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A trajectory planning method for angular velocity of spacecraft is developed to

avoid the impassable singular states for singular gimbal control moment gyroscope (S-

GCMG) systems in this paper. A new set of attitude parameters, named σ-parameters,

is first developed. Based on the properties of σ-parameters, two approximate decoupled

rotations are presented. To achieve a rapid attitude maneuver, both of the decoupled

motions are designed as simple bang-off-bang type maneuvers. Then, a type of SGCMG

singularity-free angular velocity trajectory on the conic surface is developed. There-

after, an attitude controller based on σ-parameters is developed to track the reference

trajectory. To avoid the impassable singular state, suitable axes of the approximate

decoupled two rotations are chosen to achieve the fastest maneuver under the condition

that the minimum distance from the angular momentum trajectory to the impassable

surface is greater than a safety distance. Finally, simulations are performed to verify

the effectiveness of the proposed SGCMG singularity avoidance method.

1 Post-doctoral, Graduate School at Shenzhen; hzl1334123@163.com.
2 Professor, Research Center of Satellite Technology; gengyh@hit.edu.cn.
3 Associate Professor, Research Center of Satellite Technology; wubaolin@hit.edu.cn. Corresponding author.
4 Ph.D. Student, Department of Aerospace Science and Technology; huangsm_hit@163.com.

1



I. Introduction

SGCMG is a type of commonly used actuator for spacecraft rapid maneuver due to its compar-

ative mechanical simplicity and torque amplification capability. However, the inherent singularity

of SGCMG systems renders their applications difficult. At a singular state, the produced torque

cannot cover a three dimensional space. The internal singular states are classified as the passable

and impassable singular state. The passable singular states can be easily avoided by adding a null

motion to the pseudo-inverse solution [1, 2]. Therefore, attention is mainly paid to avoiding the

impassable singular states, and many steering laws have been developed.

Magulies and Aubrun [3] developed the fundamental theories of the SGCMGs from the geomet-

rical point of view. Kurokawa [4, 5] analyzed the corresponding solution in gimbal angle space for

a certain angular momentum trajectory, and pointed out that no impassable singular state will be

encountered for suitable initial gimbal angles. Vadali [6] then presented a method for choosing the

initial gimbal angles to ensure that all of the impassable singular states were avoidable for a certain

angular momentum trajectory. In addition to initial gimbal angles, another significant factor for

singularity avoidance is the gimbal angle trajectory. To generate a suitable gimbal angle trajectory,

a direct singularity avoidance method was developed in [7]. This method can avoid most of the

singular states, but it is computation-intensive.

An impassable singular state is sure to be encountered for some inappropriate sets of initial

gimbal angles. Then, the torque error must be induced to escape from the corresponding impassable

singular surface. Nakamura and Hanafusa [8] presented a singular robust (SR) steering law, and

this method was improved using an SVD method in [9–11]. Wie [12–14] summarized the theories of

singularity robust steering laws and utilized a non-diagonal weighting matrix to effectively generate

deterministic dither signals when gimbal angles are near the singular states. Fitz-Coy [15] presented

a hybrid steering law ensuring the torque error and the null motion are small when the passable and

impassable singular states are nearly approached, respectively. Takada [16] presented a singularity-

avoidance steering law by adding a additional torque when angular momentum approaches the
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impassable singular surface. Kurokawa [17, 18] developed a non-singularity and no torque error

steering law for the pyramid configuration from another perspective. A linear constraint is added

on the gimbal angles to re-constrain the angular momentum space, which guarantees no singular

state in the re-constrained angular momentum space. Kanzawa [19] proposed a steering law ensuring

the gimbal angles coverage to a set of target gimbal angles at the end of an attitude maneuver.

The impassable singular states will not be encountered if the reference angular momentum

trajectory does not intersect with the impassable singular surface, which provides another hint for

singular states avoidance. The idea is to design a suitable reference angular momentum trajectory

for a fixed terminal attitude. Various angular trajectories were developed for various purposes, such

as a time-optimal maneuvers [20, 21], and residual vibration suppression [22–24]. However, to the

best of our knowledge, the problem of angular momentum trajectory planning to avoid impassable

singular states of SGCMGs has not been addressed in the literature. The main reason is that it

is challenging to describe the constraint that the reference angular trajectory should not intersect

with the impassable singular surface.

This paper aims to develop a SGCMG singularity avoidance method by planning the angular

momentum trajectory instead of planning the gimbal angle trajectory. Firstl, a new set of attitude

parameters is developed. Based on the properties of this new set, an eigen-axis rotation is then

decomposed as two approximate decoupled rotations with two perpendicular axes. Thereafter,

a new type of angular velocity reference trajectory is developed by designing these two rotations

respectively. Then, an attitude tracking controller with the proposed new set of attitude parameters

is proposed to track the reference angular trajectory. Subsequently, the parameters of these two

rotations are designed to avoid the impassable singular state by minimizing the maneuver time under

the condition that the shortest distance from the angular momentum to the impassable surface is

greater than a safety distance. Simulations results shows the effectiveness of the proposed SGCMG

singularity avoidance method.

The main parts of this paper are organized as follows. Section II derives a new set of attitude

parameters, and its kinematics. Section III develops a new type of reference angular velocity trajec-

tory based on the properties of this new set of attitude parameters. Section IV proposes an attitude
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controller using this new set of attitude parameters. Section IV presents a method for choosing

suitable parameters of this new type of reference angular velocity trajectory to avoid the impassable

singular states. Section V shows the simulation results.

II. Development of a New Set of Attitude Parameters

This section first develops a new set of attitude parameters, which are fundamental for the

development of the new type angular velocity trajectory, presented in the next section, and then

derives the kinematics of this set of attitude parameters. Finally, an attitude rotation is decoupled

as two nearly independent rotations based on the properties of this new set of attitude parameters.

A. Definition of the New Set of Attitude Parameters

Before the development of the new attitude parameters, some coordinate frames are first defined

as: Let B be a body fixed frame defined as follows. The origin is located at the center of mass of the

spacecraft, and {xb, yb, zb} are mutually orthogonal unit vectors fixed in the spacecraft body. Let

I be an inertially fixed reference frame. Its origin is located at the center of mass of the Earth, and

{xi, yi, zi} are mutually orthogonal unit vectors fixed in inertial space. Let T be a target reference

frame. Its origin is located at the center of mass of the spacecraft, and {xt, yt, zt} are mutually

orthogonal unit vectors fixed in inertial space, which represent the target direction of {xb, yb, zb}.

yt

yt1

yb

e
xt

xb

xt1

θbt

zt /zt1

zb

ϕbt

θbtzt
 

rotation

Fig. 1 Two rotations defining the orientation of frame B relative to frame T
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Then, we define the orientation of coordinate frame B with respect to T by two rotations. For

the first rotation, frame T is rotated by an angle θbt ∈ [0, 2π) about zt (positive counterclockwise),

yielding an intermediate frame T1, whose basis vectors are denoted as {xt1, yt1, zt1}, as shown in

Fig. 1. For the second rotation, frame T1 is rotated by an angle φbt ∈ [0, π) about the vector e

(positive counterclockwise) to arrive at frame B, as shown in Fig. 1.

