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A B S T R A C T   

Everyday thousands of meteoroids enter the Earth's atmosphere. The vast majority burn up harmlessly during the 
descent, but the larger objects survive, occasionally experiencing intense fragmentation events, and reach the 
ground. These events can pose a non-negligible threat for a village or a small city; therefore, models of asteroid 
fragmentation, together with accurate post breakup trajectory and strewn field estimation, are needed to enable 
a reliable risk assessment of these hazards. 

In this work, a comprehensive methodology to describe meteoroids entry, fragmentation, descent, and strewn 
field is presented by means of a continuum approach. At breakup, a modified version of the NASA Standard 
Breakup Model is used to generate the fragments distribution in terms of their area-to-mass ratio and ejection 
velocity. This distribution, combined with the meteoroid state, is directly propagated using the continuity 
equation coupled with the non-linear entry dynamics. At each time step, the fragments probability density time- 
evolution is reconstructed using Gaussian Mixture Model interpolation. Using this information is then possible to 
estimate the meteoroid's ground impact probability. 

This approach departs from the current state-of-the-art models: it has the flexibility to include large frag-
mentation events while maintaining a continuum formulation for a better physical representation of the phe-
nomenon. The methodology is also characterised by a modular structure, so that updated asteroids fragmentation 
models can be readily integrated into the framework, allowing a continuously improving prediction of re-entry 
and fragmentation events. 

The propagation of the fragments' density and its reconstruction, at the moment considering only one frag-
mentation point, is first compared against Monte Carlo simulations, and then against real observations. Both 
deceleration due to atmospheric drag and ablation due to aerothermodynamics effects have been considered.   

1. Introduction 

Along its orbit around the Sun, the Earth continuously collects 
interplanetary dust, rocks, and small grains. Most of the times these 
rocks are of negligible dimension and burn up harmlessly in the atmo-
sphere. However, larger ones can survive the descent, reaching the 
ground. It is estimated that more than 1000 kg of meteoroid material 
reaches the surface of the Earth every day (Passey and Melosh, 1980). 
These mid-sized asteroids may not be large enough to cause cratering or 
global scale effects but can still produce significant ground damage and 
be a real threat for villages or small cities, as demonstrated by the recent 
Chelyabinsk event (Popova et al., 2013). 

To enable the assessment of these risks, models capable of predicting 
the asteroids fate during entry and fragmentations are needed, together 

with accurate post breakup trajectory simulations. In literature, few 
approaches for modelling meteoroid fragmentation exists and are often 
useful for approximating the fragmentation process and the kinetic en-
ergy deposition in the atmosphere. However, a more refined treatment 
of the breakup and of the interactions between individual fragments is 
required as base for building reliable and predictive models. 

For this reason, in the interest of developing a physically consistent 
fragmentation model suitable for probabilistic analysis, the present 
work introduces a continuous, semi-analytical approach, for modelling 
meteoroids entry events. 

1.1. Background 

Several models describing the fragmentation of meteoroids under the 
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action of aerodynamic forces can be found in literature. Depending on 
the approach used, they can be divided into two categories: semi- 
analytical models and hydrodynamics models (Register et al., 2020; 
Artemieva and Shuvalov, 2001). In the first category, three distinct 
families can be further identified: continuous models (Hills and Goda, 
1993), discrete models (Andrushchenko and Syzranova, 2019; Arte-
mieva and Shuvalov, 2001; Ceplecha and ReVelle, 2005; Mehta et al., 
2015; ReVelle, 2006a), and hybrid models (Register et al., 2017; 
Wheeler et al., 2017). In the following will be given a brief description of 
each one of them. 

Hydrocode simulations consider the object in a quasi-liquid state, 
evolving in a hypersonic flow. They can capture the detailed flow 
physics and material properties; however, giver their computational 
cost, they are not suitable for a probabilistic approach to risk assessment. 
Some of these models address the interactions between fragments, but 
are constrained to specific configurations (Register et al., 2020) or with 
limited number of fragments (Artemieva and Shuvalov, 2001). 

On the contrary, semi-analytical breakup models allow probabilistic 
analyses by introducing simplifying assumptions. They are typically 
based on the single-body meteor physics equations (Öpik, 1959) and the 
fragmentation events are assumed to occur when the dynamic pressure 
at the stagnation point of a bolide exceeds the meteoroid yield strength 
(Mehta et al., 2015; Passey and Melosh, 1980). The fragmentation 
products are typically represented either as a cloud-like structure, as a 
set of discrete fragments, or a combination of both. 

The most basic example of continuous model is the so called “pan-
cake model” (Hills and Goda, 1993). At the breakup point, the meteoroid 
becomes a cloud of continuously fragmenting material. The cloud starts 
as a sphere and behaves as a single deforming body. During the descent 
it begins to spread out and flatten due to pressure differences between 
the front and sides of the debris cloud. While the body is expanding the 
void, that should form between the small fragments, is instead occupied 
by other debris continuously created by the fragmentation. This model 
provides a good description of the energy deposition but does not allow 
for variations that could result from non-uniform asteroid structures and 
the behaviour of large, independent fragments. 

Examples of discrete fragmentation models are given by the “col-
lective wake model” (Ceplecha and ReVelle, 2005) and “non collective 
wake model” (ReVelle, 2006b). They both assumes that at the breakup 
the meteoroid divides in two identical child-fragments, whose strength 
depends on the parent asteroid strength by means of a Weibull scaling 
law (Cotto-Figueroa et al., 2016). After few steps, a cloud of identical 
fragments is produced. The two models differentiate themselves in how 
the fragments interacts with each other. In the first case, the fragments 
move side by side and proceed under the same bow shock, increasing the 
total frontal area and conserving the original object's mass. In the second 
case, one of the child-fragments is lost to the wake, so that at each 
fragmentation the area is preserved, and the mass is halved. The 
assumption of two even fragments resulting from each break is strong, 
but it could represent the average rate of fragmentation. It should be 
noted the existence of a geometric inconsistency in the “collective wake 
model” scheme, as spheres consisting of half the original mass will not 
double the drag area (Register et al., 2017). 

