data. Furthermore, predictions are strongly 

affected by specific assumptions on functional associations and stochastic behavior of integrated 

drivers. Consequently, fundamental models are often more effective for medium terms forecast and 

risk management than for short-term hourly forecast [3].   

Reduced-form models directly formulate the dynamics of spot price. To this end, Jump-diffusion 

[28] and Markov regime-switching-based techniques are often adopted [29]. Several research studies 

displayed their capabilities in replicating major dynamics at daily level as well as price spikes 

predictions. On the other hand, limited performances have been reported on day-ahead hourly price 

forecast problems [30], [31].  

Multi-agent approaches emerged as extensions of traditional cost-based models to properly cope 

with competitive dynamics [32]. Indeed, latter methods were conceived for stable regulated markets 

characterized by low uncertainty [33]. To achieve accurate predictions major market components 

have to be properly deployed, such as the list of market players, adopted strategies by heterogeneous 

agents, multi-agent interaction mechanisms, etc. Unfortunately, most of the required information is 
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typically not available to the forecaster. Therefore, assumptions are often introduced leading to 

potential modelling inaccuracy. Furthermore, a sensible effort is required to set-up highly granular 

models suitable for short-term predictions. In fact, multi-agent systems tend to be more feasible to 

support qualitative analysis than accurate daily predictions. Most applications targeted exploration of 

major market dynamics and strategy assessment [34]. Besides, previous studies considered their 

integration as sub-components within hybrid forecast systems [35]. 

Statistical and computational intelligence represent EPF techniques most exploited nowadays, 

mainly due to their capabilities in supporting short-term forecasts without requiring detailed systems 

modelling.  

In details, statistical methods class comprises Auto-Regressive Moving Average models with 

eXogenous input (ARMAX) and related subclasses (e.g. AR, ARX, ARMA) and extensions, aimed 

at performing prices predictions by identifying the time correlations between the sequences of energy 

prices and explanatory input variables (e.g. weather, demand, etc.) [36]. The Auto-Regressive 

counterpart explores the relations between a specific time value and past lags of the price series. On 

the other hand, Moving Average terms are meant to identify the dynamics of the stochastic process 

characterizing the residuals. In the classical form, linear multi-variate additive or multiplicative 

models are usually adopted. Notably, ARMAX modelling assumes a weakly stationary time series. 

Therefore, a proper transformation of EPF time series into stationary form has to be performed, (e.g. 

by differencing). Alternatively, extensions to the classical models can be adopted, as ARIMAX model 

including differencing by an integrating term or Seasonal-ARIMAX including specific seasonal 

patterns not manageable by lag-1 differencing, as for example on hourly, daily or weekly periodicity 

[37]. Actually, ARMAX-based techniques have been explored extensively for energy prices 

prediction, (see e.g. [38], [39], [40]). Furthermore, Generalized Auto-Regressive Conditional 

Heteroskedastic models have been investigated to address the limiting homoscedasticity assumption 

of straight ARMAX models.  In this case, conditional variances of the time series are represented by 

weighted sums of squared past observations. Hence, hybrid approaches are often adopted, combining 

ARMAX-GARCH-based techniques, where GARCH typically works on the residual [41], [42].  

In general, recognized major strength of statistical models resides in their simple interpretation by 

users whereas major limitation regards incapability to deal with complex non-linear relations within 

the multi-variate data sequences, as in the case of energy-prices forecast. To cope with such limitation, 

nonlinear extensions have been investigated, as ARX models integrating a nonlinear component (i.e. 

NARX) [43]. The nonlinear term is usually expressed by predefined functional relationships, 

parametric functions (e.g. polynomial) or by crossing the border toward computational intelligence 

techniques, integrating for example Kernel Methods or Neural Network within ARX components 

[44], [45].  

In wider terms, computational intelligence techniques involve an extensive spectrum of methods, 

including neural networks, kernel methods, support vector machines, fuzzy logic, genetic algorithms, 

swarm intelligence (see e.g. review in [3]). In this context, neural network based techniques are often 

exploited mainly due to their flexibility and capability to represent complex nonlinearities 

[20],[46],[47],[1]. Notably, deep neural network architectures provide capabilities to learn 

hierarchical features from the data set while providing a more efficient representation than shallow 

models and improving generalization [57]. Several scientific results support such hypothesis, 

including both theoretical (e.g. [60], [61], [58]) and empirical studies (e.g. [62], [63], [64]). Indeed, 

deep networks are nowadays achieving state of the art results on complex machine learning tasks (e.g. 

computer vision, natural language processing, speech recognition etc.).  

From the architectural point of view, two major classes of neural networks exist, namely 

feedforward and recurrent. The former implements a static mapping between input and output 

variables in the data set, which are typically considered as independent and identically distributed 

(i.e. i.i.d.). Therefore, predictions are performed independently from previously seen inputs. The latter 

implements feedback loops within the network enabling the capability to discover relations among 

ordered sequences of input and output data. Notably, the vast majority of available literature on day-
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ahead energy prices forecast exploits feedforward neural networks, as in [48], [49],[50], [51], [52], 

[53], [54], [55]. Modern deep and recurrent architectures (e.g. Long short-term memory) were not 

investigated until very recently (see e.g. [56],[65],[108],[109],[110]). In [65], authors performed a 

broad empirical investigation of alternative methods for EPF, demonstrating state of the art 

performances of deep neural networks compared to alternative methods.  

Regardless of the specific method employed, model averaging techniques (also referred to as 

ensemble) have been investigated to improve EPF accuracy by combining predictions from multiple 

models (see e.g. [111],[112]). In particular, the comprehensive empirical study performed in [112] 

reported superior performance under market conditions characterized by low volatility. 

Notably, the vast majority of available methodologies, including studies considering deep neural 

networks, focus on point forecasts. Nevertheless, practitioners would strongly benefit from 

forecasting systems providing predictions intervals and densities (i.e. probabilistic forecasting). 

Indeed, according to the recent extensive review performed by [66], probabilistic forecast provides 

several appealing facilities, including improved assessment of future uncertainty, risk evaluation and 

ability to plan multiple strategies for the range of possible prices outcomes. As remarked in [104], 

probabilistic forecast represents a valuable tool for generation companies (e.g. multi-scenario 

operational planning and trading) as well as large electrical consumers to foster enhanced 

participation to the market. Considering energy-intensive process industries for example (e.g., 

Iron&Steel manufacturing, Chemical plant utilities), multiple production schedules (see e.g., 

[105],[11],[113]) can be generated and compared ex-ante by sampling from the EPF distribution, thus 

enabling what-if scenario/consumption analysis before trading.  

Currently available methods within such “fascinating but still underdeveloped” field (as stated in 

[66]) belong to the following families: historical simulation, distribution-based probabilistic forecast, 

bootstrapped Prediction Intervals and Quantile Regression Average. In this context, almost all 

techniques exploiting neural networks are formed on deterministic machines trained by conventional 

maximum likelihood based methods. EPF uncertainties are commonly addressed including zero mean 

Gaussian residuals with constant variance (see e.g., [67]) or bootstrap Prediction Intervals by sampled 

residuals (see e.g., [68]). To the best of our knowledge, the only exception to this trend is represented 

by [69], investigating a Bayesian method based on Markov Chain Monte Carlo. Nevertheless, the 

proposed technique has been deployed for a tiny shallow network with five neurons. Then, point 

forecasts are generated by a Monte Carlo approximation, assuming a homoscedastic time series 

behavior. Summarizing, to the best of our knowledge, no previous method has explored Bayesian 

deep learning for probabilistic EPF.    

1.2. Contribution and Organization of the paper  

Starting from state of the art techniques and considering reported open issues, the objective of the 

present study is to develop a novel methodology for probabilistic EPF exploiting Bayesian deep 

learning techniques. Specifically, major contributions of this paper include: 

 support the development of the “fascinating but still underdeveloped” field of probabilistic EPF 

by extending recently proposed deep learning methods for point estimate;  

 robust performances in out-of-sample forecasting conditions while providing uncertainty 

indications, thus enabling enhanced bidding strategies and decision-making processes;  

 a neural network model originally supporting heteroscedasticity within the EPF system, thus 

avoiding common homoscedastic assumption with related time series preprocessing effort;  

 deployed training methodology scalable to complex network architectures, thus enabling path 

from potential theoretical capabilities of neural networks to effective learning, while trying to 

simplify usage and management by industrial practitioners;  

 EPF model built on posterior distributions, providing a natural regularization effect without 
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detailed hyperparameters tuning; 

 experiments on two different energy markets, characterized by dissimilar behavior (e.g. different 

penetration levels of renewable sources, different climatic conditions, different demand patterns, 

etc.) to illustrate reusability of the proposed technique. 

The rest of the paper is organized as follows. Section 2 deepens the problem at hand by analyzing 

the Italian energy market price (PUN, i.e. Prezzo Unico Nazionale) time series. Section 3 describes 

in detail the proposed methodology for probabilistic EPF. Section 4 reports the application of the 

proposed method to the Italian and Belgian day-ahead energy markets, reporting achieved results. 

Section 5 summarizes conclusion and foreseen future developments. 

2. Problem description  

As anticipated in the previous section, we evaluated the proposed EPF methodology on two 

markets to demonstrate both achieved performances and reusability in different contexts. Following 

subsections report the analysis of Italian PUN price since lacking within the research literature. Major 

characteristics are illustrated, remarking the compliance with typical behavior observed on further 

day-ahead markets reported within previous studies (see e.g. [3]). Details regarding Belgian energy 

prices could be found in [10]. 