The orientation of B with respect to T1 can be described by zt · zb and zt × zb, where zt · zb =

cos φbt represents the rotation angle, and zt × zb = e sin φbt describes the rotation axis. The

orientation of T ′ with respect to T can be described by the variable θbt. Thus, a new set of attitude

parameters named σ-parameters, which describes the orientation of frame B with respect to frame

T , is defined as follows.

σbt =

























zt · zb

(zt × zb) · xb

(zt × zb) · yb

θbt

























=

























cos φbt

e · xb sin φbt

e · yb sin φbt

θbt

























(1)

where (zt × zb) · xb and (zt × zb) · yb represent the first and the second components of zt × zb in

frame B respectively. Since the third component of zt × zb in frame B is always zero, it is not given

in the definition of σbt. Let ρbt denote [zt ·zb, (zt ×zb) ·xb, (zt ×zb) ·yb]T. The new set of attitude

parameters is then expressed as:

σbt =









ρbt

θbt









(2)

where the constraint of ||ρbt|| = 1 is always satisfied.

B. Kinematics of the New Set of Attitude Parameters

1. Kinematics of ρbt

Firstly, the kinematics of ρbt are derived as follows. The expression of ρbt can be simplified as

ρbt =

















zt · zb

zt · yb

−zt · xb

















(3)
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where the identities (a × b) · c = − (c × b) · a, xb × zb = −yb, and yb × zb = xb are used.

Taking the time derivative of ρbt gives

ρ̇bt =

















−(ωbt × zt) · zb

−(ωbt × zt) · yb

(ωbt × zt) · xb

















=

















−(zt × zb) · ωbt

−(zt × yb) · ωbt

(zt × xb) · ωbt

















(4)

where ωbt is the angular velocity of frame B relative to frame T .

Decomposing the right hand side of Eq. (4) into frame B gives:

ρ̇bt =

















− (zt × zb) · xb, − (zt × zb) · yb, − (zt × zb) · zb

− (zt × yb) · xb, − (zt × yb) · yb, − (zt × yb) · zb

(zt × xb) · xb, (zt × xb) · yb, (zt × xb) · zb

















ωb
bt (5)

where ωb
bt is the body angular velocity relative to T frame, expressed in B. With Eq. (1) and Eq. (3),

Eq. (5) can be simplified as

ρ̇bt =

















ρ̇0

ρ̇1

ρ̇2

















=

















−ρ1 −ρ2 0

ρ0 0 ρ2

0 ρ0 −ρ1

















ωb
bt (6)

where ρ0, ρ1, and ρ2 are the first, second and third element of ρbt, respectively.

2. Kinematic of θbt

The kinematic of θbt is derived as follows. To express more concisely, let a× denote the cross

product matrix of an arbitrary vector a. From the properties of the direction cosine matrix, it

follows that

(

ωb
bt

)×
= −ĊbtC

T

bt (7)

where Cbt is the direction cosine matrix from frame T to frame B. Cbt can be derived from the

definition of the two rotations shown in Fig. 1, and its expression is given by

Cbt =
(

cos φbtI3 + (1 − cos φbt)e
b

(

eb
)T

− sin φbt

(

eb
)×

)

Cz (θbt) (8)
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where eb is the components of e in frame B, I3 denotes the identity matrix with 3 dimensions, and

Cz (θbt) is expressed as

Cz (θbt) =

















cos θbt sin θbt 0

− sin θbt cos θbt 0

0 0 1

















(9)

Substituting Eq. (8) into Eq. (7), and simplifying yields

ωb
bt = φ̇bte

b − (1 − cos φbt)
(

eb
)×

ėb + sin φbtė
b + θ̇btz

b
t (10)

where the expression of ėb can be easily derived by differentiating e =
zt × zb

sin φbt

with respect to time

in frame B. The expression of ėb is then given as follows.

ėb =
ωb

bt

tan φbt

−

(

(

zb
b

)T
ωb

bt

)

zb
t

sin φbt

−
ebφ̇bt

tan φbt

(11)

where zb
t is the components of zt in frame B, and zb

b is the components of zb in frame B.

To solve θ̇bt from Eq. (10), multiplying
(

zb
t + zb

b

)T
at both left side of Eq. (10), substituting

Eq. (11) into Eq. (10), and simplifying yields

(

zb
t + zb

b

)T

ωb
bt = (1 + cos φbt) θ̇bt −

(1 − cos φbt)

tan φbt

(

zb
t + zb

b

)T (

eb
)×

ωb
bt +cos φbt

(

zb
t − zb

b

)T

ωb
bt (12)

where
(

zb
t + zb

b

)T
eb = 0,

(

zb
t

)T
zb

b = cos φbt, and
(

zb
b

)T
ėb = 0 are used. The last two items

on the right hand side of Eq. (12) can be then eliminated when substituting zb
b = [0, 0, 1]

T
,

zb
t = [−ρ2, ρ1, ρ0]

T
, eb sin φbt = [ρ1, ρ2, 0]

T
, and ρ0 = cos φbt into Eq. (12). Thus, the kinematic

of θbt is derived as

θ̇bt =

[

−
ρ2

1 + ρ0

,
ρ1

1 + ρ0

, 1

]

· ωb
bt (13)

3. Kinematics of σbt

With the kinematics of ρbt and θbt, expressed in Eq. (6) and Eq. (13) respectively, the whole

kinematics of σ-parameters are then given by

σ̇bt =

























ρ̇0

ρ̇1

ρ̇2

θ̇bt

























=

























−ρ1 −ρ2 0

ρ0 0 ρ2

0 ρ0 −ρ1

−
ρ2

1 + ρ0

ρ1

1 + ρ0

1

























ωb
bt (14)
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C. Relations of σ-parameters and the corresponding direction cosine matrix

For a known σbt, the direction cosine matrix from T to B can be calculated by

Cbt =

(

ρ0I3 +
ρvρv

T

1 + ρ0

− ρv
×

)

Cz (θbt) (15)

where ρv = [ρ1, ρ2, 0]
T

.

