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ABSTRACT

A closed-loop guidance method for low-thrust fuel-optimal interplanetary transfers is developed.
The algorithm is based on convex programming and a flipped Radau pseudospectral discretization
scheme. New reference trajectories are repeatedly recomputed in certain time intervals. The
state of the spacecraft is propagated during these periods using the obtained controls until a new
trajectory is to be calculated. A mesh refinement procedure adjusts the number of nodes based on
the linearization error. The effectiveness of the approach is demonstrated in a transfer from Earth
to an asteroid. The proposed method is a promising step towards autonomous guidance in real
space missions due to its rapid speed and excellent robustness.

1 INTRODUCTION

The interest in and market for new space missions have been growing tremendously in the past few
years; especially asteroids and planets are popular targets [1]. Due to the ongoing miniaturization,
CubeSats are now a viable low-cost alternative to conventional satellites [2]. The state of the art is to
operate all spacecraft from ground. However, this limits the mission design and will soon be unsus-
tainable considering the increasing number of launches [3]. As technology advances, there is a need
and desire to gradually increase the autonomy of spacecraft [4]. Even though performing regular
checks on ground will still be required, human intervention can be limited to a minimum. Flight-
related tasks such as Guidance, Navigation, and Control (GNC) are particularly important as they are
essential during the whole lifetime of a spacecraft, often several years for interplanetary transfers.
As the operational costs do not scale with the system mass [5], more and more researchers address
on-board GNC. Similar to autonomous driving, autonomous GNC seems to slowly become reality as
technology advances [4, 6, 7, 8].
In contrast to autonomous navigation where some promising results have been obtained recently [9],
literature on real-time guidance and control is scarce. Model predictive control is a popular choice
for tracking a reference trajectory [10]. The guidance design, however, requires solving a nonlinear
optimal control problem (OCP). This is already a demanding task. Shifting it on-board is therefore a
great challenge and poses risks as the algorithm must repeatedly recompute the reference trajectory in
real-time. The main criteria reliability (a feasible solution must be obtained at any instant), optimality
(a cost function is to be minimized) and compatibility (the algorithm must be compatible with avail-
able on-board hardware) are essential for autonomous guidance. As the guidance design has always
been performed on ground, none of the current techniques fulfills all criteria. Common methods are
often divided into direct and indirect approaches. Even though the latter tend to be advantageous for

ESA GNC 2021 – Christian Hofmann, Francesco Topputo 1



transfers with hundreds of spirals, their relatively high sensitivity to the initial guess is critical for
real-time applications [11]. Direct methods, in contrast, are often more robust. They transcribe the
infinite-dimensional OCP into a finite-dimensional mathematical programming problem. Solving the
resulting nonlinear programming problem is often computationally expensive and may also require a
decent initial guess [12]. As spacecraft computers have only limited computational power, this ap-
proach is not an option on board. Recently, sequential convex programming (SCP) techniques have
been regarded as a viable alternative [6, 13]. Instead of solving the full nonlinear program, an easier
convex problem is solved. One key advantage is that a rather poor initial guess (that does not need
to satisfy the constraints) is often sufficient. Moreover, solving a series of simpler convex problems
allows to use sophisticated interior-point methods [14]. As only first-order information is required,
the algorithm becomes tractable if sparse linear algebra is exploited. SCP is thus a popular choice for
powered descent and landing problems [15, 16]. Moreover, the constrained attitude control problem
will be solved with convex programming techniques in real-time in space soon [17]. Applications to
the low-thrust trajectory optimization problem are rather recent [18]. In [19], SCP is used to generate
an initial guess for an indirect method. Other researchers address the trajectory optimization problem
for solar-sail missions [20] or solve the circular restricted three-body problem in cislunar space [21].
The work in [22] focuses on reliability and low computational effort; it demonstrates that SCP is able
to solve complex interplanetary transfers in little time. In [23], a SCP algorithm was implemented on
a single-board computer to assess the performance on power-limited hardware. However, it was not
investigated how SCP performs when integrated into a closed-loop guidance simulation. This task is
particularly demanding as the algorithm must reoptimze the trajectory several times and at most guar-
antee a feasible solution. In this work, we create a closed-loop algorithm that is fed with the current
spacecraft state and repeatedly determines new trajectories in certain intervals. Instead of using the
more common differential form of the flipped Radau pseudospectral discretization, we formulate the
dynamics using the integral formulation. A mesh refinement is added where the linearization error
is large to obtain feasible solutions that satisfy the nonlinear dynamics. A transfer to an asteroid is
considered to assess the overall performance.
The paper is structured as follows. In Section 2, we state the optimal control problem and convert it
into a convex optimization problem. Section 3 addresses the mesh refinement procedure in detail. The
closed-loop guidance method is described in Section 4 and the results of the numerical simulations
are presented in Section 5. Finally, Section 6 concludes this paper.