2.1. Employed data set 

We obtained the whole dataset via the Entso-e Transparency Platform [70] and GME/Terna 

websites [71]. The available time series ranges from January 2015 to November 2018. All data 

concerning day-ahead prices, energy load, generation, etc. are made available within the transparency 

platform. Afterwards, we preprocessed daylight related effects by removing extra data and 

interpolating missing sample. Finally, we divided the whole database into three subsets. The former 

two were specifically dedicated to training and validation while the latter to testing over models in 

out-of-sample conditions. In particular, we considered the following arrangement: 

 Training set: from January  6, 2015 to October 31, 2016 

 Validation set: from November 1, 2016 to October 31, 2017  

 Test set: from November 1, 2017 to October 31, 2018 

We chose to leave an entire year of most recent data to test set in order to explore forecast 

performances throughout different months characterized by specific behavior, as further detailed 

within the following sections. The test set has been used exclusively for the out-of-sample forecasts 

investigations. It is worth noting here that the adoption of a validation set is not mandatory by the 

deployment of straight Bayesian methods. Nevertheless, we first tuned and compared the considered 

models’ architectures within training/validation set, in order to obtain unbiased setups. Indeed, a fair 

investigation must approach test data just in final “one-shot” prediction experiments.  

Finally, we employed time series cross validation methods, as further detailed within Section 4. 

2.2. Explanatory data analysis 

We started from a straight visual inspection and descriptive statistics of the dataset to gather central 

tendency, a measure of dispersion, and the overall shape of the available samples distributions. As 

discussed in Section 1, day-ahead energy markets typically exhibit a non-stationary and quite seasonal 

behavior. Such general considerations are hereafter deepened, evaluating specific characteristics of 

the Italian market.  

Figure 1 compares the shapes of spot market prices (in Euro/MWh) during months from different 

seasons evenly distributed throughout 2017, namely January, April, July and October.  



6 

 

 

 

 
Figure 1: Day-ahead prices throughout different months of the year 2017 

 

The figure outlines the volatile behavior of energy prices in Italy, characterized by strong 

variability in specific periods of the year. Moreover, the curves display a quite typical repetitive 

pattern, constituted of double peak shapes. Nevertheless, magnitude and extensions of the patterns 

are sensibly different across the seasons. January manifests the highest prices on average as well as 

more pronounced peaks. April appears as the series with the lowest scale while July and October are 

somehow in between. Moreover, the daily profile of the energy price varies considerably throughout 

the different seasonality cycles as introduced above. Specific daily prices curves patterns are even 

more evident within Figure 2, reporting evenly spaced days within the same month. Furthermore, the 

specific shape of nonworking days is shown, for example, January 1st with reference to January 30th.  

Patterns and main structure of day-ahead time series throughout different months are illustrated 

also by Figure 3. In particular, the heat maps report the matrix of hourly prices on the month days. 

Each figure displays a clear couple of warmer vertical bands, representing peak prices. Furthermore, 

cooler horizontal bands are clearly visible, representing non-working days. In fact, a weekly repetitive 

pattern of working/nonworking day cluster is quite evident on each month. 

Month-specific distributions of electricity prices are even more evident by Box and Whisker plots 

reported in Figure 4. Specifically, the figure depicts month-aggregated hourly prices throughout 2017, 

where boxes represent related upper and lower quartiles, and whisker lengths were set to 1.5 times 

the interquartile range.  Samples considered as outliers are displayed as individual points. 

Figure 5 provides an overall view on hour specific behaviors, reporting the histograms of energy 

prices during different periods. The samples distributions differences are quite evident, in particular 

between working and non-working days. Table A and Table B (reported in appendix) summarize 

major quantitative details by reporting related descriptive statistics.  

Clearly, working days manifest a morning price peak within the time range 08:00-10:00 a.m. 

whereas morning prices over non-working days are more uniform. On the other hand, an afternoon 

peak is visible on both working and non-working day during the slot 18.00-21:00 (i.e. 06:00-09:00 

p.m.).  This structure might depend on load and generation ramps within such hourly slots, with a 

sensible shift depending on specific seasonal conditions. Evidently, such conditions are amplified 

during working days, characterized by a major difference between peak and off-peak loads.  
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Figure 2: Day-ahead hourly prices on different days of a month:                                                                                              

(a) January 2017, (b) April 2017, (c) July 2017, (d) October 2017 

 

 

 
 

Figure 3: Heat map of Day-ahead prices on different months of 2017 
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Figure 4: Box and Whisker plots of hourly price by month 

 

 
Figure 5: Samples distributions on working (blue) and non-working days (orange) 

 

2.2.1. Seasonal unit root and partial autocorrelation 

In order to investigate the presence of seasonal unit root in the Italian PUN Time Series we 

employed the method reported in [103], representing a generalization of the Hylleberg, Engle, 

Granger and Yoo (HEGY) test for any periodicity. We employed the gretl open source software 

package [106] for such purpose. Results are displayed in Table 1. Considering reported  values of Fc, 

Fs and 𝑡𝜋0, 𝑡𝜋𝑆/2
, 𝐹𝑗

𝑎𝑏 with j=1, 2, …, 11, the presence of unit roots can be rejected at a 5% level of 

significance on cycles with period 24, 8, 3.43, 2.67, 2.4, 2.18, 2. 

Table 1. HEGY test 

 Test statistic p-value Frequency Period 

𝒕𝝅𝟎 -2.11 0.24880 0 ∞ 
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𝑭𝟏
𝒂𝒃 6.45 0.04210 ±

𝜋

12
  24 

𝑭𝟐
𝒂𝒃 5.65 0.07018 ±

𝜋

6
  12 

𝑭𝟑
𝒂𝒃 10.50 0.00426 ±

𝜋

4
  8 

𝑭𝟒
𝒂𝒃 4.10 0.16969 ±

𝜋

3
  6 

𝑭𝟓
𝒂𝒃 3.01 0.30856 ±

5𝜋

12
  4.8 

𝑭𝟔
𝒂𝒃 4.68 0.12406 ±

𝜋

2
  4 

𝑭𝟕
𝒂𝒃 6.34 0.04549 ±

7𝜋

12
  3.43 

𝑭𝟖
𝒂𝒃 5.64 0.07039 ±

2𝜋

3
  3 

𝑭𝟗
𝒂𝒃 8.06 0.01413 ±

3𝜋

4
  2.67 

𝑭𝟏𝟎
𝒂𝒃 7.24 0.02410 ±

5𝜋

6
  2.4 

𝑭𝟏𝟏
𝒂𝒃 7.48 0.02044 ±

11𝜋

12
  2.18 

𝒕𝝅𝑺/𝟐
 -3.20 0.01695 𝜋  2 

𝑭𝒔 6.66 0.07378 All seasonal cycles 

𝑭𝒄 6.57 0.33998 All seasonal cycles + zero frequency 

 

We then investigated the partial autocorrelation function within price time series. Following 

previous studies (see e.g. [20]) we focused the analysis within the recent horizon. Figure 6 shows the 

first 200 lags and provides evidence about daily and weekly correlations in the Italian PUN. Indeed, 

cyclic spikes every 24 steps are visible. Clearly, partial autocorrelations on first 24 lags dominate the 

subsequent lags. It is worth noting here that a certain longer term seasonality (e.g. monthly, yearly) 

could be observed within energy prices time series. The detailed investigation of such potential 

features and their eventual integration within the presented EPF model is left to future extensions of 

the present work. 

 
Figure 6: Day-ahead price Partial Autocorrelation Function 

3. Methodology 

In this section, we describe the proposed method for probabilistic EPF. To this end, we introduce 

theoretical foundations of Bayesian learning as well as its application to achieve probabilistic EPF, 
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thus providing predictive distributions and related confidences as output. Then we illustrate how we 

addressed heteroscedasticity within proposed forecasting system, by integrating a dedicated neural 

network within a parametrized variance mapping.    

Subsequently, we report the major issues we encountered while setting up a practical Bayesian deep 

leaning system for EPF, with particular reference to the computational intractability of a pure brute-

force inference approach. Therefore, we will deepen the specific technique we deployed, leveraging 

on variational interference. Finally, we report the neural network architectures exploited in the present 

study as well as the conditioning variables provided as inputs to the models. 

3.1. EPF by Bayesian learning 

To address the challenges reported above, we adopted Bayesian deep learning within the proposed 

EPF forecast method. Compared to previous neural network-based approaches for EPF, in Bayesian 

deep learning probabilities are explicitly included to represent uncertainties in modelling as well as 

random noise within the residuals.  

In general terms, Bayesian training of neural networks could be addressed by treating the 

activations functions as stochastic variables (as performed e.g. by [72],[73]) or the weights (see e.g. 

[74],[75]). In the present work, we followed the latter family of methods. Such choice enabled both 

a mechanism to deal with uncertainties about specific parametrizations of the designed neural network 

form and a natural regularization effect, as described later. Therefore, deterministic parameters were 

replaced by probability distribution functions over the weights space, summarizing the relative prior 

beliefs. Practically, specific weights values are expected to be more likely before any observation is 

performed. As an example, zero mean Gaussian prior distributions might be introduced to provide 

insights and preferences towards simpler models. Such an effect is achieved by fostering most 

parameters around zero. Taking inspiration from [74], Figure 7 sketches the major differences 

between a deterministic deep neural network (i.e. a Multi Layer Perceptron in this case) and a neural 

network made Bayesian by stochastic weights. 

 
(a) (b) 

 

Figure 7: (a) Multi-Layer Perceptron with deterministic weights                                                                                              

versus (b) Bayesian neural network with stochastic weights  

 

At inference time, prior distributions of parameters (namely 𝑃(𝑊)) are transformed into posterior 

distributions performing multiplication by the likelihood and division by a suitable normalizing 

constant to guarantee proper distribution shaping. Under such operations, the background knowledge 

before observations (e.g. preference for simple models to avoid overfitting) is converted into specific 

information about parameters acquired through available samples.  