For a known Cbt, σbt can be calculated as follows. ρ0 and ρv can be first calculated by

ρ0 =
(

zb
t

)T

zb
b =

(

Cbtz
t
t

)T
zb

b (16)

ρv =
(

zb
t

)×
zb

b =
(

Cbtz
t
t

)×
zb

b (17)

where zt
t = zb

b = [0, 0, 1]T. Cz (θbt) can be then obtained by

Cz (θbt) =

(

ρ0I3 +
ρvρv

T

1 + ρ0

− ρv
×

)T

Cbt (18)

D. Properties of the New Set of Attitude Parameters

Based on the definition of σ-parameters in Eq. (3) and its kinematics in Eq. (14), the following

properties are obtained.

If ωbt is chosen along the direction of zt, and expressed as ωbt = ωθzt, φbt and eb are both

constant, but θbt changes with a rate of ωθ. If ωbt is chosen along the direction of e, and expressed

as ωbt = ωφe, θbt and eb are both constant, but φbt changes with a rate of ωφ. Then, a approximate

decoupled two rotations, ωbt = ωθzt and ωbt = ωφe, are obtained, which will be used to design the

angular velocity trajectory of the spacecraft afterward.

III. Angular Velocity Trajectory Planning

This section firstly develops a new angular velocity trajectory based on the properties of σ-

parameters. This new angular velocity trajectory is a space curve on a conic surface, which can

be therefore used to avoid some unwanted points in angular velocity space. However, there is only

one available angular velocity trajectory for a certain final attitude, since the rotation axes are

limited as zt and e. To increase the number of the angular velocity trajectories, a more general type

of angular velocity trajectory is developed based on a more general type of two rotations, whose
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rotation axes are not limited to be zt and e. Consequently, the possibility of avoiding unwanted

points is increased.

A. Angular Velocity Trajectory Based on the Properties of σ-parameters

To avoid some unwanted points in angular velocity space, a new angular velocity trajectory is

developed based on the properties of σ-parameters. Different from the traditional trajectory (eigen-

axis maneuver), the new angular velocity trajectory is a space curve instead of the curve on a certain

axis (eigen-axis).

To design the new type of angular velocity trajectory, a reference frame R is first defined as

follows. The origin is located at the center of mass of the spacecraft, and {xr, yr, zr} are mutually

orthogonal unit vectors satisfying the following constraints. At the begin of the maneuver, {xr, yr,

zr} are aligned with {xb, yb, zb}, and at the end of maneuver, {xr, yr, zr} are aligned with {xt, yt,

zt}. The orientation of frame R relative to frame T then describes the reference angular trajectory,

which will be designed afterward. Before the development of the new angular velocity trajectory,

some notations are defined as follows. Let σrt denote the orientation of frame R relative to frame

T . Let θrt denote the fourth element of σrt, representing the first rotation angle from frame T to

frame R. Let φrt denote the angle between zr and zt, which describes the second rotation angle

from frame T to frame R.

With these definitions, the objective of trajectory planning is summarized as designing a suitable

angular velocity trajectory ensuring θrt and φrt arrive at zero as fast as possible. Based on the

properties of σ-parameters, the angular velocity of frame R relative to frame T is designed as

ωrt = ωθzt + ωφe (19)

where e =
zt × zr

|zt × zr|
, and ωrt is the angular velocity of frame R relative to frame T . To realize the

angular velocity of Eq. (19), the following reference angular acceleration is needed.

art =
dIωrt

dt
=

drωrt

dt
+ ωrI × ωrt (20)

where
dI()

dt
and

dr()

dt
are the time derivative relative to frame I and frame R, and ωrI is the angular

velocity of frame R relative to frame I.
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Since the base vectors of frame T are fixed in inertial space, the relation ωrI = ωrt holds.

Substituting Eq. (19) into Eq. (20) gives

art = ωθωφ(zt × e) + ω̇θzt + ω̇Φe (21)

where
drzt

dt
= −ωrt × zt and

dre

dt
= 0 are used.

With the angular velocity of Eq. (19), the following relations are satisfied.

θ̇rt = ωθ (22)

φ̇rt = ωφ (23)

Thus, the reference angular trajectory can be designed by choosing suitable ωθ and ωφ to ensure

θrt and φrt arrive at zero as fast as possible. The bang-off-bang maneuver, shown in Fig. 2, is used

t t t t t t

Acceleration

Dwell

Deceleration

Fig. 2 Bang-off-bang type maneuver

as a reference trajectory when the constraints of angular velocity and angular acceleration are taken

into account. To obtain a concise and explicit trajectory, the following constraints are considered.

ωθ max

ωφ max

=
ω̇θ max

ω̇φ max

=
|θrt0|

|φrt0|
(24)

where ωφ max, ωθ max, ω̇φ max, and ω̇θ max are the maximum value of ωφ, ωθ, ω̇φ, and ω̇θ, respectively,

and θrt0 and φrt0 are the initial value of θrt and φrt, respectively. With the constraint of Eq. (24),
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the duration of acceleration region, dwell region, and deceleration region of θrt is the same as that

of φrt, respectively. They can be calculated by the following equations.

t1 =
ωφ max

ω̇φ max

=
ωθ max

ω̇θ max

(25)

t2 =
|φrt0|

ωφ max

=
|θrt0|

ωθ max

(26)

t3 = t1 + t2 (27)

The expressions of ω̇θ and ω̇φ are given by

ω̇θ =



































−sign (θrt0) · ω̇θ max, 0 < t ≤ t1

0, t1 < t ≤ t2

sign (θrt0) · ω̇θ max, t2 < t ≤ t3

(28)

ω̇φ =



































−sign (φrt0) · ω̇φ max, 0 < t ≤ t1

0, t1 < t ≤ t2

sign (φrt0) · ω̇φ max, t2 < t ≤ t3

(29)

The expressions of ωθ and ωφ can be then obtained by integrating Eq. (28) and Eq. (29), and

θrt and φrt can be then obtained by twice integrating Eq. (28) and Eq. (29).

Combined with Eq. (24), ωφ max, ωθ max, ω̇φ max, and ω̇θ max are calculated by the following

equations.

ω2

θ max + ω2

φ max = ω2

max (30)

ω̇2

θ max
+ ω̇2

φ max
+ ω2

θ max
ω2

φ max
= a2

max
(31)

where amax is the maximum angular acceleration, and ωmax is the maximum angular velocity.