The “independent wake model” (Mehta et al., 2015) follows a more 
general approach, which considers the two fragments generated at each 
breakup event to behave independently, and assigns to each of them a 
lateral spread velocity. The main disadvantage of this scheme is that it 
does not consider multiple fragmentations at the same time. Moreover, it 
is assumed that the fragments produced at each breakup will be stronger 
than their parent fragment, because the breakup would eliminate some 
of the larger structural weaknesses. However, it is possible that a piece of 
meteoroid will develop new fractures that could reduce its new strength. 

The most recent example of hybrid model combines the features of 
the “independent wake model” and the “pancake model” to capture both 
continuous and discrete variation of the kinetic energy of the meteoroids 
(Register et al., 2017; Wheeler et al., 2017). At the breakup, the bolide is 

assumed to break into three objects: two spherical fragments and a dust 
cloud. The cloud is modelled as a continuum using the pancake 
approximation. At the same time, the two child-fragments continue their 
descent independently until a new fragmentation point is reached. At 
each fragmentation event, two new child-fragments and a new dust 
cloud are formed. This model well reproduces the observed light curves 
but maintains the limitations of the pancake approach when modelling 
smaller fragments. The discrete part, instead, considers all the frag-
ments' velocities unchanged with respect to the original body and does 
not consider a side velocity component so that cannot be used for three- 
dimensional analyses. 

The “sandbag model” (Artemieva and Shuvalov, 2001) is an example 
of semi-analytical model based on results of detailed hydrodynamics 
simulations. The deforming meteoroid is represented as a cone rather 
than a sphere by including both streamwise and spanwise separation. 
The main disadvantage of the presented model, according to the author, 
is a strong deficiency of very small fragments (much smaller than the 
largest one). 

Lastly, the “multi-component fragment cloud model” (Newland 
et al., 2019) assumes that the asteroid has a non-uniform internal 
structure. The initial body is constructed as a multi-component object 
comprising different structural groups with different initial strengths. 
The most fragile components will break off and begin the fragmentation 
at the highest altitude, while the most resilient components will start to 
break off closer to the Earth surface. The main criticality of this model is 
the arbitrariness of the initial composition of the body and the intrin-
sically discretised nature of the debris cloud: for each group of strength, 
all the fragments' parameters are identical to each other. 

This work presents the development of a methodology for the 
probabilistic assessment of asteroids re-entry, fragmentation, and 
impact. The development of the Asteroid Breakup Model (ABM), a 
continuous approach, which provides a statistical description of the 
fragments generated at the breakup point, in terms of velocity, flight- 
path angle, and area-to-mass ratio is described in Sec.2. The dynamics 
of the problem is presented in Sec.3; in Sec.4, a density-based method, 
alternative to the traditional Monte Carlo approach, is used for the 
estimation of the fragment's evolution during the descent. In Sec.5, the 
methodology is used for the identification of the on-ground footprint of 
the meteoroid's fragments generated during the descent. This analysis 
aims at modelling the re-entry and breakup of small asteroids and large 
meteoroids, hence excluding the rubble pile asteroids. In Sec.6, the 
methodology is compared against a traditional Monte Carlo approach, 
while in Sec.7 it has been applied to model a real entry scenario, the 
2008TC3 entry. 

2. Asteroid breakup model 

During the atmospheric entry, asteroids can fragment one or multiple 
times along their trajectory due to the high thermomechanical loads 
caused by the interaction with the Earth's atmosphere. At each frag-
mentation point, the body can be either divided in two halves, together 
with dust and smaller fragments or completely destructed in many small 
pieces (Ceplecha et al., 1998). The asteroid breakup model presented in 
this work aims to be a comprehensive representation of this phenome-
non. It can describe the properties of the fragments generated after each 
fragmentation event by means of a probability density function. 

The atmospheric fragmentation of a meteoroid is a rarely observed 
phenomenon. As such, few information is currently available to model 
meteoroids breakup events. For this reason, we introduce a statistical 
approach to the phenomenon by borrowing the NASA Standard Breakup 
Model (SBM) (Johnson et al., 2001; Krisko, 2011) from the space debris 
field. The NASA SBM uses a probabilistic approach to model in-orbit 
fragmentation events of spacecraft and rocket bodies due to collisions 
and explosions. This model is also used for the re-entry breakup analysis 
in the ESA Debris Risk Assessment and Mitigation Analysis (DRAMA) 
suite (Gelhaus et al., 2014; Kanzler and Lips, 2017). Given its flexibility 
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and heritage, in this work, we propose an extension of this model to the 
asteroid breakup field. 

The NASA SBM model describes the fragments generated from an 
explosion or collision in terms of number, size, and area-to-mass ratio 
distributions. In addition, it defines the fragments ejection velocity 
distribution with respect to the parent object. Even if the equations of 
the NASA SBM model can fully characterise a fragments cloud, its 
applicability is limited to 1 mm to meter-sized fragments and it does not 
guarantee mass conservation (Krisko, 2011). Therefore, modifications 
are required to fully adapt the model to the description of asteroid 
breakup events. 

In the following these modifications are discussed, and the steps 
required to transform the NASA SBM in the new ABM are outlined. 
Specifically, Sec.2.1 describes the changes required to the characteristic 
length distribution, Sec.2.2 to the area-to-mass ratio distribution, 
Sec.2.3 to the mass conservation, and Sec.2.4 to the velocity distribu-
tion. Finally, in Sec.2.5 all the proposed modifications are implemented 
together and the ABM is obtained. The goal of the ABM is to produce a 
statistical description of the fragments generated at the breakup point by 
means of a distribution function. Having its origin from the NASA SBM, 
this function will be a probability density function (PDF). In this case, is 
a three-dimensional function in the area-to-mass ratio (A/M), velocity 
(v) and flight-path angle (γ) space. These parameters have been selected 
because they can appropriately characterise the fragment behaviour in 
the cloud. The procedure described in the following sections considers a 
planar case (three-state model) to allow for a clearer description of the 
model; however, the ABM can be readily extended to a three- 
dimensional case (six-state model). Sec.2.6 shows the results of the 
model when applied to the entry of a meteoroid. 