2 PROBLEM FORMULATION

2.1 Optimal Control Problem and Convexification

Using a simple two-body model with the Sun as the primary, the equations of motion in Cartesian
coordinates are given by

ẋ = f(x,u)⇒

 ṙ
v̇
ṁ

 =

 v
−µr/r3 + T/m
−‖T‖ /(g0Isp)

 (1)

where r, v, and m are the position, velocity and mass, respectively. µ is the gravitational constant, T
is the thrust vector, g0 is the gravitational acceleration at sea level and Isp the specific impulse which
is assumed constant throughout this paper. If not stated otherwise, ‖·‖ refers to the 2-norm. The
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fuel-optimal control problem in space flight then is to minimize

J0 =

∫ tf

t0

‖T‖ dt (2)

subject to
ẋ = f(x,u) (3a)

0 ≤ ‖T‖ ≤ Tmax (3b)

x(t0) = x0, x(tf ) = xf (3c)

xl ≤ x ≤ xu, ul ≤ u ≤ uu (3d)

where the subscripts 0 and f refer to initial and final values, respectively. Eq. 3d defines the lower
(subscript l) and upper bounds (subscript u) for states and controls, respectively.
We change the variables to τ = ‖T‖ /m, τττ = T/m and z = lnm, and define the new states and
controls as x = [r,v, z]> and u = [τττ , τ ]>. This allows us to decouple states and controls in Eq. 1
[24]:

ẋ =

 ṙ
v̇
ż

 =

 v
−µr/r3

0


︸ ︷︷ ︸

p(x)

+

 03×4

13×3 03×1

01×3 −1/(g0Isp)


︸ ︷︷ ︸

B

[
ø
τ

]
= p(x) + Bu (4)

where 1 is the identity matrix. Linearizing the dynamics in Eq. 4 at a reference point x̄ yields

ẋ ≈ A(x̄)x + Bu + q(x̄) (5)

with the Jacobian matrix A(x̄) = ∂p
∂x

∣∣∣
x=x̄

and the constant part q(x̄) = p(x̄) − A(x̄)x̄. As the

constraint on the thrust magnitude in Eq. 3b now becomes 0 ≤ τ ≤ Tmaxe−z, we also linearize it at
some reference z̄ to obtain

0 ≤ τ ≤ Tmaxe−z̄ (1− z + z̄) (6)

The original nonlinear optimal control problem in Eqs. 2-3 can now be formulated as a convex
problem where we minimize

J0 =

∫ tf

t0

τ dt (7)

subject to

ẋ = A(x̄)x + Bu + q(x̄) (8a)

0 ≤ ‖τττ‖ ≤ τ (8b)

0 ≤ τ ≤ Tmaxe−z̄ (1− z + z̄) (8c)

‖x− x̄‖1 ≤ rtr (8d)

x(t0) = x0, x(tf ) = xf (8e)

xl ≤ x ≤ xu, ul ≤ u ≤ uu (8f)
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The constraint in Eq. 8b is a relaxed version of ‖τττ‖ = τ . It can be shown that the optimal solution
of the relaxed problem is also an optimal solution of the original problem [24]. The trust region
constraint in Eq. 8d with the trust region radius rtr is enforced to keep the linearization accurate
enough.
As various simulations suggest [22], we add an unconstrained virtual control ννν ∈ Rnx (nx = 7 is the
number of states) to Eq. 8a and relax the linearized constraint in Eq. 8c with η ≥ 0:

ẋ = A(x̄)x + Bu + q(x̄) + ννν (9)

0 ≤ τ ≤ Tmaxe−z̄ (1− z + z̄) + η (10)

This prevents the problem to become artificially infeasible. As ννν and η would result in additional
constraint violations, we need to penalize them in the objective function with sufficiently large penalty
parameters µm (for the set of equality constraints Ieq) and λm (for the set of inequality constraints
Iineq):

J = J0 +
∑
m∈Ieq

µm ‖νννm‖1 +
∑
m∈Iineq

λm max(0, ηm) (11)

It directly follows that an optimal solution requires ννν and η to be zero.

