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Abstract. We investigate carbon-nanotubes under the perspective of geom-

etry optimization. Nanotube geometries are assumed to correspond to atomic

configurations which locally minimize Tersoff-type interaction energies. In the
specific cases of so-called zigzag and armchair topologies, candidate optimal

configurations are analytically identified and their local minimality is numer-
ically checked. In particular, these optimal configurations do not correspond
neither to the classical Rolled-up model [5] nor to the more recent polyhe-

dral model [3]. Eventually, the elastic response of the structure under uniaxial
testing is numerically investigated and the validity of the Cauchy-Born rule is

confirmed.

1. Introduction

Carbon nanotubes are believed to be promising nanostructures for the develop-
ment of innovative technologies ranging from next-generations electronics, to op-
tics, mechanics, and pharmacology. The investigation of the mechanical properties
of carbon nanotubes has been the object of a large number of experiments car-
ried out with different techniques, ranging from transmission electron microscopy
[12, 21] to atomic force microscopy [22]. Despite the large research activity on these
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nanostructures, the modeling of their fine geometry is still debated. In fact, differ-
ent geometric models for carbon nanotubes have been set forth by characterizing
indeed the nanostructure by prescribing different atomic positions.

Intuitively, carbon nanotubes can be visualized as atomic configurations showing
cylindrical symmetry. One can interpret them as the result of the rolling-up of a
graphene strip (sometimes referred to as a graphene nanoribbon). More precisely,
assume to be given the hexagonal lattice {pa+qb+rc : p, q ∈ Z, r = 0, 1} with

a = (
√

3, 0), b = (
√

3/2, 3/2), and c = (
√

3, 1). To each vector (`,m) for `, m ∈ N,
` > 2, we associate the nanotube obtained by identifying the atom x with x+`a+mb
for `, m ∈ N. Nanotubes are called zigzag for m = 0, armchair for m = `, and
chiral in all other cases, see Figure 1. We concentrate in the following on zigzag
and armchair topologies, leaving the chiral case aside, for it involves additional
intricacies.

a

b pa+qb

zigzag

armchair

Figure 1. Rolling-up of nanotubes from a graphene sheet.

The purpose of this note is to comment on the possibility of describing nanotube
geometries on a purely variational ground. In Section 2 we consider a phenomeno-
logical interaction energy of Tersoff type (see (2) and references [19, 20]) and we
identify effective nanotube geometries as stable configurations, i.e., strict local en-
ergy minimizers. In Section 3 we begin by addressing the zigzag geometry and by
observing that the minimization problem becomes one-dimensional if we reduce to
specific classes of objective structures (see [7]). In Section 4 we analytically show
its well-posedness (see Theorem 4.3). In Section 5 and Section 6 the same program
is applied to the armchair geometry (see in particular Theorem 6.1). Finally, in
Section 7 we present numerical evidence of the fact that the above-mentioned opti-
mal configurations are indeed strict local minimizers of the energy with respect to
general perturbations. An analytical discussion of this point is subject of the forth-
coming [16]. The optimality of objective configurations is checked also in presence
of prescribed-displacement boundary conditions. This corresponds to a numeri-
cal validation of the so-called Cauchy-Born assumption and delivers a quantitative
description of the whole elastic response of the structure under uniaxial testing.

As already mentioned, a number of different continuum and atomistic models
for zigzag and armchair nanotubes is already available in the literature. Among
atomistic models, especially two have drawn the most of the attention. These are
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the classical Rolled-up model, introduced in [4, 5, 10], and the Cox-Hill model (also
known as polyhedral model) proposed in [3]. Both models assume that atoms are
arranged on the surface of a cylinder, but differ in the prescription of the bond
angles formed at each atom. In the Cox-Hill model all bond angles are assumed
to be equal, hence smaller than 2π/3 in order to allow for the nonplanarity of the
structure. On the other hand, in the Rolled-up model some of these angles are set
to be equal to 2π/3 (precisely, one angle for the zigzag and two for the armchair
topology, respectively).

In Proposition 4.1 and Proposition 4.2 we show that, under the generic assump-
tions on the interaction densities which are introduced in Section 2 below, neither
the Rolled-up nor the Cox-Hill model are local minimizers of the energy in the
zigzag case. The same is obtained for the armchair case in Theorem 6.1. These
results are in accordance with the measurements carried on in [24] reporting indeed
on the low accuracy of Rolled-up and Cox-Hill models for extremely thin nanotubes.
Furthermore, experimental and computational (molecular dynamics) evidence that
different bond angles (and different bond lengths) are needed to properly model
these nanotubes is provided in [1, 2, 8, 9, 11, 13].

An extension of the Cox-Hill model to these situations has been considered in
[14] where it is remarked that two bond angles can be expected to be equal in the
armchair and in the zigzag geometry (while three different angles seem in general
to be needed for modeling chiral nanotubes). This finds confirmation for a specific
choice of the interaction energy in [17, 18, 23] where the contribution to the energy of
a single carbon atom (plus the three nearest neighbors) is numerically investigated.
We follow here a close path, but we numerically analyze the stability of the whole
structure and, in addition, we provide some analytical results.