The total angular velocity trajectory can be then divided into two parts. The first part is along

the direction of e with the magnitude of ωφ, the other part is along the direction of zt with the

magnitude of ωθ. From the angular velocity in Eq. (19), it is observed that the direction of e is

unchanged, but zt rotates around e with a change rate −ωφ. Therefore, the total angular velocity
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trajectory is a space curve on a conic surface as shown in Fig. 3. The cone axis is e and the cone

angle is arctan
|θrt0|

|φrt0|
. This type of angular velocity trajectory is called cone-type angular velocity

trajectory, which can be used to avoid some unwanted points in angular velocity space, such as

impassable singular surface.

Angular velocity 

trajectory

t
z

b
z

e

bt

Fig. 3 Reference trajectory of angular velocity

B. Extended Angular Velocity Trajectory

1. General Type of Two Rotations

To increase the number of the cone-type angular velocity trajectory, a general type of two

rotations whose rotation axes are not limited as zt and e is developed. Before the development of

this type of two rotations, some notations are defined as follows. Let lb be a unit vector fixed in B

frame, and let lt be a unit vector fixed in T frame. The components of lb in B frame are the same

as those of lt in T frame, i.e., lbb = ltt. Let eb be a unit vector along the direction of lt × lb, and let

et be a unit vector which satisfies that the components of et in T frame are the same as those of

eb in B frame, i.e., eb
b = et

t.

Then, a type of two rotations, which is performed on frame T , are given as follows. For the first

rotation shown in Fig. 4(a), frame T is rotated by an angle θ about lt (positive counterclockwise)

to align et with eb, yielding an intermediate frame. For the second rotation shown in Fig. 4(b), the

intermediate frame is rotated by an angle φ about the vector eb (positive counterclockwise) to align

lt with lb. After these two rotations, both lt and et are aligned with lb and eb respectively, which

implies frame T and frame B are aligned to each other. This type of two rotations is denoted by

Rot{lt, θ; eb, φ}.
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E

t
l

t
e

b
e

Rotation around E

Rotation around t
l

(a)

b
l

t
l

b t
e e

E

Rotation around E

Rotation around 
b
e

(b)

Fig. 4 A general type of two rotations: a) first rotation about lt b) second rotation about eb

To fully determine the parameters of Rot{lt, θ; eb, φ}, φ and θ should be derived first. Without

loss of generality, the orientation of frame B relative to frame T is described by eigen-axis E and

eigen-angle Φ, which means rotating frame T around E about Φ can align these two frames, where

E and Φ can be obtained from the attitude determination system. The angle between eb and et,

θ, can be then obtained by using the relations of spherical trigonometry shown in Fig. 4(a). Its

expression is given by

sin
θ

2
= sin α sin

Φ

2
(32)

where α is the angle between E and eb. In addition, The angle between lb and lt, φ, is obtained

using the relations of spherical trigonometry shown in Fig. 4(b). Its expression is given by

tan
φ

2
= cos α tan

Φ

2
(33)

With the known variables of E, Φ, and an arbitrarily given unit vector eb, all of the parameters

of Rot{lt, θ; eb, φ} can be obtained by the following steps.

First, α can be obtained by cos α = eb · E, and then θ and φ can be obtained by Eq. (32) and

Eq. (33). Finally the first rotation axis lt can be obtained by

ltsin α = eb × (E × eb) cos
φ

2
+ (E × eb) sin

φ

2
(34)

where lt can be chosen as arbitrary unit vector if sin α = 0.
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Then, the orientation of frame B relative to frame T , described by E and Φ, can also be

described by a two rotations Rot{lt, θ; eb, φ}, where eb can be arbitrarily chosen, and θ, φ, and lt

can be obtained from Eq. (32), Eq. (33) and Eq. (34), respectively.

2. Description of a General Type of Two Rotations with σ-Parameters

To develop an angular velocity trajectory similar with Eq. (19) for a general type of two rotations

Rot{lt, θ; eb, φ}, Rot{lt, θ; eb, φ} should be described by σ-parameters. To achieve this, two new

coordinate frames, denoted by B′ and T ′, are defined as follows. The origins of these two frames are

both located at the center of mass of the spacecraft. The basis vectors of B′, denoted by {xb′ , yb′ ,

zb′}, is defined as {
lb × zb

‖lb × zb‖
,
lb × (lb × zb)

‖lb × zb‖
, lb} which is fixed in frame B, and the basis vectors of

T ′, denoted by {xt′ , yt′ , zt′}, is defined as {
lt × zt

‖lt × zt‖
,
lt × (lt × zt)

‖lt × zt‖
, lt} which is fixed in frame T .

The definitions of B′ and T ′ ensure the following two conditions hold. The first condition is the

cosine direction matrix from B′ to B and that from T ′ to T are both equal to a constant matrix

denoted by C, expressed as

C =

[

ltt × zt
t

‖ltt × zt
t‖

,
ltt × (ltt × zt

t)

‖ltt × zt
t‖

, ltt

]

=

[

lbb × zb
b

‖lbb × zb
b‖

,
lbb × (lbb × zb

b)

‖lbb × zb
b‖

, lbb

]

(35)

where the relations of lbb = ltt and zb
b = zt

t = [0, 0, 1]T are used. The second condition is that the

z-axis of frame B′ and frame T ′ are lb and lt, respectively.

The first condition guarantees that frame T ′ and frame B′ are aligned to each other if the two

rotations of Rot{lt, θ; eb, φ} are performed on frame T ′. Thus, the problem of controlling frame B

to coincide with frame T can be converted to the problem of controlling frame B′ to coincide with

frame T ′.

The second condition guarantees that the two rotations of Rot{lt, θ; eb, φ} from frame T ′ to

frame B′ can be described by the σ-parameters. The expression of σ-parameters is given by

σb′t′ =

























zt′ · zb′

(zt′ × zb′) · xb′

(zt′ × zb′) · yb′

θb′t′

























=

























cos φb′t′

eb · x′
b sin φb′t′

eb · y′
b sin φb′t′

θb′t′

























(36)

14



where σb′t′ is the σ-parameters of frame B′ with respect to frame T ′, and φb′t′ and θb′t′ are equal

to φ and θ respectively, which can be obtained by Eq. (32) and Eq. (33). Thus, an angular velocity

trajectory of frame B′ relative to frame T ′ can be designed based on the method presented in Section

III A.