2.2 Integral Flipped Radau Pseudospectral Discretization

We only address the dynamical constraints here; the reader is referred to [22, 25] for more details on
the flipped Radau pseudospectral method (FRPM). The trajectory is divided into segments and the
dynamics are approximated in each segment at the roots of the flipped Legendre–Radau polynomial.
X

(k)
i , U

(k)
i denote the i-th node of the k-th segment of states and controls at time t(k)

i , where i =
0, 1, ..., Nk and k = 1, ..., K,Nk being the number of collcaotion points in segment k. The differential
operator is approximated as Ẋ ≈ DX with the differentiation matrix D. Thus, the discrete dynamics
read in the FRPM for each segment k:

Nk∑
j=0

D
(k)
ij X

(k)
j =

t
(k)
Nk
− t(k)

0

2
f(X

(k)
i ,U

(k)
i ) i = 1, ..., Nk (12)

with D(k)
ij being the entries of D. The factor (t

(k)
Nk
− t(k)

0 )/2 stems from the transformation between the
physical time t and the pseudospectral time that is defined in (-1, 1]. As demonstrated in [25], there is
an equivalent integral form of Eq. 12 that uses the integration matrix I = D−1

:,1:N (the subscript :, 1 : N
refers to columns 1 to N ):

X
(k)
i = X

(k)
0 +

t
(k)
Nk
− t(k)

0

2

Nk∑
j=1

I
(k)
ij f(X

(k)
j ,U

(k)
j ) i = 1, ..., Nk (13)

Substituting the linearized dynamics of Eq. 9 into Eq. 13 yields

X
(k)
i = X

(k)
0 +

t
(k)
Nk
− t(k)

0

2

Nk∑
j=1

I
(k)
ij

[
A(X̄

(k)
j )X

(k)
j + BU

(k)
j + q(X̄

(k)
j ) + ννν

(k)
j

]
i = 1, ..., Nk

(14)
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Considering that the initial node is not a collocation point and that X
(k−1)
Nk

= X
(k)
0 for k > 1, we can

write the dynamics in the standard linear form MY = b:

(15)


Î(1) 0 0

· · ·
B̂(1)

0

Iν

0 −1̂ Î(2) 0 B̂(2)

0 0 −1̂ Î(3)

0

B̂(3)

...
. . . . . .

Î(K) B̂(K)


︸ ︷︷ ︸

M

·

X
U
ννν


︸ ︷︷ ︸

Y

=



X0 + ∆(1)
∑N1

j=1 I
(1)
1j q(X̄

(1)
j )

X0 + ∆(1)
∑N1

j=1 I
(1)
2j q(X̄

(1)
j )

...
X0 + ∆(1)

∑N1

j=1 I
(1)
N1j

q(X̄
(1)
j )

∆(2)
∑N2

j=1 I
(2)
1j q(X̄

(2)
j )

...
∆(K)

∑NK

j=1 I
(K)
NKj

q(X̄
(K)
j )


︸ ︷︷ ︸

b

with

Î(k) =


17 −∆(k)I

(k)
11 A

(k)
1 −∆(k)I

(k)
12 A

(k)
2 . . . −∆(k)I

(k)
1Nk

A
(k)
Nk

−∆(k)I
(k)
21 A

(k)
1 17 −∆(k)I

(k)
22 A

(k)
2 . . . −∆(k)I

(k)
2Nk

A
(k)
Nk...

...
...

−∆(k)I
(k)
Nk1A

(k)
1 −∆(k)I

(k)
Nk2A

(k)
2 . . . 17 −∆(k)I

(k)
NkNk

A
(k)
Nk

 (16)

B̂(k) =


−∆(k)I

(k)
11 B

(k)
1 −∆(k)I

(k)
12 B

(k)
2 . . . −∆(k)I

(k)
1Nk

B
(k)
Nk

−∆(k)I
(k)
21 B

(k)
1 −∆(k)I

(k)
22 B

(k)
2 . . . −∆(k)I

(k)
2Nk

B
(k)
Nk...