In mathematical terms, the posterior distribution of the weights for the EPF neural network is given 

by the following expression:  
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𝑃 (𝑊|(𝑋(1), 𝑦𝑃𝑈𝑁
(1)

), … , (𝑋(𝑁), 𝑦𝑃𝑈𝑁
(𝑁)

)) =
𝐿 (𝑊|(𝑋(1), 𝑦𝑃𝑈𝑁

(1)
), … , (𝑋(𝑁), 𝑦𝑃𝑈𝑁

(𝑁)
)) 𝑃(𝑊)

𝑃 ((𝑋(1), 𝑦𝑃𝑈𝑁
(1)

), … , (𝑋(𝑁), 𝑦𝑃𝑈𝑁
(𝑁)

))
 (1) 

In the expression above, 𝑋(𝑖) ∈ 𝑅𝑑
, 𝑦𝑃𝑈𝑁 

(𝑖) ∈ 𝑅, 𝑖 = 1, … , 𝑁 represent respectively the input features set 

of size d and day-ahead prices values (e.g. forecast targets) over a data set of size N, whereas W 

represent the model parameters. The specific shape of the parameters vector depends on the 

configuration of the neural network in use. 

In practice, the parameters distributions are reshaped within the posterior. In fact, most likely values 

within the weights distributions are amplified during training in spite of less probable regions. 

Consequently, posterior distributions become more concentrated closer to values related to 

EPF/conditioning variables observations.  

The combination of prior beliefs and likelihood within the learning procedure represents the 

cornerstone to introduce weights-related prediction uncertainty within the EPF-neural network in 

spite of the usual maximum likelihood point estimate. Indeed, learnt posterior distribution can be 

employed to achieve a prediction distribution over the provided data set.  

The major aim of EPF is to learn the best predictive distribution for out-of-sample forecast given 

related inputs. To this end, the posterior fitted onto the training data must be implemented within a 

Bayesian inference machinery, by integrating the EPF neural network predictions with reference to 

the posterior: 

𝑃 (𝑦𝑃𝑈𝑁
(𝑁+1)

|𝑋(𝑁+1), (𝑋(1), 𝑦𝑃𝑈𝑁
(1)

) , … , (𝑋(𝑁), 𝑦𝑃𝑈𝑁
(𝑁)

)) = ∫ 𝑃 (𝑦𝑃𝑈𝑁
(𝑁+1) 

| 𝑋(𝑁+1), 𝑊)  𝑃 (𝑊| (𝑋(1), 𝑦𝑃𝑈𝑁
(1)

) , … , (𝑋(𝑁), 𝑦𝑃𝑈𝑁
(𝑁)

)) 𝑑𝑊 (2) 

The aim of the integral is to marginalize out all the uncertainty embedded within EPF model 

parameters. By formulation above, EPF is achieved through a weighted sum of neural networks 

models.  Each model is characterized by specific values for the weights. Therefore, most probable 

models (i.e. with higher evidence) are mostly considered within the prediction. Indeed, an interesting 

by product of Bayesian inference is the introduction of a quite natural form of regularization by 

integrating out the parameters instead of optimizing them. Furthermore, compared to maximum 

penalized likelihood based methods to reduce overfitting, it supports in-training phase regularization 

(i.e. no formal need to split training and validation sets to configure regularizers hyperparameters), 

faster cross-validation over large hyperparameters sets while also providing prediction uncertainty 

indications [76].   

Despite reported advantages, the straight integration over the posterior results computationally 

intractable for the problem at hand. Therefore, practical implementations of probabilistic EPF 

required the application of a proper solution approximation, as detailed in Section 3.5. 

3.2. Likelihood specification and observation noise treatment 

As regarding the likelihood specification, in this work we followed the common Gaussian noise 

hypothesis over prediction residuals (see e.g. [67],[3] for EPF) stating 𝑦(𝑖) = 𝑓(𝑋(𝑖)) + 𝜀(𝑖), with 𝜀(𝑖) 

characterizing independent random error samples from a Gaussian noise distribution. Alternative 

noise distributions will be considered within future extensions of the present work. Therefore, the 

conditional distribution for the predictions (i.e. price values) given the input features (i.e. past values 

of the price and other conditioning variables) is defined as a factorized Gaussian with mean 

𝑓𝐷𝑁𝑁(𝑋, 𝑊) (i.e. neural network output), leading to the following regression likelihood for EPF 

forecast:  

𝑃(𝑦𝑃𝑈𝑁| 𝑋, 𝑊) =
1

√2𝜋𝜎
 𝑒

−
1

2𝜎2(𝑓𝐷𝑁𝑁(𝑋,𝑊) − 𝑦 𝑃𝑈𝑁)2

  (3) 

The distributions of conditioning variables are not modeled themselves, as common for supervised 

learning contexts as EPF. Then, following the standard independence assumption (see e.g. [3]) 

between EPF errors 𝜀(𝑖) over different samples, by exploiting a conditioning variables set including 



12 

 

values of the price for previous days as described in following sections, the conditional likelihood 

related to model forecasts over training data factorizes as follows: 

𝐿 (𝑊|(𝑋(1), 𝑦𝑃𝑈𝑁
(1)

), … , (𝑋(𝑁), 𝑦𝑃𝑈𝑁
(𝑁)

)) = ∏ 𝑃( 𝑦𝑃𝑈𝑁 
(𝑖)

| 𝑋(𝑖), 𝑊)
𝑁

𝑖=1
 (4) 

Usually, the variance of the residual error is considered fixed or eventually as a configurable hyper 

parameter within maximum likelihood based neural network regression. Indeed, recently proposed 

methods for EPF deploying neural networks follow such assumption (see e.g. [20], [12],[10]). 

Nevertheless, fixed residual variance assumption is typically effective only when processing time 

series with homoscedastic behavior for every input point.  

Therefore, considering the typical heteroscedastic characteristics of day-ahead price, proper 

preprocessing must be performed to cast an almost homoscedastic time series. In this study, we 

decided to follow a different approach, implementing a forecasting system originally supporting 

heteroscedasticity. The developed model implicitly assume observation-dependent noise 

characterized by specific variance levels. To this end, we deployed a Gaussian regression model 

including a specific deep neural network 𝑔𝐷𝑁𝑁(𝑋(𝑖), 𝑊′) meant to learn the noise variance function over 

the observed data.  Furthermore, we parametrized the standard deviation pointwise by a soft-plus 

operator: 

𝜎(𝑖) = log (1 + exp (𝑔𝐷𝑁𝑁(𝑋(𝑖), 𝑊′)))  (5) 

In this way, we constrained the learning process to fit a proper variance function (i.e. is always non-

negative).  

It is worth remarking in this section how Bayesian learning for EPF relates to common maximum 

likelihood training methods. In fact, taking the log of the likelihood and assuming heteroscedasticity, 

we get the following equation including the Euclidean loss over the parameters and a term related to 

the changing variance: 

𝐿𝑜𝑠𝑠𝑀𝐿 = ∑ [
1

2
ln(2𝜋𝜎(𝑖)) +

1

2𝜎(𝑖) (𝑓𝐷𝑁𝑁(𝑋(𝑖), 𝑊)  −   𝑦𝑃𝑈𝑁
(𝑖)

)
2

]𝑁
𝑖=1   (6) 

Then, performing the common homoscedasticity assumption (i.e. constant variance), we obtain the 

sum of squared error loss usually adopted within maximum likelihood based training methods for 

EPF problems: 

𝐿𝑜𝑠𝑠𝑀𝐿 = ∑ (𝑓𝐷𝑁𝑁(𝑋(𝑖), 𝑊)  −   𝑦𝑃𝑈𝑁
(𝑖)

)
2

𝑁
𝑖=1   (7) 

We may call attention here to a strength of Bayesian learning for EPF. Maximum likelihood 

training by Euclidean loss typically provides as output a parameter vector estimation representing a 

local minimizer of a complex function with several local minimum and saddle points. When a huge 

amount of training data is available, such minimizer usually provides a good estimate of the mapping 

function parameters. On the other hand, when limited samples are accessible, as in EPF, the adoption 

of a method providing a distribution of network weights could help users understand what the network 

has learnt from the available observations. Moreover, visualization and detailed analysis of the shapes 

of the learnt distributions (i.e. weights variance, etc.) could provide useful insights to validate the 

procedure and investigate the major characteristics of the model before exploitation for out-of-sample 

predictions. Furthermore, active learning processes can be deployed, analysing the evolution of 

parameters distribution by integrating new observation during time. 

3.3. EPF point estimate from regression distribution 

As introduced within the previous section, integration of likelihood times the posterior distribution 

of the deep neural networks parameters provides a prediction distribution for EPF. Nevertheless, in 

some circumstances, practitioners would require single value predictions. As an example, modern 

energy-aware planning and scheduling systems exploit predicted energy price profiles to calculate 



13 

 

the optimal strategy (see e.g. [11]).  

Deep learning-based EPF with maximum likelihood training provides a single point estimate, thus 

the implementation comes naturally. Under a Bayesian framework, the proper way to extract point 

estimates could be less evident.  In fact, the correct choice strictly depends on the loss function (e.g. 

prediction error) chosen, expressing a specific judgment to be applied to the forecast deviation 

compared to the target value [77]. As an example, the mean of the predictive distribution minimizes 

the expected value of the regression cost function when sum of squared error loss is preferred. On the 

other hand, the predictive distribution’s median represents the best choice when facing absolute error 

related criteria. 

In our case, the following point-estimate formulation is obtained:  

𝑦̂𝑃𝑈𝑁
(𝑁+1) = ∫ 𝑓𝐷𝑁𝑁(𝑋(𝑁+1), 𝑊) 𝑃 (𝑊|(𝑋(1), 𝑦𝑃𝑈𝑁

(1)
), … , (𝑋(𝑁), 𝑦𝑃𝑈𝑁

(𝑁)
)) 𝑑𝑊  (8) 

In general terms, a Monte Carlo approximation over the posterior distribution might be performed, 

by generating a proper number of samples. Then, beyond the single-value energy price guess, the 

posterior samples can be analysed to evaluate related characteristics (e.g. dispersion). 

Practically, Bayesian prediction in out-of-sample conditions is often performed by means of an 

expectation over the posterior distribution. It is worth noting that performing EPF by full expectation 

can be considered as implementing an ensemble of an infinite number of deterministic neural 

networks, governed by the posterior distribution [76]. Under maximum likelihood training 

approaches, such expectation is approximated by a single (i.e. most likely) value of the parameters. 