2.1. Characteristic length distribution 

The empirical characteristic length distribution of the fragments 
suggested by the NASA SBM is a power law distribution with the 
following expression: 

Nc = k L− f
c (1)  

where Nc is the number or generated fragments larger than a given 
characteristic length Lc, f is a fixed scale factor (f = 1.6) and k is a tuning 
parameter that depends on the object that undergoes fragmentation 
(Johnson et al., 2001). 

In many cases in nature, fragmentation results in a fractal distribu-
tion: fragments produced by explosions and impacts often shows this 
behaviour (Turcotte, 1986) that can be mathematically represented by 
means of a power law, as in Eq. (1). This consideration supports the idea 
of extending the NASA SBM characteristic length distribution to the 
breakup of meteoroids, assuming they will exhibit the same behaviour. 
The validity of such an extension is also supported by the analysis of the 
meteorites collected on the ground after entry events characterised by 
intense fragmentations. Although, these findings are biased from the 
ablation process and from the multiple fragmentations, the number of 
fragments in relation to their mass approximately follows a power low 
distribution (Badyukov and Dudorov, 2013; Fries et al., 2014). 

Starting from the cumulative distribution of Eq. (1), it is possible to 
obtain the characteristic length PDF with few steps. Firstly, the total 
number of fragments produced at the breakup, can be expressed as 

Ntot = k
(
L− f

min − L− f
max

)
= k α (2)  

where Lmin and Lmax are the minimum and maximum characteristic 
length of the fragments generated at the breakup, respectively. α is a 
constant once the characteristic length range is fixed and it is introduced 
to simplify the expression of the model. 

By combining Eqs. (1,2) it is possible to obtain the Cumulative Dis-
tribution Function (CDF) of the characteristic length: 

CDFL =
Ntot − Nc

Ntot
(3) 

At this point the characteristic length PDF can be derived by taking 
the derivative of the CDFL with respect to Lc as follows: 

pL =
dCDFL

dLc
=

f
α L− f − 1

c (4)  

2.2. Area-to-mass distribution 

In the NASA SBM, the area-to-mass (A/M) distribution assumes that 
the fragments generated at breakup have a relatively wide range of 

Fig. 1. pA/M distribution for a meteoroid with Lc = 5 m considering fragments 
size between 0.1 m and 3.5 m. (ρ = 2900 kg/m3). 

Fig. 2. pA/M, Δv distribution for a meteoroid with Lc = 5 m and ρ = 2900 kg/m3 

considering fragments size between 0.1 m and 3.5 m. 
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density (Johnson et al., 2001). This assumption is reasonable for 
spacecrafts or rocket bodies because they are composed of different 
materials, but it cannot be applied to meteoroids without a complete 
change in the distribution shape. In this analysis, we assume meteoroids 
have uniform density so that the original A/M distribution must be 
modified. 

To conserve the fragments density, we assume the bodies have a 
spherical shape. This is a strong assumption; however, it is a common 
choice in most of the models in literature (Mehta et al., 2015; Register 
et al., 2017). In fact, the shapes of asteroids are typically irregular and 
not well known a priori. Additionally, they can be modified by ablation 
during entry. The spherical shape approximation is therefore considered 
a suitable compromise between model simplicity and accuracy. 

As direct consequence of this approximation, the characteristic 
length is defined as the object diameter and the relations between the 
fragments geometrical parameters can be expressed as follows: 

Lc = 2 R (5)  

A
/

M =
3

2 ρm Lc
(6)  

M =

(
3

4 ρm

)2 π
(A/M)

3 (7)  

where ρm is the meteoroid density, M is the meteoroid mass, and R is the 
radius. By means of Eq. (6), together with Eq. (4), it is possible to obtain 
an alternative expression for pL expressed in terms of A/M by exploiting 
the coordinate transformation outlined in Appendix A. The PDF distri-
bution obtained is the following: 

pA/M =
f
α

(
2
3
ρm

)f

A

/

Mf − 1 (8) 

It represents the number of fragments (normalised) in the interval 
[A/M,A/M + d(A/M)]. As expected, looking at the representation of the 
function (Fig. 1), higher probability value is given to smaller fragments 
(larger A/M value). 

2.3. Mass conservation 

In literature no univocal method is prescribed to implement the mass 
conservation in the NASA SBM (Krisko, 2011). For example, it is possible 
to use an iterative scheme, suitable for a Monte Carlo approach (Bade 
et al., 2000), to generate fragments until the total fragmentation mass is 
modelled. However, for the purpose of this work a distribution function 

Fig. 3. Joint PDF. Represented for a meteoroid with Lc = 5 m, v = 17 km/s, γ = 45◦ and ρ = 2900 kg/m3 and considering characteristic length bounds between 0.1 m 
and 3.5 m. (Left) Joint PDF represented with 3D scatter using an uniform spaced grid. The scatter size and colour depends on the density value. (Righ) Sampling of 
the joint-PDF. 

Fig. 4. Planar reference frame (Sforza, 2016).  Fig. 5. Spherical reference frame.  
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that guarantees the mass conservation is required. 
It is possible to exploit the power law distribution of Eq. (1) to 

impose the mass conservation. The tuning parameter k depends on the 
object that undergoes the fragmentation process and can be used to 
impose the mass conservation. First, we rewrite the probability density 
function in terms of the fragments mass Eq. (7). By exploiting the same 
approach of Sec.2.2 and outlined in Appendix A., Eq. (8) is transformed 
into: 

pM =
f

3α

(π
6

ρm

)f/3
M− f/3− 1 (9)  

pM is the result of a coordinate transformation, hence it still represents 
the frequency of a fragment of a given mass (i.e. pM represents the 
normalised number of fragments having mass inside the interval [Mi, Mi 
+ dMi]), therefore the following properties are still valid: 
∫ Mmax

Mmin

pMdM = 1 (10)  

and 
∫ Mmax

Mmin

pMNtot dM = Ntot (11) 

To obtain the normalised mass of the fragments it is sufficient to 
multiply pM (i.e. the normalised number of fragments) by M, as in Eq. 
(11). The total mass is found by multiplying the result by the total 
number of fragments, Ntot, as shown in Eq. (12). The parameter k is then 
found by imposing the mass conservation as follows: 

Ntot

∫ Mmax

Mmin

M pMdM = Mtot (12) 

Whose solution is: 

k =
Mtot

f
3− f

(
π
6 ρm

)f/3 (
M1− f/3

max − M1− f/3
min

) (13) 

Eq.(13) shows that the parameter k can be determined by defining 
the mass range of the generated fragments. This condition is translated 
in a boundary definition of the minimum and maximum characteristic 
length of the fragments in the cloud. However, there is not a general rule 
to select them, and they must be selected depending on the specific case 
in exam (Appendix B.). 