...
...

−∆(k)I
(k)
Nk1B

(k)
1 −∆(k)I

(k)
Nk2B

(k)
2 . . . −∆(k)I

(k)
NkNk

B
(k)
Nk

 (17)

We introduced the notation ∆(k) = (t
(k)
Nk
− t(k)

0 )/2 and A
(k)
j = A(X̄

(k)
j ) (B and q are defined accord-

ingly) for conciseness. 1̂ ∈ RNknx×nx consists of vertically concatenated identity matrices. Iν has
the same structure as the B matrix with the only difference that all B

(k)
j are replaced by the identity

matrix 17. X, U and ννν are the concatenated states, controls, and virtual controls, respectively. The
representation in Eq. 15 allows us to use standard solvers to solve the discrete convex optimization
problem.

3 MESH REFINEMENT

A common problem in direct methods is that the number of nodes needed to achieve a certain ac-
curacy is not known a priori. A poor discretization can result in large constraint violations or even
in non-convergence as the dynamics cannot be satisfied. This is especially problematic for convex
problems where the original nonlinear constraints are convexified and linearized. Even though the in-
corporation of virtual controls eliminates the problem of artificial infeasibility, it does not necessarily
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mean that the solver is able to drive the virtual controls to zero. As a consequence, the solution may
neither satisfy the linear nor the nonlinear constraints. Even if the virtual controls are zero, one might
have found a solution that is not feasible with respect to the original, nonlinear problem. This is often
the case in complex and highly nonlinear problems when the initial guess is poor or an insufficient
number of nodes is used to discretize the problem. In this section, we propose a mesh refinement
method to increase the accuracy with respect to the nonlinear dynamics that also improves conver-
gence. The approach consists of two steps: first, we attempt to determine a solution that satisfies
the nonlinear constraints using two different methods M1 and M2 (step 1). Secondly, we refine this
solution by using the propagation error to measure the accuracy (step 2). The reason is that even if
the nonlinear dynamics are satisfied at the nodes, the accuracy might be poor when propagating the
nonlinear dynamics with the obtained controls.

Mesh Refinement Method 1
As we are mainly interested in generating feasible trajectories with respect to the nonlinear con-
straints, we compare the linear and nonlinear constraint violations in method 1:

h
(k)
i,nonlin,dynamics = X

(k)
i −X

(k)
0 −

t
(k)
Nk
− t(k)

0

2

Nk∑
j=1

I
(k)
ij fnonlin(X

(k)
j ,U

(k)
j ) i = 1, ..., Nk (18)

h
(k)
i,nonlin,control =

∥∥∥τττ (k)
i

∥∥∥− τ (k)
i i = 1, ..., Nk (19)

where fnonlin refers to the nonlinear dynamics in Eq. 4. The maximum constraint violation for each
segment is then calculated as

h
(k)
max, nonlin = max

1≤i≤Nk

∥∥∥∥∥
[
h

(k)
i,nonlin,dynamics

h
(k)
i,nonlin,control

]∥∥∥∥∥
∞

(20)

In the linear case, we can simply use the slack variables ννν and η to define the constraint violations:

h
(k)
i,lin,dynamics = ννν

(k)
i i = 1, ..., Nk (21)

h
(k)
i,lin,control1 = max

(
η

(k)
i , 0

)
i = 1, ..., Nk (22)

h
(k)
i,lin,control2 = max

(∥∥∥τττ (k)
i

∥∥∥− τ (k)
i , 0

)
i = 1, ..., Nk (23)

The maximum violation for each segment is then determined as

h
(k)
max, lin = max

1≤i≤Nk

∥∥∥∥∥∥∥
h

(k)
i,lin,dynamics

h
(k)
i,lin,control1

h
(k)
i,lin,control2


∥∥∥∥∥∥∥
∞

(24)

Defining the maximum desired constraint violation as εc and setting

h(k)
max = max

(
h

(k)
max,nonlin, h

(k)
max,lin

)
, (25)

the number of collocation points to be added padd,M1 is determined using [26]

p
(k)
add,M1 =

⌈
logNk

(
h

(k)
max

εc

)⌉
(26)
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Mesh Refinement Method 2
This mesh refinement procedure is based on [26] and adapted to the flipped Radau discretization
and our convex optimization formulation. The idea is to compare the optimized states with a so-
lution that contains a larger number of nodes. When the states are smooth, an approximation with
more collocation points is expected to be more accurate with respect to the nonlinear dynamics.
Thus, the difference between the original solution and the one with higher accuracy is used to define
the error of the mesh. For each segment, we define Ñk = Nk + 1 as the new collocation points
with higher accuracy. We introduce the old mesh as S(k) =