In Bayesian learning by Monte Carlo approximation of the expectation, EPF point estimates can be 

calculated as follows, where each Wt with 𝑡 = 1, … , 𝑇 represents a sample of weights from the posterior 

distribution and D represent both input and target data for simplicity: 

𝑦̂𝑃𝑈𝑁
(𝑁+1) ≈ 1

𝑇⁄ ∑ 𝑓𝐷𝑁𝑁(𝑋(𝑁+1), 𝑊𝑡)  ,   𝑊𝑡  ~𝑃(𝑊|𝐷)𝑇
𝑡=1   (9) 

3.4. EPF forecast by posterior approximation and inference 

Despite the reported potentialities of Bayesian deep learning for EPF, finding the distribution over 

the weights parametrizing the network given the observations could be quite challenging to be 

achieved. Indeed, the posterior distribution of the weights is typically very complex for articulated 

models as neural networks. Therefore, exact Bayesian inference on the weights would be 

computationally intractable for EPF applications with reasonable network size. Indeed, in recent years 

an extensive research effort has been devoted to tractable approximate inference and several methods 

have been proposed within the recent literature on Bayesian learning. Developed techniques represent 

special cases from two major classes: sampling-based and variational inference based approaches.  

Within the first class, most techniques exploit extension of the well-known Markov Chain Monte 

Carlo (i.e. MCMC) method. Notably, sampling-based techniques do not require the statement of 

assumptions about the posterior form, perhaps representing their major strength. In particular, 

compared to factorized variational inference techniques discussed later, sampling provides theoretical 

capability to learn correlations between different parameters. Nevertheless, MCMC-based 

approaches usually turn out critically slow in learning. To speed up convergence, authors of [77] 

deployed a systematic traversal of posterior space by Hamiltonian dynamics (i.e. HMC). Nonetheless, 

exploitation of HMC could be very challenging in practice, mainly due to intricate configuration of 

leapfrog step-size and burn-in period length. To overcome such limitations and improve scalability 

to large data sets, [78] proposed Stochastic Gradient Langevin Dynamics approach, adopting a single 

leapfrog step and a stochastic estimate of the likelihood gradient. Nevertheless, proposed 

methodology still manifest several weaknesses in practice. Indeed, quite correlated samples are often 

generated, thus requiring the integration of proper data discarding techniques. Most notably, learning 

usually tends to converge to single modes of the posterior distribution. Such an effect is often caused 

by the sensibly fast decrease of the step size needed for averaging out gradient stochasticity and 

cutting-out Metropolis-Hastings rejection rate. Hence, the major theoretical strength of such methods, 
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compared to factorized variational inference, usually turns out un- exploitable in practice.   

Considering the open issues reported above, we focused on variational inference-based techniques 

within the proposed probabilistic EPF framework. The variational distribution is conceived to provide 

a proper approximation to the posterior while being easier to evaluate. To this end, most methods 

attempt to minimize the Kullback–Leibler divergence (i.e. relative entropy) between the two 

distributions, usually reframed in the following form: 

𝐷𝐾𝐿(𝑞(𝑊, 𝜆)||𝑃(𝑊|𝐷)) = − ∫ 𝑞(𝑊, 𝜆) 𝑙𝑜𝑔 (
𝑃(𝑊|𝐷)

𝑞(𝑊,𝜆)
) 𝑑𝑊 = − ∫ 𝑞(𝑊, 𝜆) 𝑙𝑜𝑔 (

𝑃(𝑊,𝐷)

𝑞(𝑊,𝜆)
) 𝑑𝑊 + 𝑙𝑜𝑔𝑃(𝐷)   (10) 

In the above equation, 𝑃(𝑊|𝐷) represents the posterior distribution of EPF network weights, 

whereas 𝑞(𝑊, 𝜆) a variational distribution parametrized by 𝜆. Hence, since the evidence of EPF data 

P(D) is unknown and intractable but constant with respect to the variational parameters , it results 

that the first term on the right-hand side of the equation controls the Kullback–Leibler divergence. 

Such term is usually referred to as negative variational free energy or Evidence Lower Bound 

(ELBO).  

To achieve practical solutions to our EPF problem, ELBO expression must be rewritten in the 

following form, which is obtained applying Bayes rules and Monte Carlo estimation to the integral:  

𝐸𝐿𝐵𝑂(𝜆) = ∫ 𝑞(𝑊, 𝜆)𝑙𝑜𝑔 (
𝑃(𝑊, 𝐷)

𝑞(𝑊, 𝜆)
) 𝑑𝑊 

= ∫ 𝑞(𝑊, 𝜆)𝑙𝑜𝑔 (
𝑃(𝑊)

𝑞(𝑊,𝜆)
) 𝑑𝑤 + ∫ 𝑞(𝑊, 𝜆)log 𝑃(𝐷|𝑊)𝑑𝑊  

= −𝐷𝐾𝐿(𝑞(𝑊, 𝜆)||𝑃(𝑊)) + 𝐸𝑞(𝑊,𝜆)[log 𝑃(𝐷|𝑊)]  (11) 

The first term, namely the KL divergence between the prior and variational posterior distributions of 

the weights, acts as a penalizer over complex posterior distributions by forcing 𝑞(𝑊, 𝜆) to be closer 

to the prior. The second term, namely the expectation of the log-likelihood distribution, drives the 

optimizer to fit values explaining the available observations. Hence, an Occam razor mechanism is 

naturally integrated within ELBO maximization. 

The following step to set up the Bayesian EPF framework was the specification of the class of 

variational distributions to be implemented within the training algorithm. It is worth remarking that, 

depending on the characteristics of the distributions provided to the learning process, closer or looser 

fits might be achieved with different computational cost. Several approaches have been proposed 

within the research literature, each with specific strengths and weaknesses [79]. In this work we 

followed the Minimum Description Length based technique proposed by [80], relying on a fully 

factorized Gaussian posterior to simplify computations:  

𝑞(𝑊, 𝜆) = ∏ 𝑞(𝑊𝑗 , 𝜆) = ∏ 𝑁(𝑊𝑗  ; 𝜇𝑊𝑗  ,  𝜎𝑊𝑗
2  )

𝑁𝑊
𝑗=1

𝑁𝑊
𝑗=1   (12) 

Nevertheless, straight computations of the gradient of expected log-likelihood within ELBO 

optimization resulted too computationally intensive for realistic deep neural network dimensions. On 

the other hand, direct application of common Monte Carlo estimation to the ELBO gradient 

manifested high variance, thus resulting ineffective for practical problems [81]. To address such 

issues, several techniques have been proposed (see e.g., [74], [75],[82]).  

In the present work, we adopted the formulations proposed by [74], supporting an unbiased 

estimation of the gradient while leveraging on training data sub-sampling over mini-batches. To this 

end, the path-wise derivative estimator (i.e. re-parametrization trick) has been exploited. Explorations 

of alternative formulations are foreseen within future developments. The algorithm has been 

developed leveraging on previous results from [75] demonstrating that sampling can be reframed to 

Gaussian weights perturbation when the variational posterior is defined as a factorized Gaussian 

distribution. Therefore, auxiliary random variables have been integrated to network weights, 

characterized by independent marginal distributions generated by Gaussians in standard form (i.e. 

zero mean and unitary scale).  Following transformation of the weights is then obtained: 
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𝑤 = 𝜇𝑤 + 𝜎𝑤𝜀, 𝜀 ∼ 𝑁(0, 𝐼) (13) 

Subsequently, the intractable expectation of the log-likelihood distribution was converted into the 

following form: 

𝐸𝐿𝐵𝑂(𝜆) ≈ −𝐷𝐾𝐿(𝑞(𝑊, 𝜆)||𝑃(𝑊)) +  
1

𝑆
∑ log 𝑃(𝐷|𝑊(𝑖))𝑆

𝑖=1 ,   𝑊(𝑖) = 𝜇𝑤(𝑖) + 𝜎𝑤(𝑖)𝜀,   𝜀 ∼ 𝑁(0, 𝐼)    (14) 

Practically, the latter term of the ELBO expression resulted computable by applying random 

perturbations to the usual log-likelihood loss adopted for frequentist style training, encapsulated 

within a Monte Carlo estimation loop. It is worth noting that the implemented weights perturbations 

by Bayesian learning provides an effective procedure to explore the most relevant parts of the 

parameter space, averaged out by EPF. 

Afterwards, considering the results of [75], the objective function can be reframed into a mini-

batch training process for mini-batch m = 1,…,M as: 

𝑂𝐵𝐽𝑚𝑏 = [
1

𝑀
𝐷𝐾𝐿(𝑞(𝑊, 𝜆)||𝑃(𝑊)) −

1

𝑆
∑ log 𝑃(𝐷(𝑚)|𝑊(𝑖))𝑆

𝑖=1 ]  (15) 

Here, M represents the size of the sub-samples from the training data used to estimate the objective 

function gradient. Basically, mini-batch training performs an estimation of the expected value of the 

objective function by randomly subsampling and averaging small subsets of the training examples. 

In fact, computing the expectation on the overall training set often becomes too computationally 

expensive and constrained by available memory. Moreover, several mini-batches can be processed in 

parallel, e.g. by leveraging on the availability of multi-core Graphics Processing Units. In this way, 

overall training time is strongly reduced.  

It is worth nothing that the Bayesian deep learning formulation deployed within the proposed 

probabilistic EPF framework naturally provides a facility of practical significance. Indeed, training 

can be performed within the widely available development environment for deep learning (i.e. 

Tensorflow, PyTorch, etc.) using the same solvers usually adopted for maximum likelihood based 

training. In particular, we exploited the Adam algorithm [83], implementing adaptive estimates of 

lower-order moments to deal with non-stationary objectives and very noisy and/or sparse gradients. 

Further details (e.g. solver set-up, configuration, etc.) will be provided within the results section. 