2. Mathematical Setting

Let us introduce the mathematical setting. Nanotubes are represented by con-
figurations of atoms, i.e. collections of points in R3 representing the atomic sites.
Since the length of nanotubes may be as long as 107 times their diameter, we are
here not interested in describing the nanotube geometry close to their ends. Thus,
we restrict to periodic configurations, i.e. configurations that are invariant with
respect to a translation of a certain period in the direction of the nanotube axis.
Without loss of generality we consider only nanotubes with axis in the e3 := (0, 0, 1)
direction. Therefore, a nanotube is identified with a configuration

C := Cn + Le3Z

where L > 0 is the period of C and Cn := {x1, . . . , xn} is a collection of n points
xi ∈ R3 such that xi · e3 ∈ [0, L). In the following, we will refer to Cn as the
n-cell of C, and since C is characterized by its n-cell Cn and its period L, we will
systematically identify the periodic configuration C with the couple (Cn, L), i.e.
C = (Cn, L).

We now introduce the configurational energy E of a nanotube C, and we detail
the hypotheses assumed on E throughout the paper. The energy E is given by the
sum of two contributions, respectively accounting for the two and the three-body
interactions among particles that are respectively modulated by the potentials v2
and v3, see (2).

The two-body potential v2 : R+ → [−1,∞) is required to assume its minimum
value −1 uniquely at 1. Moreover, we ask v2 to be short-ranged, that is to vanish
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shortly after 1. For the sake of definiteness, let us define v2(r) = 0 for r > ρ with
ρ := 1.1. We say that two particles x, y ∈ C are bonded, or that the bond between
x and y is active, if |x− y| < ρ, and we refer to the graph formed by all the active
bonds as the bond graph of C. By periodicity this translates in considering two
particles xi and xj of the n-cell Cn of C as bonded if |xi − xj |L < ρ where | · |L is
the distance modulo L defined by

|xi − xj |L := min
z∈{−1,0,+1}

|xi − xj + Lze3|

for every xi, xj ∈ Cn. Let us denote by N the set of all couples of indexes corre-
sponding to bonded particles, i.e.

N := {(i, j) : xi, xj ∈ Cn, i 6= j, and |xi − xj |L < ρ},

and by xji the particle in {xi+Lze3 : z = −1, 0,+1} such that |xji−xj | = |xi−xj |L.
The three-body potential v3 : [0, 2π)→ [0,∞) is assumed to be symmetric around

π, namely v3(α) = v3(2π−α), and to be taking its minimum value 0 only at 2π/3
and 4π/3. The potential v3 is also assumed to be convex and strictly decreasing in
the interval

(1) Iε := (2π/3−ε, 2π/3],

for some ε < π/8. Moreover, v3 is required to be differentiable at each point of Iε,
so that in particular v′3(2π/3) = 0. The choice of ε is arbitrary. Small values of ε
correspond to a weaker assumption on the potential but will force us to restrict to
large diameter tubes during the analysis, namely large values of `. In turn, minimal
tube diameters can be discussed by assuming ε to be relatively large.

The configurational energy E of a nanotube C = (Cn, L) is defined by

(2) E(C) = E(Cn, L) :=
1

2

∑
(i,j)∈N

v2(|xi−xj |L) +
1

2

∑
(i,j,k)∈T

v3(αijk)

where the angle αijk refers to the angle formed by the vectors xji − xj and xjk − xj
(clockwise measured from xji to xjk), see Figure 2 , and the index set T to the triples
corresponding to first-neighboring particles, i.e.

T := {(i, j, k) : i 6= k, (i, j) ∈ N and (j, k) ∈ N}.

For all triples (i, j, k) ∈ T we call αijk a bond angle.
We observe that the above assumptions are generally satisfied by classical interac-

tion potentials for carbon (see [19, 20]). In particular, note that we are not imposing
here that the two-body potential v2 is repulsive at short-range although this is a
fairly classical assumption and, currently, the only frame in which crystallization in
the hexagonal lattice has been rigorously proved [6, 15].

Note that in Section 7 a specific energy that satisfies these hypotheses is consid-
ered for the numeric simulations, see (23) and (24).

Since the energy E is clearly rotation and translation invariant, in the following
we will tacitly assume that all statements are to be considered up to isometries.
We say that a nanotube C = (Cn, L) is stable if (Cn, L) is a local minimizer of the
interaction energy E.
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Figure 2. Notation for bonds and bond angles.

3. Zigzag carbon nanotube geometry

We begin by modeling zigzag nanotubes, armchair geometry being described later
in Section 5 instead.

By prescribing the position of the atoms on each nanotube section we introduce
a one-dimensional family of zigzag configurations Fz that will play a crucial role, as
already mentioned in the Introduction. These configurations are indeed objective,
in the sense of [7], as they are obtained as orbits of a finite set of atoms under the
action of a prescribed isometry group. In particular, we fix the integer ` > 3 and
define the family Fz as the collection of all configurations that, up to isometries,
coincide with

(3)

{(
r cos

(
π(2i+k)

`

)
, r sin

(
π(2i+k)

`

)
, k(1+s) + j

) ∣∣∣
i = 1, . . . , `, j = 0, 1, k ∈ Z

}
for some choice of

r ∈
(

0,
1

2 sin(π/(2`))

)
and s ∈ (0, 1)

such that

(4) s2 + 4r2 sin2
( π

2`

)
= 1.