(
σ

(k)
1 , σ

(k)
2 , . . . , σ

(k)
Nk

)
and new mesh as

S̃(k) =
(
σ̃

(k)
1 , σ̃

(k)
2 , . . . , σ̃

(k)

Ñk

)
where σ(k)

i and σ̃(k)
i denote the corresponding pseudospectral times. In-

terpolating the current solution
[
X(σ

(k)
i ),U(σ

(k)
i )
]

at the new points σ̃(k)
i yields

[
X(σ̃

(k)
i ),U(σ̃

(k)
i )
]
.

Defining X̃(σ
(k)
i ) as the new polynomial of degree Ñk whose derivative should match the nonlinear

dynamics at the collocation points in S̃(k), we obtain the following expression using Eq. 13:

X̃(σ̃
(k)
i ) = X(σ̃

(k)
0 ) +

t
(k)
Nk
− t(k)

0

2

Ñk∑
j=1

Ĩ
(k)
ij fnonlin(X(σ̃

(k)
j ),U(σ̃

(k)
j )) i = 1, ..., Ñk (27)

We emphasize that the nonlinear dynamics are used here. The integration matrix Ĩ(k) corresponds to
the mesh S̃(k) and X(σ̃

(k)
0 ) is the initial (non-collocated) point. The errors are then calculated as

Epos(σ̃
(k)
i ) =

∥∥∥X̃pos(σ̃
(k)
i )−Xpos(σ̃

(k)
i )
∥∥∥

i = 1, ..., Ñk

Evel(σ̃
(k)
i ) =

∥∥∥X̃vel(σ̃
(k)
i )−Xvel(σ̃

(k)
i )
∥∥∥ (28)

where the subscripts pos and vel refer to the position and velocity components, respectively. The
maximum error E

(k)
max is then

E(k)
max =

[
max1≤i≤Ñk

Epos(σ̃
(k)
i )

max1≤i≤Ñk
Evel(σ̃

(k)
i )

]
(29)

The number of collocation points to be added padd,M2 is again determined using [26]

p
(k)
add,M2 = max

(⌈
logNk

(
E

(k)
max,pos

εc,pos

)⌉
,

⌈
logNk

(
E

(k)
max,vel

εc,vel

)⌉)
(30)

The mesh is updated according to Algorithm 1. The number of nodes in each segment is increased if
the error defined in Eq. 25 or Eq. 29 is violated. We define a minimum (colpointsmin) and maximum
(colpointsmax) number of collocation points per segment and split the segment if needed.
When all nonlinear constraints are satisfied, we determine the error when propagating the nonlinear
equations of motion with the obtained controls (step 2). The propagation error for each segment is
defined as the difference between the optimized and propagated state at the last collocation point of
the segment:

∆X(k) = X
(k)
Nk
−

[
X

(k)
0 +

∫ t
(k)
Nk

t
(k)
0

fnonlin(t,x,u) dt

]
(31)
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Algorithm 1 Mesh update method
1: for each segment k ∈ 1, ..., K do
2: if

[
h

(k)
max > εc

]
for method 1 or

[
E

(k)
max,pos > εc, pos or E(k)

max,vel > εc, vel

]
for method 2 then

3: determine p(k)
add

4: increase Nk by p(k)
add

5: if Nk > colpointsmax then
6: split segment into two or more segments such that
7: colpointsmin and colpointsmax are respected
8: end if
9: save new collocation points and segments

10: else
11: save Nk

12: end if
13: end
14: return collocation points and segments

where the integral is computed with an explicit fourth-order Runge-Kutta method using the initial
condition X

(k)
0 . The control values are interpolated linearly. Note that we do not continue the integra-

tion with the values obtained in the previous segment, but start with the optimized initial state in the
next segment (see Fig. 7). This allows us to precisely determine the segments where the integration
error is large without accumulating it. The complete mesh refinement procedure is shown in Fig. 2.