2.4. Velocity distribution 

In the NASA SBM, the velocity distribution is modelled as a log- 
normal PDF as follows: 

p(ν|χ) = N (μ, σ) (14)  

where N 

is the normal Gaussian distribution defined by the following parameters 

: 

σ = 0.4
μ = 0.2χ + 1.85
χ = Log10(A/M)

v = Log10(Δv)

(15) 

However, this model only expresses the magnitude of the velocity 
variation, not its direction. A model of the ejection direction is then 
required to properly describe the breakup. Looking at the observations 
there is no evidence of a preferred ejection direction during fragmen-
tations, so the impulse direction is assumed to be uniformly distributed. 
To introduce a directional component in the probability density func-
tions of ∆v, the distribution needs to be divided by the surface area that 
the tip of the velocity vector draws out as explained by Frey et al. (Frey 
and Colombo, 2020). The resulting distribution is the following: 

p∆v =
p∆v

S
(16)  

S =

{
2 π∆v for planar case

4 π∆v2 for spherical case (17)  

Fig. 6. Histograms of paugmented along each dimension. Count is the number of 
fragments in each bin. 

Fig. 7. Representation of the domain evolution in time. The different colours 
represent different time instants. 
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2.5. Joint-PDF 

The joint-PDF is the core of the ABM. It is a multidimensional density 
function that describes the characteristics of the fragments generated by 
a fragmentation event. Specifically, as stated in Sec.2 it is defined in 
terms of A/M, v, γ for the planar case. To obtain this joint distribution, it 
is sufficient to combine the distributions along each dimension (or state 
space). 

The first step is merging the area-to-mass distribution with the delta 
velocity distribution. Both PDFs must be projected onto the same phase 
space, in this case the logarithmic space (χ,ν) has been selected. A 
variables transformation (Appendix A.) is applied to Eq. (8) obtaining 
the following PDF in the logarithmic space: 

pχ = ln(10)10χ pA/M (18) 

Then the PDF in the (χ, ν) space is obtained by multiplying the two 
probability density functions (14, 18): 

pν,χ = pν|χpχ (19) 

Eq. (19) is then transformed (Appendix A.) in the (A/M,Δv) space 
(Fig. 2): 

pA/M,Δv = pν,χ
1

ln2(10)A/M Δv
(20) 

From Fig. 2 it can be observed that, as expected, the probability value 
is higher as the fragments size is smaller, and that, on average, a larger 
velocity increment is given to the smaller fragments. Moreover, the 
velocity increment range becomes narrower as the fragments becomes 
larger. As a result, large and heavy fragments tend not to significantly 
change their trajectory after the breakup. The joint-PDF is then obtained 
by adding the directional dependence of the impulse as explained in 
Sec.2.4. 

pA/M,vx ,vy
= pA/M,Δv

1
S 2D

(21) 

Where S 2D is by the surface area that the tip of the velocity vector 
draws out (Eq. (17)) and the subscript 2D stand for the planar case. 

The joint PDF is now function of A/M, vx, vy where vx and vy are the 
∆v component along the trajectory and normal to it at the breakup point. 
Again, a variable transformation from vx, vy to v, γ is performed (Ap-
pendix A.) to project the joint-PDF in the desired state space (Fig. 3) as 
follows: 

pA/M,v,γ = pA/M,vx ,vy
|v| (22) 

Similarly to the distribution of Fig. 2, also in this case a bigger ve-
locity increment is given to the smaller fragments. However, from Fig. 3 
it is possible to directly appreciate the distribution in the re-entry state 
space (v, γ, ρ) of the fragments after the breakup instead of their varia-
tion. In addition, there is also information about the flight-path angle: as 
expected, due to the isotropic distribution of Δv the lighter the frag-
ments are, the more scattering they receive after the breakup. 

2.6. Asteroid breakup model implementation 

During the atmospheric descent, the fragmentation event is triggered 
when the dynamic pressure at the stagnation point of the object reaches 
the meteoroid strength limit as shown in Eq. (23) and it is assumed 
instantaneous (Mehta et al., 2015; Register et al., 2017). However, it is 

Fig. 8. Domain evolution in time considering only fragments larger than 1 m 
in diameter. 

Fig. 9. A/M PDF approximation with a piecewise linear function (10 bins).  

Fig. 10. Domain evolution in time considering a cloud of 1 m fragments.  
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often found in real cases that the value of the dynamic pressure as 
computed from real data is considerably lower than the expected and 
also measured meteoroid yield strength (Devillepoix et al., 2019; 
Popova et al., 2011). 

St = ρ v2 (23)  

where St is the meteoroid strength limit, ρ is the air density and v the 
meteoroid velocity at the breakup. At this point the states of the mete-
oroid at the fragmentation instant are used by the ABM to generate a 
suitable joint PDF. The distribution of Eq. (22) is then sampled, and a 
family of fragments to be propagated is generated. The propagation 
approach will be described in detail in Sec. 5.1. The model has been 
implemented in MATLAB, version R2018b. 

As an example, consider a typical meteoroid entry scenario 
(described in detail in Sec. 6), with entry velocity v = 17 km/s and entry 
flight-path angle γ = − 45◦. The sampling of the joint PDF results in a 
“columnar shape” domain, as shown in Fig. 3. The selected meteoroid 
has an initial radius of 5 m and density ρm = 2900 kg/m3. The ABM 
requires the definition of the range of the fragments size considered. 
There is not a fixed rule for the definition of the characteristic length 
boundaries; they must be selected depending on the analysis objective 
and data available. Further details will be given in Sec. 6. 

As Fig. 3b shows, the ∆v generated by the ABM does not create a 
relatively large variation in the fragments' velocity. On the other hand, 
the fragmentation causes a relatively large variation in the A/M 
dimension with a predominance of small fragments. 