3.5. Deployed deep neural network architecture and integration within the Bayesian framework 

The next component to be defined within the Bayesian EPF framework is the architecture of the 

neural network. Indeed, the Bayesian deep learning approach reported above is agnostic to the 

specific form of the model. As introduced within Section 1, several architectures have been 

considered for EPF within previous research studies, including feedforward and recurrent networks. 

For this work, we exploited the Deep Neural Network architecture recently proposed by [65]. Indeed, 

the paper reports a detailed empirical investigation of alternative architectures including recurrent 

neural networks and convolutional neural networks. Then, authors showed that the DNN (i.e. an 

extension of the Multi-Layer Perceptron) provided better results over Belgian day ahead market. 

Detailed investigations of Bayesian reformulation of alternative architectures (e.g. Bayesian LSTM) 

are foreseen as future study. In general, a deep network is expected to be more effective than a shallow 

alternative due to the theoretical capability to learn hierarchical mappings and layer-wise multi-scale 

representations. Therefore, the DNN is envisioned to identify patterns on different lags depending on 

the features. Perhaps, such capability of deep networks could strongly support day-ahead forecast. 

Indeed, the dynamics of day-ahead market prices are usually characterized by pattern of intra-day 

nonlinear functions of fundamental variables (see e.g., [84]).  

The subsequent step to be performed is the specification of the Bayesian layers within the neural 

network. Several alternatives have been investigated within the research literature (see. e.g., [85]). 

For the present study we deployed the network form employed in [86] and [101], based on the 

hierarchical composition of deterministic and stochastic layers. The rationale behind such decision is 

twofold. On the one hand, we reduced the model complexity with related computational effort. On 
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the other hand, the deterministic layers are meant to extract features to be then exploited by the 

stochastic layer, mimic manifold Gaussian processes [87]. Alternative network configurations are left 

to future extensions.  

The major architectural elements of the implemented deep neural network are briefly summarized 

hereafter, leaving further information to available literature (see e.g. [88]). In details, the deep neural 

network is composed by a hierarchical aggregation of layers. Latent features extracted by the hidden 

layers are then exploited by upper layers, thus supporting characterization of complex output 

mappings. Sigmoid and hyperbolic tangent activation functions represent the most exploited 

historically. Rectified linear units (analogous to Half-wave rectifiers) are often considered nowadays 

due to the simplified calculations during training. On the other hand, linear activation functions are 

usually employed within output layers for regression problems. In this study, we implemented Leaky 

ReLU activations instead of straight ReLU to enable positive gradients when the neuron is not active, 

thus mitigating potential Dying ReLU issues. Indeed, ReLU neurons could be trapped into perpetually 

inactive states inhibiting gradients flow during training. 

The mathematical formulation of the deep neural network is reported hereafter. An architecture 

with two hidden layers and a single-value linear output layer is displayed for simplicity, whereas: 

 𝑋𝑗
(𝑖)

: j-th feature within i-th input data sample 

 𝑛𝑖𝑛: size of features vector provided as input to the network 

 𝑛ℎ1, 𝑛ℎ2: number of neurons within hidden layer 1 and 2 

 𝑊𝑗,ℎ
(1)

, 𝑊ℎ,𝑘
(2)

, 𝑊𝑘,1
(3)

: network weights in each layer 

 𝑊0,ℎ
(1)

, 𝑊0,𝑘
(2)

, 𝑊0,1
(3)

 : network biases in each layer 

 𝑊: vector aggregating the parameters of the network layer-wise 

 𝑧ℎ
(1)

, 𝑧𝑘
(2)

: outputs of the neurons in each hidden layer 

 𝑓ℎ
(1)

, 𝑓𝑘
(2)

: hidden layers activation functions 

𝑓ℎ
(𝑙)

(𝑎ℎ) = {
𝑎ℎ 𝑖𝑓  𝑎ℎ > 0

0.01𝑎ℎ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (16) 

𝑧ℎ
(1)

= 𝑓ℎ
(1)

(∑ 𝑊𝑗,ℎ
(1)𝑛𝑖𝑛

𝑗=1 𝑋𝑗
(𝑖)

+ 𝑊0,ℎ
(1)

)          (17) 

𝑧𝑘
(2)

= 𝑓𝑘
(2)

(∑ 𝑊ℎ,𝑘
(2)𝑛ℎ1

ℎ=1 𝑧ℎ
(1)

+ 𝑊0,𝑘
(2)

)  (18) 

𝑓𝐷𝑁𝑁(𝑋(𝑖), 𝑊) = ∑ 𝑊𝑘,1
(3)𝑛ℎ2

𝑘=1 𝑧𝑘
(2)

+ 𝑊0,1
(3)

  (19) 

3.6. Neural network inputs setup 

Unquestionably, prediction accuracy is strongly influenced by the integration of conditioning 

variable to be exploited by the model. Indeed, several exogenous variables have been considered 

within the state of the art. For example, [44] included load and wind power generation while tackling 

residual autocorrelation and seasonal dynamics, showing usefulness to forecast on Western Danish 

price area of Nord Pool. Authors of [89] integrated a probabilistic representation of price peaks, 

demonstrated on German EEX market. Authors of [90] identified the need to tackle long-term 

information within the model for Nord Pool market, claiming relation to significant amount of supply 

from hydropower plants. [91] considered day-ahead load forecast and three dummies to represent 

weekly seasonality, with application to California power market. [92] exploited publically available 

market information on hourly Ontario energy price (HOEP). [93] adopted as reservoir levels and load 

in Colombian market. [25] included Nordic demand and Danish wind power generation whereas [30] 

exploited also air temperatures series.  

Besides past price values, representing commonly adopted inputs to EPF models, the most effective 
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setup of further exogenous variables seems strongly related to the specific market conditions. Due to 

the lack of previous studies on Italian PUN price, we performed a first analysis by evaluating mutual 

Pearson Correlation Coefficients (PCC) between further exogenous variables available and the price 

time series. Actually, PCC is meant to identify linear correlations between the variables. Therefore, 

we investigated also the Maximal Information Coefficients (i.e. MIC) to discover eventual further 

relationships between variables. For such purpose, we adopted TICe and MICe estimators recently 

proposed by [94] and made freely available within minepy [95]. In particular TICe (total information 

coefficient) supports the assessment of significant relations between the variables whereas MICs 

support strength-based classification.  

For the present study, we adopted the same approach proposed in [65] by focusing only data freely 

available on the European markets platforms. The exploration of further conditioning variable (e.g. 

temperature and wind speed forecast, gas price, etc.) is foreseen within future developments of the 

present study. Besides, weather and seasonal related phenomena might be partially considered by 

means of load forecast, as reported by [10]. In particular, we explored predictions available ex-ante 

within the Italian market websites. Specifically, predicted day ahead load (i.e. Load), overall 

generation (i.e. Gen), solar and wind power production (i.e.Solar, Wind) on the different sub-regions 

(i.e. CNOR, CSUD, NORD, SARD, SICI, SUC) as well as at national level (i.e. ITA). Further details 

on the available predictions can be found within Italian market and Terna websites (see e.g. [71]).  

Table 2 reports the results obtained for the Italian market. As regarding Belgian market, we adopted 

the same set of predictors exploited within [65] in order to simplify comparability of obtained results. 

PCC and MIC are reported for consistency in Table 3. 

Table 2. PCC, TICe and MICe on Italian PUN 

Pearson Correlation Coefficient  

 
ITA 

Load 

ITA 

Gen 

ITA 

Solar 

ITA 

Wind  

CNOR 

Solar 

CNOR 

Wind  

CSUD 

Solar 

CSUD 

Wind  

NORD 

Solar 

NORD 

Wind  

SARD 

Solar 

SARD 

Wind  

SICI 

Solar 

SICI 

Wind  

SUD 

Solar 

SUD 

Wind  

ITA 

Pun 
0.59 0.68 -0.06 -0.13 -0.05 -0.04 -0.04 -0.13 -0.06 -0.12 -0.09 -0.10 -0.06 -0.08 -0.05 -0.11 

 

TICe 

 
ITA 

Load 

ITA 

Gen 

ITA 

Solar 

ITA 

Wind  

CNOR 

Solar 

CNOR 

Wind  

CSUD 

Solar 

CSUD 

Wind  

NORD 

Solar 

NORD 

Wind  

SARD 

Solar 

SARD 

Wind  

SICI 

Solar 

SICI 

Wind  

SUD 

Solar 

SUD 

Wind  

ITA 

Pun 
4.02 5.50 0.32 0.28 0.27 0.14 0.28 0.30 0.27 0.33 0.43 0.22 0.32 0.18 0.22 0.24 

 

MICe 

 
ITA 

Load 

ITA 

Gen 

ITA 

Solar 

ITA 

Wind  

CNOR 

Solar 

CNOR 

Wind  

CSUD 

Solar 

CSUD 

Wind  

NORD 

Solar 

NORD 

Wind  

SARD 

Solar 

SARD 

Wind  

SICI 

Solar 

SICI 

Wind  

SUD 

Solar 

SUD 

Wind  

ITA 

Pun 
0.23 0.30 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.03 0.04 0.02 0.03 0.02 0.02 0.02 

Table 3. PCC, TICe and MICe on Belgian day-ahead market 

Pearson Correlation Coefficient 

 BEL Load BEL Gen FRA Past Price FRA Load FRA Gen 

BEL Price 0.52 0.18 0.74 0.39 0.32 

 

TICe 

 BEL Load BEL Gen FRA Past Price FRA Load FRA Gen 

BEL Price 3.32 0.41 7.06 1.74 1.64 

 

MICe 

 BEL Load BEL Gen FRA Past Price FRA Load FRA Gen 

BEL Price 0.18 0.03 0.36 0.11 0.11 

 

4. Results  

 

In this section we report the results obtained by the application of the proposed framework for 

probabilistic EPF to Italian and Belgian day-ahead markets. 