3. Reference Trajectory for a General Type of Two Rotations

To design the reference trajectory of frame B′ relative to frame T ′ using the method presented

in Section III A, a reference frame R′ is firstly defined as follows. The origin is located at the center

of mass of the spacecraft, and {xr′, yr′ , zr′} are mutually orthogonal unit vectors, which satisfy

the following constraints. At the begin of the maneuver, {xr′ , yr′ , zr′} are aligned with {xb′ , yb′ ,

zb′}, and at the end of maneuver, {xr′, yr′ , zr′} are aligned with {xt′ , yt′ , zt′}. Let σr′t′ denote

the relative attitude of frame R′ relative to frame T ′. Let θr′t′ denote the fourth element of σr′t′ ,

representing the first rotation angle from frame R′ to frame B′. Let φr′t′ denote the angle between

zr′ and zb′ , which represents the second rotation angle from frame R′ to frame B′.

Similar with Eq. (19), the reference angular velocity of frame R′ relative to frame T ′, denoted

by ωr′t′ , is given as

ωr′t′ = ωθlt + ωφeb (37)

where lt represents the z-axis of frame T ′, and eb denotes the unit vector along the direction of

z′
t × z′

b. Then, the following relations are satisfied.

θ̇r′t′ = ωθ (38)

φ̇r′t′ = ωφ (39)

Analogy with Eq. (22) and Eq. (23), ωθ and ωφ are designed as bang-off-bang type maneuver.

ωθ and ωφ can be obtained by integrating Eq. (28) and Eq. (29), where θrt0 and φrt0 should be

replaced by θ0 and φ0 respectively. θ0 and φ0 are the initial value of θ and φ respectively.

To realize the angular velocity of Eq. (37), the following reference angular acceleration is needed.

ar′t′ = ωθωφ(lt × eb) + ω̇θlt + ω̇φeb (40)
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where ω̇θ and ω̇φ can be obtained by Eq. (28) and Eq. (29). θrt0 and φrt0 in Eq. (28) and Eq. (29)

should be replaced by θ0 and φ0, respectively.

With the reference angular velocity trajectory of Eq. (37), the total angular velocity trajectory

is then on a conic surface with a cone axis eb. Since eb can be chosen as any unit vector, the number

of feasible angular velocity trajectories is increased greatly.

IV. Attitude Tracking Controller

This section firstly introduces the dynamics and the kinematics of a rigid body spacecraft,

and then develops an attitude tacking controller based on σ-parameters. Finally, the calculation

procedure of commanded torque is presented.

A. Attitude Dynamics and Kinematics

To design the attitude controller, the dynamics of a rigid body spacecraft are then given by

J
db′ωb′r′

dt
+ J

db′ωr′I

dt
+ ωb′I × (Jωb′I + h) = T (41)

where J is moment of inertia dyadic,
db′ ()

dt
is the time derivative with respect to frame B′, ωb′r′

is the angular velocity of frame B′ relative to frame R′, ωr′I is the angular velocity of frame R′

relative to frame I, h is the total angular momentum vector of SGCMGs, and T is the command

torque vector. In Eq. (41),
db′ωr′I

dt
can be written as

db′ωr′I

dt
=

dIωr′I

dt
− ωb′I × ωr′I =

dIωr′t′

dt
− ωb′r′ × ωr′t′ (42)

where ωr′t′ is the angular velocity of frame T ′ relative to frame R′, and ωt′I = 0 is used. Substituting

Eq. (42) into Eq. (41), and decomposing Eq. (41) into frame B′ gives

Jb′

ω̇b′

b′r′ + Jb′

ab′

r′t′ − Jb′

(

ωb′

b′r′ × ωb′

r′t′

)

+ ωb′

b′I ×
(

Jb′

ωb′

b′I + hb′

)

= T b′

(43)

where the superscript b′ represents the components of a vector or dyadic in frame B′.

The orientation of frame B′ relative to frame R′ is described by σ-parameters, and the kinematics
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are given by

σ̇b′r′ =

























ρ̇0′

ρ̇1′

ρ̇2′

θ̇b′r′

























=

























−ρ1′ −ρ2′ 0

ρ0′ 0 ρ2′

0 ρ0′ −ρ1′

−
ρ2′

1 + ρ0′

ρ1′

1 + ρ0′

1

























ωb′

b′r′ (44)

where ρ̇0′ = zr′ · zb′ , ρ̇1′ = (zr′ × zb′) · xb′ , and ρ̇2′ = (zr′ × zb′) · yb′ .

B. Controller Design and Stability Analysis

The attitude tracking controller in frame B′ is proposed as follows

T b′

= Jb′

(

−kpρv′ − kpθb′r′vb′

− kdω
b′

b′r′ + ab′

r′t′

)

+ωb′

b′I ×
(

Jb′

ωb′

b′I + hb′

)

− Jb′

(

ωb′

b′r′ × ωb′

r′t′

)

(45)

where the superscript b represents the components of a vector or dyadic in frame B, kp and kd are

positive control gains, ρv′ = [ρ̇1′ , ρ̇2′ , 0]T, and vb′

=

[

−
ρ2′

1 + ρ0′

,
ρ1′

1 + ρ0′

, 1

]T

.

Substituting the controller of Eq. (45) into the dynamic equations of Eq. (43), and simplifying

gives

ω̇b′

b′r′ = −kpρv′ − kpθb′r′vb′

− kdω
b′

b′r′ (46)

To prove the stability of the resulting closed-loop system, the following candidate Lyapunov

function V is proposed:

V =
kp

2

(

ρT

v′ρv′ + (1 − ρ0′)2 + θ2

b′r′

)

+
1

2

(

ωb′

b′r′

)T

ωb′

b′r′ (47)

For stability, the time derivative of V must be negative. Taking the time derivative of Eq. (47)

results in

V̇ = kpρ
T

v′ ρ̇v′ + kpρ0′ ρ̇0′ − kpρ̇0′ + kpθb′r′ θ̇b′r′ +
(

ωb′

b′r′

)T

ω̇b′

b′r′ (48)

Substituting Eq. (46) and into Eq. (48), and simplifying gives

V̇ = −kp

(

ωb′

b′r′

)T

ωb′

b′r′ ≤ 0 (49)

where V̇ is a negative semidefinite function. Through Lyapunov’s direct method, it can be shown

that the equilibrium point ρv′ = 0, ρ0′ = 1, θb′r′ = 0 and ωb′

b′r′ = 0 is stable.
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C. Calculation of the Commanded Torque

Since the actuators are installed in frame B, the commanded torque in Eq. (45) should be given

in frame B as follows.

T b = CT b′

= Jb
(

−kpCρv′ − kpθb′r′Cvb′

− kdω
b
b′r′ + ab

r′t′

)

+ωb
b′I ×

(

Jbωb
b′I + hb

)

− Jb
(

ωb
b′r′ × ωb

r′t′

)

(50)

where C can be obtained from Eq. (35), and ρv′ , vb′

, ωb
b′r′ , ωb

b′I , ωb
r′t′ , and ab

r′t′ can be obtained

as follows.