3. Dynamic model 

The meteoroid is modelled as a point mass with uniform density and 
given area-to-mass ratio, subject to Earth gravity, air resistance and 
ablation. Lift and sides forces, accordingly to the most recent models in 
literature (Mehta et al., 2015; Register et al., 2017), are neglected, as 
meteoroids are in general heavy and non-aerodynamic bodies. More-
over, the unknown and variable shape of these objects does not allow to 
determine reliable values for the lift coefficient. 

3.1. Planar approach 

Most of the dynamic models used in meteor science are based on a 
two-dimensional motion. This approach can be justified observing the 
typical distribution of the fragments on ground: the fragments distribute 
across an elongated elliptic area, called strewn filed (Norton, 2009). The 
major axis coincides with the direction of motion of the meteorite swarm 
and is typically much bigger with respect to the minor axis. Therefore, 
the bidimensional ground footprint can be approximated as a one- 
dimensional line in a preliminary analysis. 

Following the procedure outlined by Register (Register et al., 2017), 
the phenomenon is described assuming a planar reference frame over a 
circular, non-rotating, Earth (Fig. 4). The system of the governing 
equation can be written as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḣ = vsinγ

ζ̇ =
vcosγ

RE + h

v̇ =
ρ v2A

/
M cd

2
− gsinγ

γ̇ = cosγ
(

v
RE + h

−
g
v

)

˙A/M =
1
6

ρ cd σab (A/M)
2 v3

(24)  

where h is the altitude from the ground, v is the fragment velocity, and γ 
is the flight-path angle. The gravity acceleration (g) is modelled as a 
function of the altitude by means of an inverse square model (Eq. (25)), 

while for the atmospheric density (ρ) an exponential model has been 
adopted (Eq. (26)). The drag coefficient (cd), can be considered constant 
at high hypersonic regime, since it is independent on the Mach number. 
For the case in exam we consider cd = 1 as reference value (Register 
et al., 2017). σab is the ablation coefficient. As pointed out by Wheeler 
(Wheeler et al., 2017), the ablation rate should vary with fragment size, 
shape, speed, and altitude throughout entry. However, appropriate 
values for those rates and how much they may vary throughout the entry 
remain uncertain. In this analysis, we select a constant value of σab =

10− 8 s2m− 2 (Register et al., 2017; Hills and Goda, 1993), that is defined 
for the evolution of a fragments cloud. ζ is an angular variable repre-
senting the angular range distance from the atmospheric entry point. 
The ground distance covered by the flying object is called range and can 
be found by multiplying ζ by the Earth radius (Eq. (27)). 

g = g0
G ME

(RE + h)2 (25)  

ρ = ρ0exp
(

H2 − h
H1

)

(26)  

range = ζ RE (27)  

where ρ0 is a reference atmospheric density, H1 and H2are constants 
related to the atmosphere of the planet, ME is Earth's mass, RE is Earth's 
radius and G is the universal gravitational constant (G = 6.67 10–11 
m3kg− 1 s− 2). 

3.2. Three-dimensional extension 

Analysing the meteoroid entry, it is possible to extend the results of 
the planar dynamics model to describe a full three-dimensional motion. 
Considering the three-dimensional set of equations governing the 
descent of a non-lifting object in the atmosphere for a non-rotating Earth 
(Fig. 5) (Avanzini, 2009): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḣ = vsinγ

λ̇ =
vcosγ sinχ

(RE + h)cosδ

δ̇ =
vcosγ cosχ

RE + h

v̇ =
ρ v2A

/
M cd

2
− gsinγ

χ̇ =
vcosγ sinχtanδ

(RE + h)

γ̇ = cosγ
(

v
RE + h

−
g
v

)

˙A/M =
1
6

ρ cd σab (A/M)
2 v3

(28) 

The main differences with respect to Eqs. (24) are the presence of the 
heading angle (χ) defined as the angle between the local meridian and 
the projection of the velocity vector on the local horizon, and of the 
latitude (δ) and longitude (λ) instead of the angular range (ζ). As pointed 
out by Avanzini (Avanzini, 2009) for a motion constrained over any 
plane containing a great circle, the equations of motion reduce to the 
two-dimensional set of Eq. (24). For this reason, the meteoroid entry can 
be modelled using the two-dimensional equations until the breakup. 
This approximation, in general, it is not valid when propagating the 
fragments cloud after the breakup. During fragmentation, in fact, in a 
three-dimensional analysis, the velocity is scattered also in the out-of- 
plane direction. 

In this case, the heading angle χ is added as new state in the joint 
PDF. However, the heading angle variation, during the fragments' 
descent, can be neglected at small latitude angles without introducing 
significant error. Following these considerations, χ can be approximated 
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constant and this allows to decouple the heading angle evolution from 
the other equations. At this point, the only remaining variables 
depending on χ are the latitude δ and the longitude λ. Given that χ is 
assumed constant in time and that δ is small (i.e. cos δ ~ 1), latitude and 
longitude can be considered as the projection of the angular range (ζ) in 
two orthogonal direction (North and East). The three-dimensional dy-
namics reduces to the usual two-dimensional dynamics, with the in-
clusion, ex-post, of the χ dependence, used to decompose the angular 
range in latitude and longitude. 

Form these considerations it can be derived a method to recover the 
joint PDF in the three-dimensional physical domain. The χ angle prob-
ability distribution can be considered constant and independent with 
respect to the planar joint PDF. Specifically, this relation is valid at each 
time step: 

pA/M,v,γ,χ = pA/M,v,γ pχ (29) 

Instead of propagating the full PDF, it is then convenient to propa-
gate only its planar counterpart, consider pχ as independent and recover 
the third-dimension information exploiting the augmented PDF using 
Eq. (29). 

4. Density based approach 

The ABM describes the fragments cloud as a whole, by means of a 
joint PDF. Its intrinsic continuous nature allows to exploit a novel 
strategy for the propagation of the fragments' dynamics. This method is 
based on a continuum approach and, in this paper, it is proposed as 
alternative to the traditional Monte Carlo methodology. 