}∆X
(1)

}

∆X
(2)

}∆X
(3)

t

X

Segment 1 Segment 2 Segment 3

Figure 1: 2D illustration of the integration error ∆X(k) for three segments. The solid line represents
the optimized and the dashed line the propagated state X.

Step 1:  
Modify mesh using method 1 or 2
until mesh accuracy is achieved

Start
Step 2:  

Modify mesh until integration
accuracy is achieved

End

Figure 2: Flowchart of the mesh refinement procedure.

4 CLOSED-LOOP GUIDANCE PROCEDURE

In the closed-loop guidance scenario, the spacecraft repeatedly recomputes its reference trajectory.
We predefine the vector topt = [t0, t1, . . . , tL]> with tL < tf that contains the times when a (new)

ESA GNC 2021 – Christian Hofmann, Francesco Topputo 8



trajectory is to be determined. After the l-th reoptimization, the equations of motion in Eq. 4 are
propagated for ∆tl = tl+1 − tl (l = 0, 1, . . . , L with tL+1 = tf ) until the next trajectory is to be
computed. This process continues for all tl ∈ topt until the final time is reached. The complete process
is illustrated in Fig. 3. To account for uncertainties and other not modeled errors, the propagated
state is perturbed by random values between −104 and 104 km (position) and −10−3 and 10−3 km/s
(velocity) and then used as the new initial state. Those values are one order of magnitude larger than
the typical accuracy of current optical navigation techniques [9].
In this paper, we calculate the first reference trajectory at t0 with a shape-based method that uses a
simple cubic interpolation. In all other cases, the solution of the previous optimization is used as the
initial guess. The number of nodes is adjusted and the states and controls are interpolated at this new
mesh. The goal is to maintain the accuracy of the initial mesh, that is, the number of nodes per time
unit shall be similar. As the time of flight reduces after each reoptimization, we therefore remove a
certain number of collocation points in those segments where the propagation error is lower than some
threshold. As we propagate only for a very small time portion ∆tl, only this first part of the trajectory
is of interest; the remaining part is discarded. The key idea is to ensure a high accuracy during
this period. For this reason, we add another segment at the beginning with a sufficient number of
collocation points that represents ∆tl. If the calculated trajectory is close to the propagated trajectory,
that is, ∆X(1)(∆tl) is small, it is expected that the algorithm converges within few iterations only.
Our rationale is that the new solution is expected to lie in the neighborhood of the previous solution
which is used as the new initial guess. Although a proof of the convergence is beyond the scope of
this paper, the numerical simulations strongly support this statement.

Define optimization
times 

No
Accuracy met?Apply mesh refinement

and reoptimize
Target reached?

Calculate first
reference trajectory

Propagate nonlinear EoMs
with obtained controls for 

Perturb final state and use
it as the new initial stateUpdate meshCalculate new reference

trajectory

Propagate nonlinear EoMs with
obtained controls for new End

No

YesYes

Start

Figure 3: Flowchart of the closed-loop guidance simulation.

4.1 SCP Algorithm and Auxiliary Variables

The SCP algorithm uses a trust region mechanism with constant parameters to adjust the trust region
radius. Details can be found in [22] and [23]. We briefly describe the modifications that are required
to write the constraints in standard form. In particular, it is necessary to rewrite the constraints that
contain the 1-norm or max function:

Virtual Control
Instead of minimizing

∑
m∈Ieq

µm ·‖νννm‖1 directly, the auxiliary variable wvc is added to the optimiza-
tion problem and the expression µm ·1> ·wvc is minimized subject to νννm ≤ wm,vc and−νννm ≤ wm,vc.

Trust Region
The trust region constraint ‖x− x̄‖1 ≤ rtr is replaced by three auxiliary constraints:
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1> ·wtr ≤ rtr (32a)
−wtr − x ≤ −x̄ (32b)

x−wtr ≤ x̄ (32c)

wtr is then added to the optimization variables.

Max Function
We minimize wineq instead of

∑
m∈Iineq

λm · max(0, ηm) and add the constraints −wineq,j ≤ 0, ηm −
wineq,m ≤ 0. The optimization vector is augmented with wineq.

The final optimization vector reads [x,u, ννν,wvc,wtr,wineq]
>.