To this end, we exploited Tensorflow open source machine learning environment [96]. Moreover, 
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we included the recently developed Tensorflow Probability library [97], providing several facilities 

including trainable probabilistic layers, prior distributions, Kullback–Leibler divergence, etc. As 

introduced within Section 3, we employed Adam algorithm to train the networks. Training epochs 

were set to 500. Moreover, we included a patience callback executed after 50 epochs. In this way, 

training procedure is interrupted in case the learning curves stop decreasing, without waiting until the 

last epoch. Minibatch size has been configured to 32 data samples, representing a good compromise 

between proper gradient estimation and computational burden. 

Afterwards, overall datasets have been split into training, validation and test subsets. As introduced 

within Section 2, we left an entire year of samples to both testing and validation in order to perform 

experiments over all month specific conditions. We might remark that we did not perform data 

shuffling (i.e. random data reordering to support random distributions) before subset separation, as 

common for time series forecasting problems. In this way, we avoided the unfair integration of 

samples coming from time periods ahead, which often results in over-accurate predictions during 

validation compared to out-of-sample forecast.  

Afterwards, we implemented a time-series cross validation procedure (i.e. rolling windows) instead 

of the conventional cross validation [98].  

 
Figure 8: Time series cross validation procedure 

By the conventional approach, validation is performed block-wise following training, leveraging on 

fixed subsets. On the other hand, time series cross validation exploits a sub split of the validation set 

into a configurable number of folds. The algorithm then proceeds as sketched in Figure 8. Network 

parameters are learned over the predefined training set and validated on the first fold. Afterwards, 

samples from the fold used for validation are integrated within the training set. Network training is 

re-executed and the next fold is employed as validation. The procedure continue until the last fold of 

the validation set is processed. 

Perhaps, the major strength of time series cross validation is the extension of training set size, useful 

on problems as EPF characterized by a limited amount of observations. Moreover, the network is 

validated on data coming from time periods closer to the available set, thus partially compensating 

eventual short-term deviations within the generating process. Furthermore, practical model 

employment is emulated. Indeed, once the EPF system is put in production (i.e. used within an 

organization to perform out-of-sample prediction) it is quite common in practice to retrain it in order 

to consider last observations from the market, thus updating the model accordingly. 

Afterwards, we performed datasets standardization by removing mean and scaling samples to 

unitary variance. Indeed, such operation provides a properly conditioned form to the set, fundamental 

to achieve an effective training of the Bayesian neural network. Considering the hour specific 

distributions, the operation has been performed separately.  

To evaluate the accuracy of EPF model predictions, several indicators might be considered. As 

observed by [3], no commonly adopted “industry standard” exist for EPF, which may impact 

evaluations consistency and comparability between different studies. 

Therefore, we compared the results using different indicators commonly adopted within spot 
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market field: Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and 

Symmetric Mean Absolute Percentage Error (SMAPE).  

RMSE expresses the squared root of the second sample moment of the residuals, but tend to be 

sensitive to large errors and outliers. Mean Absolute Error provides a different view, influenced in 

proportion to the absolute value of prediction errors. Since absolute error indicators might be difficult 

to be compared over different studies (e.g., due to different rescaling), we included the MAPE so to 

provide a relative view on the residuals. However, MAPE can be distorted by small values, becoming 

very large regardless the actual value of residuals. Moreover, MAPE values turns out to be small 

when processing higher electricity prices, irrespective of the absolute errors [1]. Nevertheless, MAPE 

is often adopted within EPF studies. Therefore we included it within performed results analysis.  

Moreover, to overcome the reported limitations of MAPE, we comprised also SMAPE calculations. 

Such indicator exploits lower and upper bounds and mitigates sensitivity of MAPE to values close to 

zero, for which related contribution become very large and dominate final value. Conventional 

SMAPE formula expresses results in a range 0-200% which could be misleading to be interpreted. 

An alternative formulation is sometimes used in practice, by applying a 0.5 scaling factor within the 

denominator, which might provide more intuitive indications. Nevertheless, in the present study we 

employed conventional SMAPE equation in order to provide results comparable with previous studies 

on Belgian market (i.e. [65]). Summarizing, we implemented following indicators calculations: 

𝑅𝑀𝑆𝐸 = √1

𝑁
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Besides, following the recommendations reported in [66], we performed a quantitative evaluation 

of probabilistic forecasts by employing the Continuous Ranked Probability Score. CRPS summarizes 

calibration (i.e. forecast error) and sharpness (i.e. distribution concentration) within a unique measure 

(see, e.g., [102]): 

𝐶𝑅𝑃𝑆(𝐹𝑃̂ , 𝑦𝑃𝑈𝑁) = ∫ (𝐹𝑃̂(𝑧) − 𝕀{𝑦𝑃𝑈𝑁≤𝑧})
2∞

−∞
𝑑𝑧 = 𝔼𝐹𝑃̂

|𝑦̂𝑃𝑈𝑁 − 𝑦𝑃𝑈𝑁| −
1

2
𝔼𝐹𝑃̂

|𝑦̂𝑃𝑈𝑁 − 𝑦̂′
𝑃𝑈𝑁
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Given a test set of size N and M independent random samples from the probabilistic model, CRPS 

can be approximated by the following expression: 
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where 𝑦̂𝑃𝑈𝑁
(𝑖)(𝑠)

 and 𝑦̂𝑃𝑈𝑁
(𝑖)(𝑠)′

represents two independent samples generated from the EPF distribution.  

After the identification of forecast evaluation indicators, we proceed with the characterization of 

the neural networks. For the implementation of multi-period forecast, two main classes of techniques 

can be considered. The first approach, representing the most popular one, is based on single stage 

prediction models (see, e.g., [99]). Afterwards, while shifting the forecast window towards the next 

future stages, unavailable measures are replaced by previous stage predictions. While being simpler 

and typically more effective for short-term predictions (e.g., one or two hours ahead), such recursive 

procedure could generate quickly growing error accumulation when longer-term forecast are needed. 

Moreover, the error increment over stages could be very critical for strongly non-linear problems. 

Alternatively, other studies adopted stage-specific modeling approaches, developing and training 

different models for each stage over the prediction horizon. Specifically for day-ahead energy price 

forecast, a model for each 24-th hour of the next day is developed. The aim of this approach, mainly 

inspired by extensive adoption within demand forecast research field, is to exploit specific hourly 

patterns of conditioned or conditioning variables that could be represented by a specialized model 

tuning. The second, less popular, approach exploits a straight multi-stage forecasting horizon, 
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typically constituted by models exposing outputs including 24 steps for day-ahead energy price 

prediction (see e.g. [100]). Considering available studies evaluations, the major drawback of this 

method seems to be related to the difficulties in achieving accurate forecast within the overall horizon 

by using traditional statistical and computational intelligence models (e.g. SARIMAX, shallow neural 

networks). In fact, identification of complex relations between conditioning and conditioned variables 

over the sequences was very challenging.  

Considering reported open issues, we first performed an empirical comparison of deterministic 

network architectures with the same hidden layers (as in [65]) but different output layer, having single 

hour and straight 24 steps outputs respectively. We observed similar results over the validation set, 

as detailed in Table 4. Therefore, we chose a network architecture with specialized single output in 

order to reduce number of parameters. Nevertheless, we passed to each hour-specific network the 

available forecast of conditioning variables in order to exploit possible latent information related to 

following lags (e.g., forecast of demand at 11:00 might influence price at 10:00). Of course, only data 

available at time of prediction are provided (e.g. no conditioning related to future lags for predicting 

price at 24:00). Afterwards, while performing experiments on the test set described below, we 

checked the performed assumption. Results are included in Table 4. It is worth noting that obtained 

measures were slightly different from [65]. Perhaps, this was due to the different dataset used for 

networks training and validation.   

Table 4. Comparison of networks with single hour and multi-hour forecast on Belgian market 

 VALI TEST 

RMSE DNN_SingleOut 8.51 11.47 

RMSE DNN_MultiOut 8.47 11.58 
 

MAPE DNN_SingleOut 14.26 15.48 

MAPE DNN_MultiOut 14.20 15.87 
 

SMAPE DNN_SingleOut 13.73 16.18 

SMAPE DNN_MultiOut 13.61 16.40 

Following the indications reported above, both deterministic and Bayesian networks have been 

configured with the same number of layers and neurons in each layer. After a straight grid search, we 

implemented 250 and 150 neurons within each layer respectively. We might remark here that, for the 

present study, we did not perform an extensive hyper-parameter search (e.g. number of layers, number 

of neurons in each layer, etc.). The rationale behind such decision is twofold. On the one hand, the 

major aim of the present work was to investigate the capabilities of Bayesian in contrast to common 

frequentist style deep neural network for EPF, independently from (i.e. given) specific network 

structure. On the other hand, we performed predictions on the Belgian market considering a 

deterministic deep network architecture previously proposed within research literature. Therefore, we 

meant to be unbiased by adopting coherent configurations. Nevertheless, we envision extensive grid 

search over hyperparameters space or investigations of more advanced approaches for such purpose 

(as e.g. in [10]) to future developments. 

As regarding the set-up of models inputs, Section 3.7 reported a brief analysis of exogenous 

variables exploitable for Italian and Belgian markets. To properly set-up the EPF system, specific 

lagged values on each input series must be identified, to be then included as input features. To this 

end, dedicated selections are usually needed for each input variable depending on related correlations 

over the sequence. Indeed, some variables could require a linear window (e.g. last 3 lags) while others 

specific lags (e.g., lag-7, lag-24, etc.). Therefore, nonlinear windows should be implemented to avoid 

increase of problem dimension. In order to achieve this particular aim, detailed time series evaluations 

are often performed, typically adopting tools such as Pearson correlation coefficients analysis with 

related heat-maps plots, Autocorrelation (i.e. ACF) and Partial Autocorrelation (i.e. PACF) functions 

plots, etc. (see e.g., [12],[20]). Actually, an extensive assessment between various input series across 

all time steps are usually rather time consuming to be performed in practice. Indeed, day-ahead price 
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forecast usually involve quite a few exploitable series over several lags, thus generating multiple 

possible combinations to be analyzed in order to identify patterns. Indeed, partial exploration is often 

performed in practice, aimed to identify major components to be included within the model. 