Fz is therefore a one-parameter smooth family of configurations, as each configu-
ration in Fz is uniquely determined by r or s, taking relation (4) into account. An
illustration of a configuration in Fz is in Figure 3 below.

axis

Figure 3. Zigzag nanotube.

The following basic geometric properties hold.

Proposition 3.1. Let F ∈ Fz. Then
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(a) Atoms in F lie on the surface of a cylinder whose radius is r and whose
axis direction is e3.

(b) Atoms in F are arranged in planar sections, perpendicular to e3, obtained
by fixing k and j in (3). Each of the sections exactly contains ` atoms,
arranged as the vertices of a regular `-gon. For each section, the two closest
sections are at distance s and 1, respectively.

(c) The configuration F is invariant under a rotation of 2π/` around e3, under
the translation 2(1 + s)e3, and under a rototranslation of angle π/` along
the vector (1 + s)e3.

(d) Let i ∈ {1, . . . , `}, k ∈ Z and j ∈ {0, 1}: the triple (i, k, j) individuates
points of F . Given x ≡ (i, k, 0) ∈ F , the three points (i, k, 1), (i, k − 1, 1)
and (i − 1, k − 1, 1) have distance 1 from x. Similarly, if x ≡ (i, k, 1), the
distance of x from (i, k, 0), from (i, k + 1, 0) and from (i− 1, k + 1, 0) is 1.
Here (0, k, j) identifies with (`, k, j).

Proof. All the assertion are straightforward consequences of the definition. In par-
ticular, at each x ∈ F , by triggering j we obtain another point at distance 1, the
bond being parallel to e3. The other two points at distance 1 are obtained from x
with a rotation of π/` around e3 (one for each sense) and then with a translation
of s in the direction of e3. Therefore they both have square distance from x equal
to 4r2 sin2(π/(2`)) + s2, which is equal to 1 by (4), and they minimize the distance
from x among the other points on the same section. �

Notice that the parameters range between two degenerate cases: r = 0 (the
cylinder is reduced to its axis) and s = 0 (sections collide). However, we shall
impose further restrictions because each atom should have three (active) bonds in
order to represent a carbon nanotube. In particular, the only three bonds per atom
should be the ones individuated by point (d) of Proposition 3.1. By recalling that
two particles are bonded if their distance is less than the reference value 1.1, since
the distance between two consecutive sections is either 1 or s, we require s > 1/20,

i.e. r < r+z :=
√

0.9975/(2 sin(π/(2`))). On the other hand, on each section, the
edge of the regular `-gon should be greater than 1.1. Such length is given by 2r sin γ`,
where γ` is the internal angle of a regular 2`-gon, i.e.

(5) γ` := π

(
1− 1

`

)
.

Therefore, we need to impose r > r−z := 0.55/ sin γ`. With these restrictions we
have the following

Proposition 3.2. Let F ∈ Fz with r−z < r < r+z . Then, all atoms in F have
exactly 3 (first-nearest) neighbors, at distance 1, with one bond in the direction of
e3. Among the corresponding three smaller than π bond angles, two have amplitude
α (the ones involving atoms in three different sections), and the third has amplitude
βz, where α ∈ (π/2, π) is obtained from

(6) sinα =
√

1− s2 = 2r sin
( π

2`

)
and βz is given by

(7) βz = βz(α) := 2 arcsin
(

sinα sin
γ`
2

)
.
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A B

C D

R

Figure 4. The construction of the function βz.

Proof. The restrictions on r imply that there are three (unit length) bonds per
atom, as seen in the above discussion. The amplitude of the three corresponding
active bond angles do not depend on the atom: this follows from property (c) in
Proposition 3.1. The value of α is obtained by elementary trigonometry, indeed

α = ÂBC = ÂBD from Figure 3, where B represents a point of F , surrounded by

its three first neighborhoods. We have CR = BC sinα since B̂RC = π/2. Hence,
we compute that

(8) CD = 2CR sin(γ`/2) = 2BC sinα sin(γ`/2).

Now, relation (7) follows from (8) since BC = BD = 1 and βz(α) = ĈBD. �

As already mentioned, the nice feature of the collection Fz is that all its con-
figurations are smoothly and uniquely determined by the specification of a single
scalar parameter. Among the equivalent choices for such a parameter, we con-
centrate from now on the bond angle α, which is introduced in Proposition 3.2,
instead of the parameters r or s appearing in the definition of Fz. The rela-
tion among the three is given by (6). In particular, the constraint corresponding
to r < r+z is α > α−z := arccos(−1/20) ≈ 93◦ and the one corresponding to
r > r−z is 2 sinα sin(γ`/2) > 1.1 (notice that a constraint working for any ` ≥ 4 is

α < α+
z := π−arcsin(1.1/

√
2 +
√

2) ≈ 143.5◦). It follows from Proposition 3.2 that
for all α ∈ (α−z , α

+
z ) we have exactly one configuration Fα ∈ Fz, featuring 2/3 of

the (smaller than π) bond angles of value α. Since the three angles at each atom
of Fα necessarily fulfill the elementary constraint

(9) βz + 2α < 2π,

we have that the function βz (introduced in (7) and defined in (π/2, π)) satisfies
βz(α) ∈ (0, 2(π−α)), see Figure 5. One explicitly computes that

(10) β′z(α) =
2 sin

γ`
2

cosα√
1− sin2 α sin2 γ`

2

< 0, β′′z (α) = −
2 sinα sin

γ`
2

cos2
γ`
2(

1− sin2 α sin2 γ`
2

)3/2 < 0

for every α ∈ (π/2, π). Thus, βz is strictly decreasing and strictly concave on
(α−z , α

+
z ).