5 NUMERICAL SIMULATIONS

In this section, we validate the mesh refinement method and simulate the closed-loop guidance. We
consider a transfer from the Sun-Earth Lagrange point L2 (SEL2) to asteroid 2000 SG344; this is one
of the targets suggested for ESA’s Miniaturised Asteroid Remote Geophysical Observer (M-ARGO)
mission [27]. Throughout this section, we assume two-body dynamics, a constant specific impulse
and no additional perturbations. Moreover, no mission constraints are considered. All calculations
are performed in MATLAB version 2018b on an Intel Core i5-6300 2.30 GHz Laptop with four cores
and 8 GB of RAM. The second-order cone program defined by Eqs. 7 and 8 is solved using the
open-source Embedded Conic Solver (ECOS) [14]. Physical constants of all simulations are given in
Table 1 and parameters of the SCP algorithm in Table 2. The algorithm converges when the maximum
constraint violation and the decrease of the objective function are smaller than εc and εφ, respectively.
Note that all values are scaled with LU (where 1 LU = 1 astronomical unit), VU, TU, ACU and
MU, respectively (see Table 1). The interested reader is referred to [22, 23] for details on the SCP
algorithm and trust region parameters ρi, α and β. Tables 3 and 4 show the parameters for the transfer
and closed-loop guidance, respectively.

Table 1: Physical constants in all simulations.

Parameter Value
Gravitational constant µ 1.32712× 1011 km3/s2

Gravitational acceleration g0 9.80665× 10−3 km/s2

Length unit LU 1.49597× 108 km
Velocity unit VU

√
µ/LU km/s

Time unit TU LU/VU s
Acceleration unit ACU VU/TU km/s2

Mass unit MU m(t0)

Table 2: Parameters of the SCP algo-
rithm [22, 23].

Parameter Value
Penalty weight λ 1.0
Penalty weight µ 1.0
Trust region r0 100.0

[ρ0, ρ1, ρ2] [0.01, 0.25, 0.9]
α, β 1.5, 1.5
εc 10−7

εφ 10−5

Max. iterations 100

5.1 Mesh Refinement

We test the mesh refinement methods 1 and 2 from Section 3. The initial mesh is [5, 5], that is, two
segments with five collocation points each. The results are shown in in Table 5 and Fig. 4. Step
1 (reduce the maximum nonlinear constraint violation) and step 2 (reduce the maximum integration
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Table 3: Parameters for SEL2 to asteroid
2000 SG344 transfer.

Parameter Value

Initial epoch
04-Feb-2024

12:00:00 UTC
Time of flight tf 700 days

Initial mass m(t0) 22.6 kg
Final mass m(tf ) free

Maximum thrust Tmax 2.2519 mN
Specific impulse Isp 3067 s

Table 4: Parameters for the closed-loop guidance simu-
lation.

Parameter Value
Reoptimization period ∆tl 14 days

colpointsmin 5
colpointsmax 11

Position perturbance −104 to 104 km
Velocity perturbance −10−3 to 10−3 km/s

Propagation tol. 10−5 LU, 10−3 VU
Initial collocation points 155

Initial mesh [5, 10, 10 ..., 10]

error) refer to the two-step approach described in Section 3. Method 1 and 2 refer to the two mesh
refinement methods.
It is evident that there are considerable differences between the two methods. Method 1 aims at re-
ducing the maximum constraint violation as fast as possible and achieves this after one mesh iteration
only. The number of collocation points increases only slightly compared to method 2 (see Table 5).
Consequently, the maximum integration error per segment is still large. In contrast, method 2 requires
many more iterations and converges with a significantly larger number of collocation points as shown
in Fig. 4a. This results in an integration error that is one order of magnitude lower. When the inte-
gration error is to be reduced in step 2, we observe the opposite behavior: method 1 requires more
iterations because of the larger initial error (see Fig. 4b). Nonetheless, the maximum integration error
decreased below the desired threshold 103 km for both methods.

Table 5: Results of mesh refinement procedure for step 1.

Mesh iterations Final coll. points Max. integration error position (km)
Method 1 1 28 2.2× 106

Method 2 13 102 1.3× 105
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(a) Mesh step 1: Collocation points and number of
segments for each mesh iteration.
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sition (see Eq. 31) for each mesh iteration.