Nevertheless, prediction accuracy is often strictly related to the quality of chosen features. 

In this work we decided to follow a different approach. In particular, we were interested to 

investigate the capability of deep neural networks to automatically learn useful features from raw 

input data, represented as time series of exogenous input variables as well as past values of the hourly 

price. Foremost, we guessed that the capability of deep networks to learn statistical invariants could 

support the identification of day-ahead price series patterns during time, thus isolating actual 

correlations from random noise. Specifically, recognizable relations are expected within various days 

of the same period (e.g. month) between day-ahead prices and past values of hourly price and 

exogenous variables as well as available predictions of potentially conditioning variables (e.g. load 

forecast, etc.). In fact, as further detailed within data analysis section, day-ahead price profiles 

manifest quite evident behavior depending on time period and conditioning variables (e.g. peaks 

during higher demand hour, working vs nonworking days, etc.). 

Due to the lack of internal memory (i.e. stateless), DNNs must receive past values of the time series 

as inputs to be considered within the model. To this end, a window of predefined length must be 

applied to the overall time series in order to extract evenly spaced batches of data. The size of such 

window (representing the feature-lags search space) was tuned by analyzing the last sensible lags 

within the correlation plots. Considering results from Section 2, in this study we selected a window 

width of 24 lags.  

Moreover, as reported in the analysis section, day-ahead price time series exhibit seasonal behavior. 

To tackle such issue, we followed a previously proposed approach (see e.g. [65]), passing dedicated 

identifiers (including day and year’s week identifiers) as input to the model. Therefore, the network 

is configured to learn specific period nonlinear mappings to conditioning variables (e.g. load) while 

avoiding very long horizons, critical for both computational and dataset size issues.   

Following the definition of the conditioning variable set, we converted the overall data framework 

into a supervised learning problem by applying a sliding window technique. 

Obtained quantitative results on the test sets are reported in Table 5 whereas Figures 9 and 10 

display the errors distributions on Italian and Belgian markets respectively. Notably, the Bayesian 

deep neural network achieved performance comparable with the deterministic neural network.  

It is worth noting that we observed slightly different results for the DNN on the Belgian market 

compared to a previous study employing a similar deterministic architecture [65]. This could be due 

to the different characteristics of employed datasets (training/validation on 01/01/2010 - 31/11/2015 

and test on 01/11/2015 to 31/11/2016 in [65]). Further investigations on such issue are left to future 

extensions since outside the scope of present study.  

Table 5. Performance on Italian and Belgian test set 

Test set results 

 Ita Bel 

RMSE BNN 9.0 11.3 

RMSE DNN 9.0 11.5 

MAPE BNN 11.3 15.4 

MAPE DNN 11.5 15.5 

SMAPE BNN 11.5 16.1 

SMAPE DNN 11.7 16.2 

 

CRPS BNN 7.46 9.29 
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Figure 9: Distribution of errors on Italian market test set: DNN (orange), Bayesian DNN (blue)  

 

 

Figure 10. Distribution of errors on Belgian market test set: DNN (orange), Bayesian DNN (blue)    

We might remark here that we do not consider the improvement in forecast accuracy as the major 

outcome of Bayesian deep learning for EPF. Actually, different executions of training algorithms 

usually result in small random fluctuations in performances while processing data sets characterized 

by limited samples as EPF. Such phenomena strictly depends on specific local minimum found by 

the solver within the quite broad set provided by complex network architectures.  

In our opinion, the major strength of the proposed method resides in the provided distribution of 

predicted prices, extending the usual point forecast. Such information might be exploited in different 

ways depending on the specific application (see e.g., [66]). For example, by sampling from the 

distribution, alternative electricity consumption/production scenarios can be simulated within 

software tools for generation asset management (e.g. [113]) or energy-aware production scheduling 

(e.g. [11]), enabling planning and investigation of alternative strategies. Figure 11 displays examples 

of samples from the predictive distribution.  
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Figure 11: Examples of samples from the predicted distributions of day-ahead prices 

Furthermore, hour-specific uncertainty indications represent fundamental ingredients to achieve 

advanced short-term risk management strategies (see, e.g.,[107]). Figure 12 illustrates such facility, 

provided by the distribution of predictions, over same test set samples related to different months. 

The displayed standard deviation were obtained straightforwardly by applying the posterior 

formulations reported in Section 3, including the heteroscedastic component. 

 

  

                                            

      Figure 12: Predicted distributions over samples from the test set: Italian market (left), Belgian market (right) 
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In particular, we reported multiple examples for both Italian market (left part of the figure) and 

Belgian market (right part of the figure) displaying different operating conditions. For each subplot, 

we included also the predicted standard deviation on each hour. Notably, the Bayesian neural network 

provided predictions with different confidence levels depending on the specific day. Actually, EPF 

model outputs are strictly related to particular daily conditions, being closer or farther to the 

observations available within the training set or with different noise variances.  

Hereafter, we report further quantitative insights into the results obtained on both markets. In 

particular, Tables 6-7 report performance indicators calculated on hourly aggregated samples. Tables 

8-9 and Tables 10-11 (in appendix) report results achieved on different weekdays and months 

respectively.  

Figures 13-15, displaying box and whiskers plots of Absolute Percentage Errors (i.e. APE), were 

included to provide insights into the distributions of errors within specific data aggregations (i.e. 

hourly, daily and monthly). It is worth noting here that APE is influenced by the scale of the error, 

thus being more pronounced with lower price values (e.g. 4:00 a.m.).  

Notably, slight performance variations appear between different hours. As reported above, such 

effect could be caused by random convergences to specific local minimum during networks training. 

Detailed investigations might be performed to clarify the latent dynamics behind such observations, 

perhaps by in-depth analysis of residuals distribution over different networks hyperparameters or by 

application of dataset augmentation techniques. We left such extensions to future developments since 

outside the scope of present study. 

Table 6. Italian market test set performances on different hours 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

RMSE BNN 6.4 6.6 6.6 7.1 7.2 6.6 7.4 9.0 12.1 11.1 9.3 9.2 8.4 8.3 8.6 10.1 11.3 10.5 11.9 11.5 10.3 8.9 7.9 6.7 

RMSE DNN 6.6 6.6 6.6 7.2 7.9 7.8 8.0 10.0 11.1 11.8 8.9 9.3 8.0 8.0 9.4 10.0 10.6 10.9 10.8 11.3 9.0 8.1 7.7 6.9 

 

MAPE BNN 9.0 10.0 8.6 11.0 10.4 12.2 9.7 12.9 9.1 11.6 9.5 13.0 13.0 11.6 11.5 11.3 13.5 10.5 12.0 12.3 10.7 13.7 12.1 13.0 

MAPE DNN 9.1 10.1 10.9 13.1 13.8 11.8 11.0 12.3 12.5 13.3 11.2 11.6 10.9 11.9 14.1 13.9 13.1 12.1 11.3 11.1 9.4 8.9 9.4 9.0 

 

SMAPE BNN 9.3 10.2 8.9 11.1 10.8 12.4 10.2 13.0 9.3 11.8 9.8 12.8 13.2 11.8 11.3 11.7 13.4 10.9 12.1 11.9 10.8 13.8 12.1 13.1 

SMAPE DNN 9.5 10.4 10.9 12.8 13.8 12.5 11.5 13.1 12.9 13.2 11.2 12.0 10.9 12.0 13.9 13.8 12.9 12.3 11.5 11.3 9.7 9.3 9.8 9.4 

 

CRPS BNN 4.6 4.7 4.8 5.3 5.2 4.8 5.3 6.6 8.3 7.5 6.5 6.5 6.0 6.2 6.2 7.2 8.0 7.4 8.2 7.5 7.2 6.1 5.5 4.7 

 

Table 7. Belgian market test set performances on different hours 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

RMSE BNN 9.4 8.3 8.0 8.8 8.9 8.6 8.9 12.0 11.0 12.1 12.5 12.7 11.8 11.6 11.4 11.5 11.4 13.4 14.7 13.8 11.9 11.3 12.6 11.2 

RMSE DNN 9.4 8.7 7.3 7.3 8.0 7.3 9.3 12.3 12.8 12.4 13.1 13.4 11.4 11.6 11.7 11.9 10.9 13.3 14.5 14.7 12.4 12.3 12.6 11.4 

 

MAPE BNN 14.4 14.9 16.9 31.8 24.4 18.3 14.5 16.2 13.2 14.5 15.6 12.3 16.5 19.0 20.1 18.3 22.3 18.0 16.0 14.1 13.9 14.4 14.5 14.5 

MAPE DNN 14.1 14.7 15.5 29.4 21.8 16.7 15.9 17.2 14.6 13.5 16.7 12.8 17.3 18.5 20.4 18.1 23.6 18.9 15.6 14.7 14.4 16.0 14.7 14.5 

 

SMAPE BNN 15.3 14.9 15.7 19.4 20.4 17.8 15.1 16.2 13.5 14.7 15.8 16.0 15.7 16.8 17.3 18.0 17.3 16.2 16.0 14.5 14.2 15.1 15.3 14.9 

SMAPE DNN 14.2 15.4 14.5 17.0 19.1 15.2 16.3 16.3 16.0 14.5 16.7 17.2 15.9 16.8 18.0 17.6 17.5 16.3 15.7 15.5 14.9 16.9 15.7 15.0 

 

CRPS BNN 6.2 5.3 5.1 5.6 5.9 5.8 5.8 7.6 6.8 7.8 7.9 8.0 7.7 7.6 7.3 7.2 7.3 7.9 9.2 8.6 7.7 7.6 8.0 7.1 
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Figure 13: Hourly Absolute Percentage Error over test set: (a) Italian market, (b) Belgian market 
 

Figure 14: Daily Absolute Percentage Error over test set: (a) Italian market, (b) Belgian market 

  

 

Figure 15: Monthly Absolute Percentage Error over test set: (a) Italian market, (b) Belgian market 

 

5. Conclusions 
 

In this paper we have presented a novel method to achieve probabilistic day-ahead electricity prices 

forecasting based on Bayesian deep learning. To this end, we deployed a Bayesian inference 

framework introducing probability distributions over neural network weights and a Gaussian 

likelihood function. Hence, we integrated the deep network forecasts with reference to the posteriors 

to achieve predictions in out-of-sample conditions. Such integration marginalized out the uncertainty 

embedded within model parameters and introduced a natural form of regularization. Actually, 

performing EPF by Bayesian deep learning provides an approximation to an ensemble of an infinite 

number of deterministic neural networks, governed by the posterior distribution. Moreover, the 

method enabled sampling from the predictive distribution and visualization of predictions 

uncertainties, supporting detailed forecasts analysis. 