Rolled-up and Cox-Hill zigzag models. The configurations corresponding with
the Rolled-up and the Cox-Hill models (henceforth indicated as Rolled-up and Cox-
Hill configurations) are included in the collection Fz along with the choices α =
αru
z := 2π/3 and α = αch

z , respectively. The latter αch
z is the unique solution of the
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Figure 5. The angle βz as a function of the angle α (above) and
a zoom (below) with the points (αru

z , βz(α
ru
z )) and (αch

z , βz(α
ch
z ))

for ` = 10.

equation

(11) βz(α
ch
z ) = αch

z

which exists as βz is smooth and strictly decreasing in (α−z , α
+
z ) from (10), βz(3π/5) >

3π/5, and βz(2π/3) < 2π/3, see Figure 5. Actually, the value αch
z , which is obvi-

ously smaller than αru
z , can be explicitly computed: indeed, using the definition (7),

equation (11) has the solution

αch
z = arccos

(
1− 2 sin2(γ`/2)

2 sin2(γ`/2)

)
,

which is approximately 114.5◦ for ` = 4 and tends to 2π/3 as `→∞.

4. Minimizing the energy on Fz

Of course, a configuration Fα in the family Fz is periodic. Its minimal period
is explicit and depending on α, reading

λα := 2(1− cosα) = 2(1 + s).

Correspondingly, given n = 4`, the n-cell of Fα = (Fα, λα) is given by the configu-
ration Fα consisting of the n = 4` points xi ∈ Fα such that xi ·e3 ∈ [0, λα), i.e. the
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points on 4 consecutive sections. In particular, the energy E(Fα) is the energy of
the corresponding n-cell Fα, computed by means of (2) with respect to the minimal
period λα. The energy on the family Fz hence reads

E(Fα) = E(Fα, λα) = −3n

2
+ nÊz(α).

The first term in the above right-hand side is nothing but the two-body energy
contribution and it is independent of α. On the other hand, the zigzag angle energy

Êz is defined by

(12) Êz(α) := v3(βz(α)) + 2v3(α)

and represents the three-body energy contribution given by each atom of Fα. Hence,
we have that

Fα minimizes E on {Fα ∈ Fz |α ∈ A} ⇐⇒ α minimizes Êz on A,

for an interval A ⊂ (α−z , α
+
z ). We wish to choose a suitable interval around the

reference value 2π/3. It shall depend on the number ε ∈ (0, π/8) which is fixed from
the beginning, and corresponds to the choice of the interval Iε where assumptions
on v3 are imposed, see (1). We first observe that, by recalling (7), βz > 2π/3− ε is
equivalent to

α < π − arcsin

(
sin(π/3− ε/2)

sin(γ`/2)

)
=: σεz.

Notice that σεz < α+
z since ε < π/8. Moreover, as σεz increases with `, if we define

`εz by √
3

2
sin

(
π

2
− π

2`εz

)
= sin

(π
3
− ε

2

)
,

we obtain σεz > 2π/3 as soon as ` > `εz. Therefore, we consider from now on a large
enough number ` of atoms per section, i.e. we assume ` > 3∨`εz (and smaller values
of ε thus correspond to more severe restriction on `). In this way, after defining

Aεz :=

(
2π

3
− ε, σεz

)
,

we obtain that α ∈ Aεz implies βz > 2π/3− ε and αru
z = 2π/3 ∈ Aεz. Moreover, we

have αch
z ∈ Aεz for any ε ∈ (0, π/8) and ` > `εz (indeed, βz is strictly decreasing and

β(2π/3− ε) > β(σεz) = 2π/3− ε, therefore βz(α
ch
z ) = αch

z implies αch
z > 2π/3− ε).

As a consequence, Aεz is an open neighborhood of the interval (αch
z , α

ru
z ).

From here on ε ∈ (0, π/8) and the integer ` > 3 ∨ `εz are fixed, and we shall
perform the local minimization of the energy. We start by providing two negative
results.

Proposition 4.1. The Cox-Hill zigzag configuration is not a critical point for the
energy.

Proof. Let us start by proving that β′z > −2. Indeed, we easily check the chain of
elementary equivalences

−2 < β′z(α)⇐⇒ − cosα sin
γ`
2
<

√
1− sin2 α sin2 γ`

2

⇐⇒ cos2 α sin2 γ`
2
< 1− sin2 α sin2 γ`

2

⇐⇒ sin2 γ`
2
< 1
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which holds since γ` < π for every ` . By (12) we obtain that

(13) Ê′z(α
ch
z ) = 2v′3(αch

z ) + v′3(αch
z )β′z(α

ch
z ) = v′3(αch

z )(2 + β′z(α
ch
z )) < 0

since βz(α
ch
z ) = αch

z and v′3(αch
z ) < 0. Hence, αch

z is not a critical point of Êz
and the Cox-Hill configuration Fαch

z
is not a critical point for the energy E on

{Fα ∈ Fz |α ∈ Aεz}. A fortiori, Fαch
z

is not a critical point of the energy E. �

Proposition 4.2. The Rolled-up zigzag configuration is not a critical point for the
energy.