Figure 4: Overview of the mesh refinement results for both mesh refinement methods.
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5.2 Closed-Loop Guidance

We use a uniform mesh of 15 segments with ten collocation points each and add an additional seg-
ment with five points at the beginning (see Table 4). A new reference trajectory is calculated every 14
days following the approach in Section 4, resulting in a total of 50 reoptimizations considering a time
of flight of 700 days (see Table 3). The (poor) first initial guess is determined with a simple cubic
interpolation. We use mesh refinement method 1 for the simulation.
Figure 5 shows the concatenated trajectory and thrust magnitude over time. Note that the concate-
nated thrust curve is slightly different compared to the nominal one (which corresponds to the first
trajectory). Even though the first and concatenated trajectory are very similar, the different control
histories indicate that the algorithm determined locally optimal solutions that are in the neighborhood
of the nominal one. The small spikes around 600 days of travel time in Fig. 5b suggest that the den-
sity of collocation points was not sufficient to capture the bang-off-bang control structure perfectly.
The obtained final masses of 21.72 kg and 21.51 kg in the first and last optimization, respectively, are
also very similar. This confirms that the concatenated trajectory is very close to the nominal, locally
optimal one. As we use the previous solution as the new initial guess, the number of iterations and
computational times are only relatively high for the first optimization; as illustrated in Fig. 6a, all
subsequent ones required only very few iterations and seconds, respectively. The number of colloca-
tion points remains constant for the first reoptimizations (see Fig. 6b) because the propagation error
for each segment exceeded the tolerance defined in Table 4. The reason is that at the beginning of the
flight the influence of the Earth is not negligible. Figure 7 shows the integration errors for the first
segment that we obtain when propagating the equations of motion with two-body and n-body dynam-
ics, respectively. Apparently, the perturbing force of the Earth cannot be neglected during the first
few reoptimizatons when the spacecraft is still close to Earth. This results in a large mean integration
error of 1.1× 104 km and 1.7× 10−2 km/s when integrating with n-body dynamics (see Table 6). As
the distance between Earth and spacecraft increases over time, the difference between the two-body
and n-body propagation becomes smaller. After computing the last trajectory, the spacecraft is able to
reach the target with an error of only few hundred kilometers regardless of the considered integration
model. This is a very promising result as it demonstrates that a closed-loop guidance based on convex
programming can achieve a high accuracy.
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(a) Concatenated trajectory; squares indicate that tra-
jectory is recomputed at these points.
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Figure 5: Concatenated trajectory and thrust magnitude for the closed-loop guidance simulation for
the SEL2 to asteroid 2000 SG344 transfer.
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Figure 6: Overview of iterations, CPU time, collocation points and segments for the closed-loop
guidance simulation for the SEL2 to asteroid 2000 SG344 transfer.
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Figure 7: Integration error ∆X(1) for the closed-loop guidance simulation after propagating the equa-
tions of motions for a period ∆tl (l = 0, 1, ..., L) considering the two- and n-body model, respectively.

Table 6: Integration errors for the closed-loop guidance simulation for the SEL2 to asteroid 2000
SG344 transfer.

Dynamics for integration
Mean integration error for first segment

(km, km/s)
Final position/velocity error

(km, km/s)
Two-body dynamics 1.7× 102, 3.1× 10−4 3.0× 102, 4.5× 10−4

N-body dynamics 1.1× 104, 1.7× 10−2 (*) 2.3× 102, 3.4× 10−4

(*) Large mean error due to the perturbing force of the Earth at the beginning.

6 CONCLUSION

We developed a closed-loop guidance method that repeatedly recomputes the references trajectory. A
sequential convex programming algorithm optimizes the trajectory in certain intervals and the space-
craft state is propagated with the obtained controls. A mesh refinement technique ensures the desired
accuracy while keeping the computational effort low. A transfer to an asteroid has demonstrated the
excellent accuracy and robustness even when large perturbances are considered.
We presented a novel approach that integrates a numerical optimization technique into a closed-loop
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guidance method. As the chosen convex programming algorithm has a large convergence radius, we
were able to resolve the low-thrust trajectory optimization problem during the whole flight despite the
imposed perturbance. Its rapid speed makes it suitable for real-time applications. Even though SCP
may in general be less accurate compared with other direct methods, we have shown that the target
can be reached with high accuracy when the mesh is adjusted accordingly. The presented guidance
method is therefore an appealing choice for real space missions.
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