4.1. Probability density function evolution 

Presented for the first time by Heard (Heard, 1976), the central idea 
of this approach is to consider the fragments population as a fluid with 
continuous properties. The coupling between the dynamics and the 
continuity equation (Eq. (30)) enables the exact evaluation of the evo-
lution in time of the joint PDF. In this way, the analysis of the single 
objects is abandoned, and the ensemble of fragments together with their 
density is considered. 

Once the initial distribution of the fragments is known, the conti-
nuity equation is used to obtain its evolution in time as follows: 

∂n
∂t

+∇∙f = n+ − n− (30)  

where n represents the fragments density in the space of the entry co-
ordinates and the vector field f describe the differential problem. The 
divergence of f accounts for continuous phenomena (e.g. drag, ablation) 
and n+, n− are respectively the source and sink terms that model 
discontinuous events. 

This method is quite general and it has also been applied to describe 
the evolution of interplanetary dust (Heard, 1976), nano-satellites 
constellations (McInnes, 2000) and debris cloud evolution (Frey et al., 
2019a; Letizia, 2016). Trisolini (Trisolini and Colombo, 2021; Trisolini 
and Colombo, 2020; Trisolini and Colombo, 2019) and Halder (Halder 
and Bhattacharya, 2011) recently applied this approach to the re-entry 
of spacecraft and their uncertainties. The objective of this work is to 
extend this methodology to meteoroids entry by introducing the physics 
related to ablation and fragmentation phenomena. 

Starting from Eq. (30) and exploiting the method of characteristics 
(Halder and Bhattacharya, 2011; McInnes, 2000; Trisolini and Colombo, 
2019), together with the entry dynamics of Eq. (24), we obtain the 
differential equation that describes the joint PDF evolution in time (ṅ) 
and that can be propagated with the other differential equations: 

ṅ =

[

sinγ
(

v
RE + h

−
g
v

)

+ ρ vA
Mcd

−
1
3

ρ cd σab A
/

M v3
]

n (31) 

The expression of Eq. (31) refers to the planar entry dynamics case. 
However, the same procedure can be exploited to obtain a three- 
dimensional density evolution. 

4.2. Augmented probability density functions 

In the formulation of the problem described in Sec.4.1, the density 
function depends only to the fragment cloud distribution. However, the 
density-based method allows the extension of the density function. In 
particular, uncertainties can be modelled as density functions and can 
thus be added to the three-dimensional joint PDF in (A/M, v, γ) to obtain 
an augmented probability density function. During the meteoroid entry, 
the main uncertainty source, is considered to be the estimation of the 
position of the meteoroid in the sky. It is also difficult to predict when, 
along the trajectory, the fragments generated stop influencing each- 
other. This time uncertainty can also be considered as a position un-
certainty of the meteoroid at the breakup. The position uncertainty is 
traduced into two independent uncertainties: range and altitude. The 
uncertainties distributions are modelled as Gaussian normal distribution 
and are assumed independent from all the other states. Following this 
procedure, the joint PDF is transformed to a five-dimensional function, 
and it can be expressed as follows: 

paugmented = pA/M,v,γ ph prange (32)  

where ph and prange are defined as Gaussian uncertainties. In Fig. 6 the 
ABM joint PDF has been augmented considering an altitude and range 
uncertainties having a 10% relative variance. The new augmented joint 
PDF has been sampled and represented using histograms along each 
dimension. 

5. Propagation, fitting, and strewn field 

This chapter describes the approach used to propagate the fragments 
generated via the ABM (Sec. 2) until they reach the ground or demise, 
and to reconstruct the density information at each time step. In addition, 
two different strategies that simplify the domain and improve the 
quality of the results are presented. Finally, a procedure to obtain the 
strewn field distribution starting from the PDF reconstructed is 
presented. 

5.1. Fragments cloud propagation 

When the meteoroid enters the atmosphere, it is modelled using the 
two-dimensional single body dynamics (Sec.3.1) until the breakup. As 
stated in Sec. 2.5 there is no a general rule for choosing the characteristic 
length bounds. In this analysis, for a comparative analysis with the MC 
approach, it is suggested to consider fragments ranging from Lc = 0.1 m 
to the 70% of the meteoroid diameter at breakup. 

Once a pre-defined number of samples have been generated (Sec. 

Table 1 
Hypothetical entry scenario initial parameters and meteorite 
characteristics.  

Initial parameter Value 

Meteoroid class L 
Density (ρm) 2900 kg/m3 

Diameter (Lc) 5 m 
Mass (M) 189.80 tons 
Strength (S) 106 Pa 
Ablation coeff. (ca) 10− 8 s/m2 

Drag coeff. (cd) 1 
Velocity (v) 17 km/s 
Flight path angle (γ) − 45◦

Altitude (h) 100 km 
Longitude (λ) 0◦

Latitude (δ) 0◦
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2.5), the cloud density evolution is simulated exploiting the continuity 
equation coupled with the dynamics (Sec.4.1) until they reach the 
ground. The integration is stopped in advance if the fragments either 
ablate or reach a negligible level of kinetic energy (15 J). It is also 
assumed that after the entire meteoroid undergoes fragmentation and no 
other breakup events will occur. 

Fig. 7 shows the domain evolution in time highlighting different time 
instants with different colours, for the same meteoroid used in Sec.2.6. 
As the time passes, the domain extends along the A/M dimension and 
shrinks in the other dimensions, progressively transforming into a line. A 
domain exhibiting this behaviour is challenging to fit, as outlined in 
Sec.5.2. 

5.2. Fitting and marginalisation 

The density-based propagation performed via the method of char-
acteristics results in a discrete set of samples carrying the information of 
the actual fragment density for the defined state space. To obtain the 
density information in the entire domain, the distribution must be 
reconstructed at each integration step by interpolating the scattered 
data over the state space domain. In this work, the density distribution is 
reconstructed by fitting it to a Gaussian Mixture Model (GMM). This 

method has been proposed by Frey et al., 2019b for the reconstruction of 
the fragments density following a catastrophic fragmentation of a sat-
ellite in orbit. The GMM is fit using a gradient descent optimization 
method to minimize a given cost function dependent on the densities of 
each sample. This procedure is automatically implemented in the Star-
ling suite, a novel tool developed at the Politecnico di Milano and funded 
by the COMPASS European Research Council project and the European 
Space Agency (Frey et al., 2019a). The suite has been designed to esti-
mate evolving continua subject to non-linear dynamics and consists of 
several independent routines. In this paper, the fitting routine has been 
exploited, with minor changes to adapt it to the meteoroid entry dy-
namics. Further details about the Starling suite and its fitting optimi-
sation technique can be found in Frey et al., 2019a, 2019b. 