Proof. We have already remarked that βz(α) > 2π/3 − ε for α ∈ Aεz, and with
(9) this implies βz(2π/3) ∈ Iε. Then, it suffices to use the assumptions on v3 and
compute

(14) Ê′z(2π/3) = 2v′3(2π/3) + v′3(βz(2π/3))β′z(2π/3) = v′3(βz(2π/3))β′z(2π/3) > 0.

Thus, 2π/3 is not a critical point of Êz. Hence, the Rolled-up configuration Fαru
z

is
not a minimizer of the energy E on {Fα ∈ Fz |α ∈ Aεz}. A fortiori, Fαru

z
is not a

critical point for the energy E. �

We now prove that Êz admits a unique minimizer in Aεz.

Theorem 4.3. On the interval Aεz, the energy Êz admits a unique global minimizer
α∗z. Correspondingly, F∗z := Fα∗

z
is the unique minimizer of E on {Fα ∈ Fz |α ∈

Aεz}. In particular, α∗z ∈ (αch
z , α

ru
z ).

Proof. After recalling that αch
z and αru

z belong to Aεz, we first show that there is

no minimizer of Êz on the interval Aεz ∩ {α < α̃}, where α̃ is the angle realizing
βz(α̃) = 2π/3. By the monotonicity properties (10) of βz, α̃ is the unique angle
with this property and clearly α̃ < αch

z . If α̃ ≤ 2π/3 − ε there is nothing to
prove, otherwise let α ∈ (2π/3− ε, α̃), so that βz(·), which is decreasing, belongs to
(2π/3, 2π/3 + 2ε), thus

Êz(α) = 2v3(α) + v3(βz(α)) > 2v3(α̃) = 2v3(α̃) + v3(βz(α̃)) = Êz(α̃),

since v3 is strictly decreasing in Iε and since v3 ≥ 0 and v3(2π/3) = 0.

Similarly there is no minimizer of Êz in (2π/3, σεz). Indeed, for α in such interval
we have βz ∈ Iε (this comes from (9) and from the definition of σεz) and then again
the monotonicity of βz(·) and of v3 entails

Êz(α) = 2v3(α) + v3(βz(α)) > v3(βz(2π/3)) = Êz(2π/3).

Eventually, if α ∈ (α̃ ∨ (2π/3− ε), 2π/3), then βz ∈ Iε: since the composition of
v3 (convex and strictly decreasing on Iε) and βz (strictly concave) is strictly convex,

it follows from (12) that Êz is strictly convex in (α̃∨ (2π/3− ε), 2π/3). We use this
strict convexity together with (13) and (14) to infer that

Ê′z(α) < Ê′z(α
ch
z ) < 0 < Ê′z(α

ru
z )

for any α ∈ (α̃ ∨ (2π/3− ε), αch
z ), and that there is a unique minimizer α∗z of Êz in

Aεz, found in (αch
z , α

ru
z ). �

The optimal configuration F∗z does not coincide neither with the Cox-Hill nor
with the Rolled-up configuration and it is rather some intermediate configuration
(intermediate in the sense of the parametrization via α). As such it qualifies as a
new, variationally-based, geometric model for zigzag nanotubes. The configuration
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F∗z is uniquely defined in Fz. Its most striking feature is that it is locally stable with
respect to perturbations, not necessarily restricted to the family Fz (see Section 7).
This fact is particularly remarkable as it allows to rigorously justify the geometry of
the 3n-dimensional nanotube configuration moving from variational considerations
in one dimension.

5. Armchair geometry

We now address the armchair nanotube geometry and observe that the program
outlined in the previous two sections for the zigzag nanotube can be carried out
analogously.

First of all we introduce a family Fa of specific armchair configurations as the
union of sections consisting of a fixed even integer ` > 2 of atoms. In each section
the ` atoms are arranged by dividing them in two groups of `/2 atoms, and then
placing the atoms of each group at the vertices of a regular (`/2)-gon.

More precisely, let ` > 2 be an even integer and define the family Fa as the
collection of all configurations that, up to isometries, coincide with

(15)

{(
r cos

(
2π

`
(2i+k) + qrj

)
, r sin

(
2π

`
(2i+k) + qrj

)
, pk

) ∣∣∣
i = 1, . . . , `/2, j = 0, 1, k ∈ Z

}
for some

r ∈
(

1

2 sin(π/`)
,

1

2 sin(π/(2`))

)
and p ∈ (0, 1)

such that

(16) p2 + 4r2 sin2
(π
`
− qr

2

)
= 1,

where

qr := 2 arcsin

(
1

2r

)
.

Therefore, Fa is a one-parameter smooth family of configurations. Let us collect
some geometric properties which hold for all the elements of Fa.

Proposition 5.1. Let F ∈ Fa. Then,

(a) Atoms in F lie on the surface of a cylinder whose radius is r and whose
axis direction is e3.