1. Calculation of ρv′ and vb′

ωr′t′ is designed as in Eq. (37), where ωθ and ωφ are obtained by integrating Eq. (28) and

Eq. (29), where θrt0 and φrt0 should be replaced by θ0 and φ0, respectively. Thus, θr′t′ and φr′t′

can be obtained by integrating Eq. (38) and Eq. (39). They are expressed as

θr′t′ =

∫ t

0

ωθdt (51)

φr′t′ =

∫ t

0

ωφdt (52)

With θr′t′ and φr′t′ , the orientation of frame R′ relative to frame T ′ are obtained by

σr′t′ =

























cos φr′t′

eb · xr′ sin φr′t′

eb · yr′ sin φr′t′

θr′t′

























(53)

where eb · xr′ and eb · yr′ are the first and the second component of eb in frame R′, respectively.

It is known that the components of eb in frame R′ are constant if ωr′t′ is given by Eq. (37). Thus,

eb · xr′ and eb · yr′ can be obtained by

er′

b =

















eb · xr′

eb · yr′

eb · zr′

















=

















eb · xr′0

eb · yr′0

eb · zr′0

















=

















eb · xb′0

eb · yb′0

eb · zb′0

















= CTeb0

b (54)

where the subscript, 0, represents the initial value of corresponding variable, eb0

b is to be designed,

which represents the components of the second rotation axis eb in the initial frame of B, er′

b represents
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the components of eb in frame R′, and C is a constant matrix which can be obtained from Eq. (35).

The fact that frame R′ and frame B′ are initially aligned is used to derive Eq. (54).

With σr′t′ , the direction cosine matrix Cr′t′ from T ′ to R′, can be obtained according to the

property of σ-parameters in Eq. (15). Cb′r′ can be then obtained by

Cb′r′ = Cb′t′CT

r′t′ (55)

where Cb′t′ is obtained by

Cb′t′ = CTCbtC (56)

where Cbt is obtained from the attitude determination system.

With Cb′r′ , the elements of σb′r′ can be obtained in real time by the following equations.









ρ0′

ρv′









=









(

Cb′r′ · zr′

r′

)T

zr′

r′

(

Cb′r′ · zr′

r′

)×

zr′

r′









(57)

where zr′

r′ = [0, 0, 1]T. θb′r′ can be then obtained by

Cz (θb′r′) =

(

ρ0′I3 +
ρv′ρv′

T

1 + ρ0′

− ρv′

×

)T

Cb′r′ (58)

With the obtained ρ0′ and ρv′ , vb′

=

[

−
ρ2′

1 + ρ0′

,
ρ1′

1 + ρ0′

, 1

]T

can be then obtained.

2. Calculation of ωb
r′t′ , ω

b
b′r′ , and ωb

b′I

ωb
r′t′ can be obtained by decomposing Eq. (37) into frame B, expressed by

ωb
r′t′ = ωθl

b
t + ωφe

b
b (59)

where eb
b can be calculated by

eb
b = Cbr′er′

b = CCb′r′CTeb0

b (60)

where eb0

b is to be designed, which denotes the components of the second rotation axis eb in the

initial frame of B, and Cbr′ represents the direction cosine matrix from frame R′ to frame B.

In Eq. (59), lbt can be obtained by

lbt = CCb′t′ lt
′

t (61)
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where lt
′

t = zt′

t′ = [0, 0, 1]T. Thus, ωb
b′r′ are obtained by

ωb
b′r′ = ωb

b′t′ − ωb
r′t′ (62)

where ωb
b′t′ = ωb

bt since the direction cosine matrix from frame B′ to B and that from frame T ′ to

T are both equal to the constant matrix C, and ωb
bt can be obtained by the measurement of gyros.

Finally, ωb
b′I = ωb

bt since the angular velocity of frame B′ relative to B, and the angular velocity

of frame T relative to I are both zero.

3. Calculation of ab
r′t′

ab
r′t′ can be obtained as follows by decomposing Eq. (40) into frame B

ab
r′t′ = ωθωφ(lbt × eb

b) + ω̇θl
b
t + ω̇Φe

b
b (63)

V. Selection of Rotation Axes to Avoid the Impassable Singular States

This section firstl introduces the classification and determination of the singular states of S-

GCMG, and then proposes a method to select the suitable second rotation axis in the initial frame

of B, denoted by eb0

b . As a result, the impassable singular states can be avoided. The selection of

rotation aixs is based on the inverse dymamics method, which was introduced in [25, 26].

A. Torque-Produced Equation and Singularity

For a n-SGCMG system, the torque-produced equation is given by

T = −h0Aδ̇ (64)

where h0 is the angular momentum magnitude of each SGCMG, δ is a n-column vector whose ith

element represents the gimbal angle of the ith SGCMG, δ̇ is a n-column vector whose ith element

represents the gimbal rate of the ith SGCMG, and A is the Jacobian matrix, which is given by

A = [t1, t2, · · · , tn] (65)

where ti is the torque unit vector of the ith SGCMG.

The rank of A is reduced to 2 at some specific gimbal angle combinations where the SGCMG

system can not generate torque in a certain direction perpendicular to ti. This is called a singular
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direction, and the unit vector in the singular direction is denoted by u. These gimbal angle com-

binations are called singular states, and the corresponding states in angular momentum space is

called singular surface, which can be obtained by

Hs =

n
∑

i=1

εi

(gi × u) × gi

|gi × u| where u 6= ±gi
(66)

where gi is the ith gimbal axis vector, and εi = sign (hi · u) = ±1, where hi is the angular momentum

unit vector of the ith SGCMG. The singular surface can then be directly obtained by considering

all possible combinations of εi and all possible orientation of u on the unit sphere except u = ±gi.

The singular surface is classified as passable singular surface and impassable singular surface based

on the changes of angular momentum in the direction of u at a singular state [4], which can be

expressed as

u · dHs = −
h0

2
bTQSb −

h0

2
cTQNc (67)

where b is an arbitrary 2-column vector, c an arbitrary (n − 2)-column vector,

QS=
[

eS
1
eS

2

]T

P−1
[

eS
1
eS

2

]

(68)

QN =
[

eN
1 eN

2 · · · eN
n−2

]T

P−1
[

eN
1 eN

2 · · · eN
n−2

]

(69)

where P is a diagonal matrix whose ith diagonal element is
1

u · hi

, eS
i is the ith base of singularly

constrained tangent space, and eN
i is the ith base of null motion space.