Once the joint PDF has been evaluated, it is possible to compute its 
marginal along each dimension (i.e., the probability of an event irre-
spective of the outcome of other variables). For example, the one- 
dimensional marginal probability along the x-direction of a three- 
dimensional distribution function p(x,y,z) is expressed by: 

mx =

∫∫

p(x, y, z)dy dz (33) 

Fig. 12. Strewn field distribution estimated using the Monte Carlo simulation 
with 1000 samples. 

Fig. 13. Comparison in range PDF between the joint PDF fitting and MC 
simulation for a 1 m fragments bin. 

Fig. 11. Strewn field distribution obtained with the reduced domain approximation. (Left) Density-based methodology strewn field, 1000 samples. (Righ) Monte 
Carlo estimated strewn field, 380000 samples. 

S. Limonta et al.                                                                                                                                                                                                                                



Icarus 367 (2021) 114553

10

In this framework, the marginalisation of the multivariate normal 
distribution over one or more distributions is another multivariate 
normal distribution. The new mean and covariance are simply the par-
titioned mean and covariance of the marginalised distribution. The 
extension to the marginalisation of a GMM is trivial. 

During the propagation both the density and the volume of the state 
space deform (Fig. 7). Considering the meteoroid entry scenario, the 
domain shape increases its complexity over time. In these cases, the 
fitting routine might not converge and provide inaccurate results. In 
particular, the samples fitting performed exploiting the Starling suite 
provides good results only for the initial part of the trajectory, then some 
simplifications are required to provide more precise results. The main 
criticality in the domain shape is due to the large A/M range considered. 
For this reason, in this paper two different strategies to mitigate this 
problem are discussed: the reduction of the A/M domain and the 
simplification of the A/M distribution. The first method limits the 
analysis to the larger fragments in the distribution because they are the 
ones of main concern for a risk analysis. The second method exploits a 
binning technique to discretise the A/M dimension and uses interpola-
tion to recover the fragments distribution on the whole domain. In the 
following the two approaches are described in more detail. 

5.3. Reduced domain approximation 

With this method, the fragment cloud fitting is performed on a 
reduced domain along the A/M dimension. This strategy considers only 
the larger fragments generated at the breakup. The reason behind this 
choice is to reduce the domain tendency to the elongation: the heavier 
objects evolve relatively slowly, hence reaching the ground before the 
shape of the domain becomes too complex. A 1 m diameter threshold has 
been selected. This choice is an indication, not a general rule, as the 
selection of the threshold can depend on the initial entry conditions of 
the meteoroid. 

The obtained domain evolution is presented in Fig. 8. Also in this 
case the shape of the domain is complex, but differently from Fig. 7, it 
remains relatively confined. With respect to the previous case, the 
domain range is sensibly reduced for all the variables, thus reducing the 
criticalities in the fitting process and allowing Starling to reach good 
fitting results for the whole trajectory. With this strategy the joint PDF 
and its marginals can be available at every time step. 

Fig. 14. Weighted sum of all the range PDFs.  

Fig. 15. Scheme used for the interpolation among the propagated range PDFs 
of the propagated bins. 

Fig. 16. Mono-dimensional strewn field distribution obtained with the binning 
approximation. 

Fig. 17. Mono-dimensional strewn field distribution obtained using the Monte 
Carlo approach. 
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5.4. Area-to-mass binning approximation 

The binning method relies on the approximation of the A/M distri-
bution, where the PDF is approximated using a piecewise linear function 
(Fig. 9). For each bin, a representative object is propagated. At the end, 
the fitted PDF of each representative object are summed together and 
weighted according to the probability density associated to each bin. A 
number Nb of bins in area-to-mass ratio is defined, for each bin an 
average A/M is assumed and the corresponding partial density is ob-
tained according to the A/M probability density function (Eq.(8)). For a 
preliminary analysis Nb = 10 bins are selected and, for each one of them, 
a representative object is chosen as the average between the bin edges: 

A/Mbini = 1/2 (A/Mi +A/Mi+1 ) (34) 

The probability density considered is then the probability of each A/ 
M bin multiplied by the weight of each bin over the domain (i.e. the area 
associated with each bin). 

w =

∫ A/Mi+1

A/Mi

PDFA/M dA

/

M (35)  

PDFA/Mbini
= w PDFA/M(A/Mbini ) (36) 

In this way the conservation of the area under the function is guar-
anteed. Different binning strategies can be adopted. After comparing 

different options (Limonta et al., 2020), the log-spaced strategy has been 
selected. Compared to a uniform binning, the log-spaced option has a 
denser discretisation for the lighter fragments without neglecting the 
heavier ones. 

Each one of the bins is integrated and propagated independently 
from the others. For each one of them the fragments have a constant size, 
while the other parameters are assumed to vary following the usual 
ABM. Using this strategy, the evolution of the domain is greatly 
simplified: its shape is not elongated anymore but remains compact 

Fig. 18. Strewn field distribution obtained with the binning approximation. (Left) Density-based methodology strewn field, 1000 samples. (Righ) Monte Carlo 
estimated strewn field, 376500 samples. 

Fig. 19. Fragments distribution field obtained with the binning approximation. (Left) Density-based methodology strewn field, 1000 samples. (Righ) Monte Carlo 
estimated strewn field, 376500 samples. 

Table 2 
2008 TC3meteorite characteristics and re-entry initial 
conditions.  

Initial parameter Value 

Meteoroid class Urelite 
Density (ρm) 2800 kg/m3 

Diameter (Lc) 4 m 
Mass (M) 94 tons 
Strength (S) 2.2 106 Pa 
Ablation coeff. (ca) 10− 8 s/m2 

Drag coeff. (cd) 1.8 
Velocity (v) 12.38 km/s 
Flight path angle (γ) − 21◦

Altitude (h) 100 km 
Longitude (λ) 30.54◦

Latitude (δ) 21.09◦
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trough time. Fig. 10 shows the domain evolution in the reduced three- 
dimensional state space for a 1-m fragments cloud. 