(b) Atoms in F are arranged in planar sections, perpendicular to e3, obtained
by fixing k and in (15). Each of the sections exactly contains ` atoms,
arranged as the vertices of two regular (`/2)-gons, which are rotated of an
angle qr with respect to each other. For each section, the two closest sections
are both at distance p.

(c) The configuration F is invariant under a rotation of 4π/` around the axis
e3, under the translation 2pe3, and under a rototranslation of an angle 2π/`
and the vector pe3.

(d) Let i ∈ {1, . . . , `/2}, k ∈ Z and j ∈ {0, 1}. The triple (i, k, j) individuates
points of F . Given x ≡ (i, k, 0) ∈ F , the three points (i, k, 1), (i, k − 1, 1)
and (i − 1, k + 1, 1) have distance 1 from x. Similarly, if x ≡ (i, k, 1), the
distance of x from (i, k, 0), from (i, k + 1, 0) and from (i+ 1, k − 1, 0) is 1.
Here (0, k, j) identifies with (`/2, k, j).
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Proof. The properties are direct consequence of the definition. About point (d),
notice that for x ≡ (i, k, j), by triggering j we remain on the same section and
rotate of an angle qr, the corresponding chord having length 1 by definition. The
other two points are obtained by skipping to each of the two sections at distance p,
and rotating around e3 of an angle 2π/`−qr, so the distance is 1 thanks to (16). �

The parameters range between the two limit cases p = 0 (i.e. qr = π/`) and
p = 1 (i.e. qr = 2π/`), in the first sections collide and in the second one obtains a
prism shape. As for the zigzag configuration, the parameters should be additionally
constrained in order not to activate extra bonds. Since p is the distance between
two consecutive sections we require 2p > 1.1. This corresponds, from (16), to

2r sin(π/` − qr/2) <
√

0.6975, which yields r < r+a , where r+a denotes the unique
positive solution of the corresponding equality (notice that the map r 7→ 2r sin(π/`−
qr/2) is monotone increasing for r > 1/2, as ` ≥ 4, and taking values 0 and 1 at
extremes values of r). Moreover, on each section, consider the distance between
two consecutive atoms, one from each of the two (`/2)-gons. Such distance is
either 2r sin(qr/2), which is 1 and corresponds to a bond described in point (d)
of Proposition 5.1, or 2r sin(2π/`− qr/2), and the latter shall be greater than 1.1.
Thus, we impose r > r−a , where r−a is, similarly, the unique positive solution to
2r sin(2π/`− qr/2) = 1.1 After fixing these constraints on r we obtain the following
statement, whose proof follows again by trigonometry arguments.

Proposition 5.2. Let F ∈ Fa with r−a < r < r+a . Then, all atoms in F have
exactly 3 (first-nearest) neighbors, at distance 1, one bond being orthogonal to e3.
Among the corresponding three smaller than π bond angles, two have amplitude α
(the ones involving the bond which is orthogonal to e3) and the third has amplitude
βa, where α ∈ (π/2, γ`) is given by

(17) cosα = 2r cos γ` sin
(π
`
− qr

2

)
and

(18) βa = βa(α) := 2 arccos

(
cosα

cos γ`

)
.

Analogously to the zigzag family, also the elements of Fa are smoothly and
uniquely determined by the bond angle α ∈ (π/2, γ`). Moreover, using (17), the
constraint r < r+a is equivalent to cos2 α < 0.6975 cos2 γ`, and a constraint working

for any ` ≥ 4 is α < α+
a := arccos(−

√
0.34875) ≈ 126◦. On the other hand, using

the identity 2r sin(2π/` − qr/2) = 1 + 4r cos(π/`) sin(π/` − qr/2) and (17), the
constraint r > r−a becomes α > α−a := arccos(−1/20) ≈ 93◦.

The angle βa, that is defined as a function of α on (π/2, γ`) by (18), is smaller
than 2(π−α) since the elementary constraint needs to be satisfied

(19) βa + 2α < 2π.

Furthermore, βa is strictly decreasing and strictly concave since

(20) β′a(α) = − 2 sinα√
cos2 γ` − cos2 α

< 0 and β′′a (α) =
2 cosα sin2 γ`

(cos2 γ` − cos2 α)
3/2

< 0

for every α ∈ (π/2, γ`), see Figure 6.
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Rolled-up and Cox-Hill armchair models. In the interval (α−a , α
+
a ), we find the

two relevant angles corresponding to the rolled up model and the Cox-Hill model.
The first is the angle αru

a that satisfies β(αru
a ) = 2π/3, in particular using (18) we

find

(21) αru
a = arccos

(cos γ`
2

)
.

On the other hand, the angle αch
a is such that βa(αch

a ) = αch
a , which reads, from

(18), 2 cos2 αch
a − cos2 γ` cosαch

a − cos2 γ` = 0. The solution is

αch
a = arccos

(
1

4
cos2 γ` −

1

4

√
cos4 γ` + 8 cos2 γ`

)
.

In particular we have αru
a < αch

a < 2π/3, with αru
a ≈ 110, 5◦ and αch

a ≈ 113◦ for
` = 4. Both the values tend to 2π/3 as `→∞.