The term of −
h0

2
bTQSb in Eq. (67) describes the motion on a singular surface, and therefore

−
h0

2
bTQNb determines the passability of the singular surface. If QN is indefinite, the angular

momentum can pass the singular surface from one side to the other side, then the corresponding

singular surface is passable. If QN is definite, then any gimbal rates can only make the angular

momentum move on one side of the singular surface, i.e., the singular surface is impassable.

B. Singularity in Gimbal Angle Space

At a singular point in angular momentum space, the corresponding gimbal angles are several

sets of continuous manifolds in gimbal angles space [4]. However, only one set of the manifolds

contains a singular state. Therefore, the impassable singular surface is not really impassable, which
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depend on whether the corresponding solution in gimbal angle space is singular state or not. An

example is given in Fig. 5 to illustrate this phenomenon. In Fig. 5, the angular momentum H

moves from H1 to H3, and an impassable singular surface is encountered when H equals H2. At

this point, the corresponding solution in domain A is not a singular state, but the corresponding

solution in domain B is a singular state. Therefore, if the initial gimbal angles belong to domain

A, no singular state will be encountered when passing this impassable singular surface, but if the

initial gimbal angles belong to domain B, the impassable singular state is sure to be encountered

when H equals H2. This example indicates that an impassable singular surface is passable if the

initial gimbal angles is selected correctly.

sign N
u Q

Angular momentum space

Impassable singular surface

Gimbal angle space

Singular state

Angular momentum trajectory

Possible gimbal angle trajectories

a

a

a

b

b

H

H

H

Domain A Domain B

Fig. 5 Relation between singular surface and the corresponding solutions in gimbal angle space

With the analysis mentioned above, the standing problem is to find the condition that guarantees

no singular state is encountered when passing an impassable singular surface. Since QN is definite

at an impassable singular surface, the following inequality always holds at an impassable singular

surface.

unew · dHs ≤ 0 (70)

where

unew = sign
∣

∣QN
∣

∣ · u (71)

where sign
∣

∣QN
∣

∣ ·u denotes the sign of the determinant of QN , and sign
∣

∣QN
∣

∣ ·u denotes the singular

22



vector since sign
∣

∣QN
∣

∣ · u equals either u or −u.

Eq. (70) indicates that the angular momentum can only move in one side of the impassable

singular surface in −unew when an impassable singular state is nearly approached, which implies

that the corresponding gimbal angle of an angular momentum in the other side in the direction

of unew must belong to the domain without a singular state. This situation is illustrated by an

example in Fig. 5, where the solutions in the gimbal space, corresponding to the angular momentum

H3 in the side of singular surface in the direction of unew, are sure to be in the Domain A where

the singular state does not exist. However, the corresponding gimbal angle of H1 in the side in

the direction of −unew can belong to one of Domain A and Domain B. Therefore, if the angular

momentum moves from H3 to H1, no singular state will be encountered. However, if the angular

momentum moves from H1 to H3, the singular state may be encountered.

Thus, the following conclusion is obtained. If the angular momentum trajectory passes through

an impassable singular surface from the side in the direction of unew to the other side in the direction

of −unew, no singular state will be encountered. This situation can be described by

unew · Tr ≤ 0 (72)

where Tr represents the change rate of the reference angular momentum.

This conclusion is significant to determine whether an impassable singular state in gimbal angle

space will be encountered or not, when a angular momentum trajectory passes an impassable singular

surface.

C. Selection of Suitable Angular Momentum Trajectory

To pass through an impassable singular surface using the cone-type of angular velocity trajec-

tory, the following three steps are presented to select the suitable second rotation axis in the initial

frame of B, denoted by eb0

b , to avoid the impassable singular state with minimum maneuver time.

1) Calculate all points on the impassable singular surface, and then store these points and the

corresponding singular vectors. The details of this step are given as follows.

First, for a certain singular vector u, calculate the corresponding Jacobian matrix As by using
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the following equation.

As = [ts1, ts2, · · · , tsn] (73)

where tsi is expressed as

tsi = εi

(gi × u)

|gi × u| where u 6= ±gi
(74)

Second, decomposing As using the singular value decomposition method gives

As =

[

c1 c2 u

]

















γ2
1

0 0 · · · 0

0 γ2
2

0 · · · 0

0 0 0 · · · 0

















[

eC
1

eC
2

eN
1

· · · eN
n−2

]T

(75)

where c1 and c2 are the orthogonal basis of torque-producing space, eC
1 and eC

2 are the orthogonal

basis of the complementary subspace of null-space, and γ1 and γ2 are the singular values of As.

Third, calculate QN using Eq. (69), and determine the definiteness of QN . If QN is definite

(corresponding to an impassable singular surface), store the corresponding unew and Hs, which are

calculated by Eq. (66) and Eq. (71), respectively.

Finally, take u over a sphere except for u 6= ±gi, and repeat the previous steps. The jth stored

unew and Hs are then denoted by unewj and Hsj , respectively.

2) For a certain eb0

b , determine the minimum distance between the corresponding angular mo-

mentum trajectory and the impassable singular surface. The details are given as follows.

First, calculate the reference angular momentum trajectory and the reference torque trajectory

using the following equations.

Hr = Jbωb
r′I = Jbωb

r′t′ (76)

Tr = Jbab
r′I = Jbab

r′t′ (77)

where Hr is the reference angular momentum trajectory expressed in frame B, and Tr is the reference

torque trajectory expressed in frame B. ωb
r′t′ and ab

r′t′ can be calculated by Eq. (59) and Eq. (63)

respectively, where ω̇θ and ω̇φ are obtained from Eq. (28) and Eq. (29) by replacing θrt0 and φrt0

24



with θ0 and φ0 respectively. θ0 and φ0 can be obtained by Eq. (32) and Eq. (33). In addition, Cb′r′

is set to be an identity matrix during the calculation of Hr and Tr.

Second, discretize Hr and Tr as m points, and calculate the minimum distance from the kth

point to the impassable singular surface using the following equations.

Dk = min
j

√

(Hrk − Hsj)
T

(Hrk − Hsj) (78)

where Hrk is the kth point of Hr, and Dk is the minimum distance from Hrk to the impassable

singular surface.

Third, for the kth point on the reference angular momentum trajectory, check whether the

following condition is satisfied or not.

unewl · Trk ≤ 0 (79)

where Trk is the kth point of Tr, and l represents the optimal solution of j in Eq. (78). If Eq. (79)

holds, replace Dk with a large value since the condition of Eq. (79) indicates that no impassable

singular state will be encountered even if Dk equals zero.