Besides, we extended the Bayesian regression model by including a specific deep neural network  

meant to learn the noise variance function, parametrized by a soft-plus operator to guide the learning 

process. Therefore, we obtained a forecasting system originally supporting heteroscedasticity, giving 

specific noise variances depending on the period.  

Afterwards, we tackled the computational intractability of exact Bayesian inference on the deep 

network weights for EPF applications with reasonable network dimensions. To this end, we employed 

parametrized variational distributions within a variational inference framework. Then, we 
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implemented fully factorized Gaussian variational posteriors to simplify computations of the 

evidence lower bound, following the Minimum Description Length approach. Besides, we employed 

the re-parametrization method, achieving a weight perturbation procedure supporting exploration of 

most relevant parts of the parameter space, averaged out by the EPF. 

We evaluated the proposed EPF method on two markets to demonstrate both achieved 

performances and reusability in different conditions, namely Italian and Belgian markets. To enable 

reproducibility of our results, we exploited only data freely available from the Entso-e Transparency 

Platorm and GME/Terna websites, ranging from January 2015 to November 2018. Moreover, we 

included a quantitative analysis of major characteristics of the Italian PUN price since it was not 

available within the available research literature. Due to the lack of commonly adopted industry 

standard for EPF accuracy evaluation, we included several indicators commonly adopted within spot 

market field. Then, we demonstrated the capability of proposed method to achieve robust results in 

out-of-sample conditions in terms of forecast accuracy. Moreover, compared to conventional point 

forecast methods, the predictive distributions foster enhanced decision making, including planning of 

multiple strategies for the range of possible prices outcomes and short-term risk management. 

Actually, we envision our study as a first step towards the full exploration of Bayesian deep 

learning for EPF. Indeed, several future extensions are foreseen. In particular, we plan to examine 

alternative priors and posteriors configurations within the variational inference framework. 

Afterwards, algorithms based on full posterior space search might be investigated to compare 

empirically related convergences, parametrization efforts and accuracy. Moreover, we plan to apply 

the Bayesian EPF framework to alternative deep neural network architectures, including recurrent 

neural network with Long short-term memory units, Convolutional neural networks and auto-

encoders. Furthermore, we foresee the application of the proposed techniques to further energy 

markets (e.g., Nord Pool) characterized by different behavior, seasonality and potential features to be 

investigated.  
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Appendix 

 

Table A. Descriptive statistics of working days 

 
Table B. Descriptive statistics of non-working days 

 

Table 8. Italian market test set performances on different weekdays  

 Mon Tue Wed Thu Fri Sat Sun 

RMSE BNN 9.6 9.8 9.4 9.2 9.4 8.1 7.4 

RMSE DNN 10.0 8.7 8.8 8.8 9.7 8.7 8.0 

 

MAPE BNN 12.0 11.5 11.1 10.7 10.9 11.1 12.2 

MAPE DNN 12.7 10.6 10.5 10.9 11.0 11.9 12.9 

 

SMAPE BNN 12.0 11.5 11.4 10.8 11.1 11.7 11.8 

SMAPE DNN 12.9 10.5 10.7 10.9 11.3 12.7 12.8 

  

Table 9. Belgian market test set performances on different weekdays  

 Mon Tue Wed Thu Fri Sat Sun 

RMSE BNN 10.4 14.2 10.4 10.7 11.2 11.3 10.4 

RMSE DNN 10.8 14.0 11.2 11.0 11.1 11.5 10.4 

 

MAPE BNN 16.1 17.2 13.5 13.9 16.0 15.8 23.7 

MAPE DNN 17.6 16.9 13.5 13.8 15.8 15.6 23.5 

 

SMAPE BNN 18.0 17.0 13.3 14.1 13.5 16.3 20.9 

SMAPE DNN 18.9 17.0 13.5 14.1 13.7 16.1 20.4 

 

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Mean 46.3 42.3 39.7 38.3 38.5 41.6 49.0 56.2 62.7 60.5 56.1 53.7 48.9 47.9 51.0 54.0 57.3 61.0 63.7 65.8 63.6 58.4 53.5 49.2 

Std 9.8 9.3 9.2 9.0 8.7 8.5 10.1 13.5 16.5 16.0 14.4 13.9 12.7 13.1 14.5 15.3 16.6 19.7 19.4 17.3 13.3 11.3 9.8 9.3 

Min 20.9 18.5 14.9 11.1 12.1 13.4 26.3 30.8 30.2 30.3 23.6 20.0 14.1 6.1 6.9 8.4 9.8 16.6 27.9 31.5 33.7 33.7 30.5 25.8 

Max 40.3 36.7 34.0 32.4 33.0 36.0 42.6 48.4 52.0 50.5 47.3 45.1 40.8 39.5 42.1 44.3 46.8 48.0 50.6 54.3 55.3 52.5 48.5 44.0 

25% 45.8 42.3 39.9 38.3 38.5 41.2 48.3 54.2 60.7 57.8 53.7 51.9 48.2 47.1 49.7 52.1 54.7 56.2 58.7 61.9 61.9 57.6 53.1 49.5 

50% 50.9 47.0 44.5 43.1 43.1 46.1 54.6 62.7 70.7 68.4 62.9 60.5 55.3 54.6 58.5 62.0 65.7 70.1 75.4 75.5 71.1 63.2 57.6 53.3 

75% 111.9 111.1 109.1 96.2 95.9 96.2 110.3 139.9 162.4 160.7 140.0 132.3 126.1 135.0 140.7 140.4 164.3 170.0 165.1 160.0 145.7 137.3 135.2 130.8 

 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

Mean 47.6 43.3 40.3 38.3 37.8 39.0 40.6 43.1 45.2 46.2 45.0 42.4 39.8 36.0 35.7 38.5 43.0 48.5 54.1 59.3 59.4 55.2 50.5 46.3 

Std 8.8 8.6 8.9 8.9 9.1 9.0 9.3 10.3 10.8 11.0 10.6 10.8 10.9 11.6 12.0 11.7 11.6 13.7 13.5 13.9 11.8 9.8 8.2 7.6 

Min 26.0 17.9 10.8 5.0 3.3 5.0 8.3 9.4 14.3 14.4 12.7 10.3 7.4 2.2 3.0 6.4 8.5 12.7 25.0 28.6 30.9 28.3 28.4 25.0 

Max 41.7 37.6 35.0 33.0 32.8 34.0 34.7 36.4 38.2 39.1 38.4 35.9 33.0 29.0 28.5 31.5 35.5 39.5 44.5 50.1 51.7 49.0 45.0 41.2 

25% 46.9 43.8 40.5 39.2 38.6 39.3 40.5 43.2 45.3 46.4 45.2 42.5 40.3 36.8 36.3 38.4 42.5 46.9 52.3 57.5 57.9 54.9 50.7 46.8 

50% 53.3 48.6 45.7 44.1 43.8 45.0 46.4 49.4 51.6 52.2 51.6 49.3 46.3 43.4 43.6 46.9 50.6 56.0 63.9 69.1 66.3 61.2 55.6 51.5 

75% 93.1 75.5 68.0 65.3 65.3 69.0 67.4 83.0 87.2 87.8 81.5 78.6 68.6 63.5 68.7 76.3 80.0 99.9 93.4 112.4 111.4 82.4 75.0 69.1 



30 

 

Table 10. Italian market test set performances on different months  

 Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov Dec 

RMSE BNN 5.9 8.6 9.9 7.8 6.7 9.0 11.0 9.9 11.4 10.0 8.8 8.8 

RMSE DNN 7.2 10.4 9.7 8.6 6.9 8.8 7.7 10.3 10.3 11.1 8.3 7.2 

 

MAPE BNN 10.0 9.4 12.5 13.8 10.5 13.8 13.1 11.6 11.0 11.5 9.0 9.9 

MAPE DNN 12.3 12.2 11.6 14.6 10.7 13.1 9.5 12.7 10.1 13.0 8.2 12.3 

 

SMAPE BNN 9.8 9.5 11.8 12.9 10.6 15.1 12.1 12.0 11.9 12.4 9.4 10.3 

SMAPE DNN 11.4 11.8 11.6 14.2 10.8 14.3 9.5 13.5 10.9 14.3 8.5 11.4 

  

Table 11. Belgian market test set performances on different months  

 Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov Dec 

RMSE BNN 7.5 6.7 12.9 8.4 12.9 12.1 7.3 8.6 12.5 15.1 13.2 14.6 

RMSE DNN 7.4 7.1 12.3 8.9 13.1 11.3 8.1 9.3 12.2 16.8 13.0 14.4 

 

MAPE BNN 23.2 10.3 14.3 23.9 25.1 20.0 10.7 10.8 13.2 14.3 15.2 17.4 

MAPE DNN 20.3 11.0 14.0 25.1 25.4 18.1 11.6 11.2 12.9 14.7 15.4 18.0 

 

SMAPE BNN 20.0 10.3 14.7 18.5 25.2 21.0 11.1 11.3 13.2 14.8 14.8 16.6 

SMAPE DNN 19.5 10.8 14.4 18.8 25.8 18.5 12.0 11.7 13.2 15.8 15.1 17.0 

 