6. Minimizing the energy on Fa

Any configuration in Fa is periodic. Indeed, given the even integer ` ≥ 4 and a
corresponding configuration Fα ∈ Fa, we may identify a minimal periodicity n-cell
Fα, with n = 2`, the period being

Λα := 2

(
1− cos2 α

cos2 γ`

)1/2

= 2p.

The energy of the configuration Fα is therefore

E(Fα) = E(Fα, Λα) = −3n

2
+ nÊa(α),

where

(22) Êa(α) := v3(βa(α)) + 2v3(α).

In particular, the energy is again localized as all atoms are the same, and

F minimizes E on {Fα ∈ Fa |α ∈ A} ⇐⇒ α minimizes Êa on A,

for any interval A ⊂ (α−a , α
+
a ). The choice of the suitable interval of minimization,

which should contain the significant angles, is necessarily depending on the number
ε ∈ (0, π/8) which defines Iε in (1), as the behavior of v3 is known in Iε. A necessary
condition is βa > 2π/3− ε, which, by means of (18), reads

α ≤ arccos(cos γ` cos(π/3− ε/2)) =: σεa,

and notice that σεa increases with `. Therefore, if we fix ε ∈ (0, π/8), we choose
` > 3 ∨ `εa and set

Aεa :=

(
2π

3
− ε, σεa ∧ α+

a

)
,

where `εa is the unique value of ` such that

cos γ` cos
(π

3
− ε

2

)
= −1

2
,

we indeed obtain that 2π/3 ∈ Aεa and that α ∈ Aεa ⇒ βa > 2π/3− ε. Moreover, Aεa
contains αru

a for ` > 3 ∨ `εa. Indeed, the value αru
a increases with `, therefore it is

enough to verify that the value of αru
a for ` = `εa is greater than 2π/3 − ε, that is,

invoking (21), we have to check that

cos
(π

3
− ε

2

)
cos

(
2π

3
− ε
)
> −1

4
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for ε ∈ (0, π/8). But this holds true since there is equality at ε = 0 and the left
hand side is increasing in this interval as easily checked.

 0
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α

Figure 6. The angle βa as a function of the angle α (above) and
a zoom (below) with the points (αru

a , βa(αru
a )) and (αch

a , βa(αch
a ))

for ` = 10.

In analogy to Section 4, we now introduce the variationally-based geometric
model for the armchair nanotube by minimizing E over the family Fa, and we
verify that it differs from the Cox-Hill and the Rolled-up configurations.

In particular, for the next result we fix ε ∈ (0, π/8) and take ` > 3 ∨ `εa, so that
the interval Aεa is an open neighborhood of (αru

a , 2π/3).

Theorem 6.1. The Rolled-up and Cox-Hill armchair configurations are not critical

points of E. Moreover, Êa admits a unique global minimizer α∗a in the interval Aεa.
Thus, F∗a := Fα∗

a
is the unique minimizer of E on {Fα ∈ Fa |α ∈ Aεa}. In

particular, α∗a ∈ (αru
a , α

ch
a ).

Proof. We begin by observing that the fact that the Rolled-up armchair configura-
tion is not a critical point for the energy easily follows from the convexity and strict
monotonicity of v3 in Iε and from v′3(2π/3) = 0, that is

Ê′a(αru
a ) = 2v′3(αru

a ) + v′3(2π/3)β′a(αru
a ) = 2v′3(αru

a ) < 0.

Furthermore, by the same argument used in Proposition 4.1 we have that also
the Cox-Hill armchair configuration is not a critical point for the energy and that,
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in particular, Ê′a(αch
a ) > 0. In fact, from (20) it is easily seen that β′a(α) < −2.

Hence, the same computation used in (13) this time shows that Ê′a(αch
a ) > 0.

We easily have Êa(α) > Êa(αru
a ) for α < αru

a and Êa(α) > Êa(2π/3) for α >

2π/3, by the same arguments used in Theorem 4.3. We also have Ê′a(2π/3) =
v′3(βa(2π/3))β′a(2π/3) > 0. These information, together with the fact that α ∈
(αru
a , 2π/3) ⇒ βa ∈ Iε, so that reasoning as done in Theorem 4.3 Êa turns out to

be strictly convex in (αru
a , 2π/3), entail that Êa admits a unique minimizer in the

interval Aεa. But we have seen that Ê′a(αch
a ) > 0 as well, therefore such a minimizer

belongs to (αru
a , α

ch
a ). �

7. Numerical investigation on stability

The optimal geometries which have been identified above have been checked to
be local energy minimizers within the restricted class of highly-symmetric config-
urations Fa and Fz, respectively. The aim of this section is to provide numerical
evidence of the fact that they are indeed optimal with respect to generic small per-
turbations, possibly not restricted to Fa and Fz. This entails that these optimal
configurations are indeed strict local energy minimizers. We shall detail in [16]
the analytical discussion of this problem and limit ourselves here in presenting the
corresponding simulations.

7.1. Minimization of the energy in Fa and Fz. We provide here an illustration
to the analysis of the previous sections. Let us start by clarifying the simulation
setting. The energy of the configuration E = E2 + E3 will be defined as in (2).