Finally, take the value of k from 1 to m, and then calculate the minimum value of Dk using the

following equation.

M = min
k

Dk (80)

where M represents the minimum distance between the reference angular momentum trajectory and

the impassable singular surface.

3) Take eb0

b over a sphere, and repeat 2) to calculate the corresponding M and the maneuver

time t3, and then find the minimum maneuver time and the corresponding eb0

b under the following

constraint.

M ≥ Msafe (81)

where Msafe is the safe distance between the reference angular momentum trajectory and the

impassable singular surface.

Based on the previous three steps, the optimal eb0

b can be obtained if it exists.
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VI. Numerical Simulations

In this section, simulations are performed to verify the effectiveness of the proposed SGCMG

singularity avoidance method. In the simulations, the first 4 units of a regular dodecahedron config-

uration are selected, which is shown in Fig. 6. β is chosen as β = 64.3◦. Therefore, the unit angular

momentum and unit torque of each SGCMG are given by
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Fig. 6 SGCMG configuration

hi =

















cos (i × 72◦) cos β cos δi − sin (i × 72◦) sin δi

sin (i × 72◦) cos β cos δi + cos (i × 72◦) sin δi

sin β cos δi

















, i = 1, 2, 3, 4 (82)

ti =

















− sin (i × 72◦) cos δi − cos (i × 72◦) cos β sin δi

cos (i × 72◦) cos δi − sin (i × 72◦) cos β sin δi

− sin β sin δi

















, i = 1, 2, 3, 4 (83)

Since the design of the reference trajectory guarantees that the impassable singular states in

gimbal angle space will not be encountered, the steering law are chosen as the pseudo-inverse solution

with null motions [1], which can avoid all passable singular states. This steering law is given as

δ̇ = −
1

h0

AT
(

AAT
)−1

T + k
(

I4 − AT
(

AAT
)−1

A
) ∂D

∂δ
(84)

where D is the singular measurement, expressed as

D =
∑

i6=j

(ti × tj)
T

(ti × tj) (85)

26



The simulation parameters are presented in Table. 1, where σbt0 is the initial attitude of frame B

relative to frame T , ωb
bt0

is the initial angular velocity of frame B relative to frame T in frame B, and

δ0 is the initial gimbal angle. Then, the initial value of E in frame B and that of Φ, representing the

initial orientation of frame B relative to frame T , can be obtained as [−0.8275, −0.5260, 0.1965]
T

and 2 rad, respectively. In addition, frame B is initially aligned with frame I. With the parameters

in Table. 1, the optimal eb0

b is then obtained by the method developed in Section V. The optimal

value of eb0

b is given by

eb0

b = [−0.9419, 0.1110, 0.3171]
T

(86)

With Eq. (32) and Eq. (33), θ0 and φ0 are then obtained as −1.1009 rad and 1.7683 rad

respectively. With Eq. (24), Eq. (30) and Eq. (31), ωθ max, ωφ max, aθ max and aφ max are obtained

as 0.0264 rad/s, 0.0424 rad/s, 0.0033 rad/s2 and 0.0020 rad/s2, respectively. Thus, with Eq. (25)-

Eq. (27), t1, t2 and t3 are obtained as 12.892 s, 41.660 s and 54.552 s, respectively.

Table 1 Simulation parameters

Parameter Value

Ib









2500 −50 −15

−50 1800 32

−15 32 2430









kg · m2

kp 0.16

kd 0.288

σbt0 [−0.3615, 0.6061, 0.7085, −0.5939]T

ωb
bt0 [0, 0, 0]T rad/s

ωmax 0.05 rad/s

amax 0.005 rad/s2

h0 50 Nm · s

Msafe 5 Nm · s

k 0.05

δ0 [−2.2354, −1.3763, 0.0835, −2.1810]T rad

For comparison, two cases are considered in the simulations. In case 1, the reference trajectory

of spacecraft angular velocity is generated according to the bang-off-bang eigen-axis maneuver. In

case 2, the reference trajectory is generated by the proposed method.
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A. Case 1

The simulation results for Case 1 are shown in Fig. 7 and Fig. 8. Fig. 8 shows the curve of

singular measurement, where the singular measurement arrives at 0 at 6.7s, which indicates that

an impassable singular surface is encountered. The required gimbal rates shown in Fig. 7(a) then

becomes infinity.
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Fig. 7 Gimbal rates and gimbal angles for Case 1: a) gimbal rates b) gimbal angles
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Fig. 8 Singular measurement for Case 1

B. Case 2

The simulation results for Case 2 are shown in Fig. 9-Fig. 12. Fig. 9 shows the gimbal rates and

gimbal angles. Fig. 10 shows the curve of singular measurement, where the singular measurement

is always greater than zero, which indicates that no impassable state is encountered during the

maneuver. Fig. 11 shows the attitude information, where the σ-parameter of frame B relative to

frame T is shown in Fig. 11(a), and angular velocity of frame B relative to frame T is shown in

Fig. 11(b). Fig. 11(a) and Fig. 11(b) indicates that σ-parameter are valid, and the attitude controller
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with σ-parameter can control the attitude converges to the target attitude. Fig. 12 shows the angular

momentum trajectory, where the surface is the impassable singular surface. From Fig. 12, it is

observed that the angular momentum trajectory has no intersection with the impassable surface

during the acceleration region. However, the angular momentum trajectory intersects with the

impassable singular surface in the deceleration region, but there is still no singular state occurred

since the condition of Eq. (72) is satisfied at the intersection.
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Fig. 9 Gimbal rates and gimbal angles for Case 2: a) gimbal rates b) gimbal angles
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Fig. 10 Singular measurement for Case 2

VII. Conclusions

A SGCMG singularity avoidance method is developed by planning the angular momentum

trajectory based on the proposed σ-parameter. The developed angular momentum trajectory of

spacecraft is a cone-type of trajectory which is constructed from two approximate decoupling rota-

tions. Then, suitable rotation axes are chosen to avoid impassable singular states during attitude

maneuver of spacecraft. The advantages of this singularity avoidance method are summarized as
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Fig. 11 Attitude information for Case 2: a) σ-parameter b) angular rates c) control torque d)

angular momentum

(a) (b)

Fig. 12 Trajectory of angular momentum for Case 2: a) global graph b) part graph

follows. First, a simple steering law, which can only avoid the passable singular states, is only

required for the SGCMG singularity avoidance because no impassable singular state is encountered

with the proposed method. Second, some unavoidable impassable singular states in gimbal angles

space can be avoided by using the proposed method.
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