In all computations we prescribe the interaction energy densities as

v2(r) =

{
f(r)− f(1.1) if 0 < r < 1.1,
0 otherwise

(23)

f(r) =
1

2r12
− 1

r6
,

v3(θ) = 10(cos θ + 1/2)2.(24)

In particular, note that v2 is short-ranged and it is minimized uniquely at r = 1.

Along with this provisions, we can immediately compute the energy Êi along the
corresponding family Fi for i = a, z, see Figure 7.

Notice that the above computation illustrates the already analytically proven
fact that neither the Rolled-up angle αru

i nor the Cox-Hill angle αch
i are minimizers

of the energy-per-particle Êi. On the contrary, one finds the optimal angles α∗i . To
these angles one associates the corresponding configurations in F∗i which are hence
global minimizers of the energy E in Fi.

7.2. Stability with respect to perturbations of the cell. In order to provide
numerical evidence of the fact that the optimal angles α∗i (i = z, a) describe locally
stable geometries, we compare energies of the optimal configurations F∗i with those
corresponding to perturbations.

As these perturbations may obviously brake the symmetry of the configuration,
we are forced to work with the actual energy E instead of the simpler angle energies

Êi. In particular, we need to specify the period L to be used for the computation of
the energy E(·, L). Within this subsection, we fix this period to be Lα∗

i
, namely the

period to be a suitable multiple of the minimal period of the optimal configurations
F∗i . This amounts to say that we are considering perturbations of the n-cell of F∗i
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Figure 7. The energy-per-particle Êi in the zigzag (above) and in
the armchair (below) family, as a function of the angle α for ` = 10,
together with a zoom about the minimum.

only, leaving the period fixed. More general perturbations including changes in the
period are considered in Subsection 7.3 below.

We shall fix the topology of the bond graph of the configurations under consid-
eration. In order to check the robustness of our findings with respect to nanotubes
of different aspect-ratios, we will concentrate on the following six topologies:

• Zigzag topologies:
Z1) ` = 10 atoms on the cross section, period L = 4λα∗

z
.

Z2) ` = 20 atoms on the cross section, period L = 4λα∗
z
.

Z3) ` = 10 atoms on the cross section, period L = 8λα∗
z
.

• Armchair topologies:
A1) ` = 10 atoms on the cross section, period L = 4Λα∗

a
.

A2) ` = 20 atoms on the cross section, period L = 4Λα∗
a
.

A3) ` = 10 atoms on the cross section, period L = 8Λα∗
a
.

In all cases we generate random perturbations of the optimal cell Fα∗
i

and com-
pute the corresponding energy with respect to the given fixed period L. The results
of the simulations are collected in Figure 8 and prove that indeed the optimal con-
figurations are local strict energy minimizers.
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Figure 8. Comparison between energies of the optimal configu-
rations and energies of their perturbations in the cases Z1, Z2, Z3
(left, from the top) and A1, A2, A3 (right, from the top). The
marker corresponds to the optimal configuration F∗i and value α
represents the mean of all α-angles in the configuration.

7.3. Stability with respect to general periodic perturbations. We extend
here the observations of Subsection 7.2 to the case of general periodic perturbations
of the optimal F∗i in Fi. The point here is that the period of the configurations
can also change in order to allow for noncompactly supported perturbations such
as traction.

We focus here on the specific topology Z1, for definiteness, and identify

F∗z = (F ∗α∗
z
, L∗) for L∗ = 4λα∗

z

as the corresponding optimal configuration, along with its n = 4(4`) = 160-cell F ∗α∗
z
.

Let now the period L be chosen in a small neighborhood of L∗. Correspondingly,
let (F ∗L, L) be the only configuration in Fz with 160-cell F ∗L and period L. For
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different periods L, Figure 9 shows the comparison of the energy E(F ∗L, L) with

that of random perturbations of the form (F̃ , L). The numerical evidence confirms
that the optimal energy is reached by the configuration (F ∗L, L) for all given L.
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1

Figure 9. Optimality of the configuration (F ∗L, L) ∈ Fz (bottom
point) for all given L in a neighborhood of L∗.
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Figure 10. Elastic response of the nanotube Z1 under uniaxial
small (left) and large displacements (right). The function L 7→
E(F ∗L, L) (bottom) corresponds to the lower envelope of the random
evaluations (top).
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These numerical results imply the stability of (Fα∗
z
, L∗) with respect to general

periodic perturbations. More precisely, we have the following

E(Fα∗
z
, L∗)

Thm. 4.3
≤ E(F ∗L, L)

Figure 9

≤ E(F̃ , L)

for all perturbations F̃ of F ∗L where the first inequality is actually proved in The-
orem 4.3.

These numerical findings actually provide a validation of the so-called Cauchy-
Born rule under prescribed tensile displacement (hard device). Indeed, the Cauchy-
Born rule can be formulated in this context as the optimality of (F ∗L, L) among all
configurations with the same period. By directly computing L 7→ E(F ∗L, L) we
can describe the elastic response of the nanotube under tensile and compressive
displacements, see Figure 10.

The nanotubes behaves linearly elastically in a neighborhood of the stress-free
configuration (Fα∗

i
, L∗). On the other hand, the mechanical response deviates from

the linear elastic regime for strains of the order of 8%. This nonlinear behavior is
both the effect of the specific shape of the two-body interaction potential in use and
of the structure of the nanotube.
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