In this case, the Starling fitting can obtain good results for every bin 
at every time along the trajectory. The use of the binning approximation 
gives an additional advantage: the range distribution at the time of 
impact can be approximated as the range distribution at ground, in fact, 
since the fragments in each bin are identical and the velocity and angle 
variation are relatively small, the objects move close to each other along 
the trajectory. As a consequence, at each time the height variation be-
tween the fragments is small. This approximation is especially valid for 
small fragments because of the lower velocity (Limonta et al., 2020). The 
drawback of this methodology is a reduction of the final accuracy due to 
the approximation introduced by the discretisation process. 

5.5. Footprint estimation 

In this analysis, the focus has been on the meteoroid ground footprint 

determination and on the fragments' distribution inside this region. 
These variables are indeed two of the most relevant in a risk assessment 
analysis. The strewn field is represented by the fragments range distri-
bution at ground. However, the fragments hit the ground at different 
times while the marginalisation is given at a fixed time. Considering a 
fitting at a time t, the joint PDF and its marginals are available. The 
altitude marginal (mh) is the probability of the fragments to be at a 
certain altitude at the time t, while the two-dimensional marginal of 
range and altitude (mr, h) represents the probability of a fragment to be 
in a particular position on the trajectory plane at the time t. The prob-
ability of having a certain range at ground (zero altitude) is then given 
by: 

mr|h=0 =
mr,h

mh
(37) 

For each snapshot, in which the fragments reach the ground, the 
marginals have been computed and transformed. To obtain the global 
range PDF, the marginals are summed and weighted with the normalised 
number of fragments reaching the ground at every time step as follows: 

PDFrange =
∑Tf

i=T0

wi mr|h=0i (38) 

Fig. 20. Drag-free ground track (solid line) and meteorite locations (black 
dots). Larger dots correspond to larger meteorite sizes. In grey, the area 
explored by Jenniskens (Jenniskens et al., 2009) and Shaddad et al. (Jenniskens 
et al., 2009). The dashed line is the ground track used by Jenniskens, while the 
black ones is the one used by Farnocchia (Farnocchia et al., 2017) that include 
Earth's J2. 

Fig. 21. Strewn field shape obtained from the 2008 TC3 entry simulation. (Left) Strewn field along the meteoroid flight track on ground (X axis) (Righ) Strewn field 
in the Fig. 20 reference frame. The coloured ‘line’ represents the simulation results (left), the red line represents the Drag-free ground track (Farnocchia et al., 2017) 

Fig. 22. A/M distribution along the latitude obtained from the simulation.  
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where T0 and Tf are the initial and file time of the considered snapshots, 
and wi is the weight (normalised number of fragments at ground) of each 
snapshot. At this point, as outlined in Sec.3.2, the range can be 
decomposed, by means of the χ distribution in the δ and λ angular range. 
Then, the distribution is written in terms of the ground coordinates X 
and Y, obtained by multiplying latitude and longitude by the Earth 
radius. 

pX,Y =
mr pχ

RE
(39) 

Using this procedure is also possible to obtain a complete description 
of the evolution of all the other parameters that characterise the fra-
gemnts cloud. 

6. Monte Carlo validation 

In this section, the methodology is applied to recover the ground 
fragments distribution for a meteoroid entry event. Then the results 
obtained are compared with a traditional three-dimensional Monte 
Carlo approach. The test case selected has been obtained considering 
average parameters among the past meteoroid impacts. Analysing the 
falls reports, the most common meteorites recorded are ordinary chon-
drites, belonging to the L or H classes (Carry, 2012). The selected object 
belong to the L class and its diameter is 5 m. Larger objects are less 
frequent and there is a chance for them of having a rubble pile structure, 
which is less consistent with the proposed approach as it assumes a 
homogeneous meteoroid structure. Smaller bodies, instead, could have a 
higher strength that prevents the explosive fragmentation. Moreover, 
the selected size is comparable with the real case scenario analysed in 
Sec.7. The entry altitude is considered at the Karman line (formal 
boundary between Earth's atmosphere and outer space), while the entry 
velocity is taken as an average of several meteoroid entry records 
(Brown et al., 2011). The flight-path angle is assumed to be 45 degrees, 
which is considered the most probable entry angle by Shuvalov (Shu-
valov and Artemieva, 2002). Starting from the meteoroid size and class, 
the meteoroid density and all the relevant parameters are inferred as 
suggested by Cotto-Figueroa (Cotto-Figueroa et al., 2016). Table 1 
summarises the selected meteoroid parameters and all the initial entry 
conditions. 

6.1. Results - reduced domain approximation 

Staring from the atmospheric entry (Table 1), the meteoroid states 
have been propagated with a planar dynamic model (Sec. 3.1) until the 
fragmentation point (Sec. 2.6). At this point the fragment cloud is 
generated consisting of 1000 samples, which are propagated towards the 
ground together with the continuity equation (Sec. 4.1). Also, altitude 
and range uncertainties have been considered (Sec. 4.2). The samples 
obtained at ground has been fitted using the GMM approach described in 
Sec. 5.2 and the ground fragments distribution is obtained as explained 
in Sec. 5.5. For the case analysed, the falling fragments time windows 
goes from t = 9 s to t = 36 s. The time discretisation chosen is of 1 s. 

For the MC method, the same scheme has been followed, the only 
difference is the higher number of realisations used and the reduced set 
of governing equations (i.e., without the density equation). For each 
realisation, a new meteoroid breakup was simulated, so that n number of 
fragments, that guarantees the mass conservation, were generated, and 
propagated to the ground. 500 realisations have been considered with a 
total for 380,000 samples. Fig. 11 represents the PDF at ground obtained 

with the density-based approach (Fig. 11a) and the comparison with a 
Monte Carlo simulation (Fig. 11b). 

The density-based approach provides comparable results with 
respect to the MC simulation. It is possible to quantify it using the 
Hellinger distance: it is a metric to measure the difference between two 
probability distributions. It is the probabilistic analogue of Euclidean 
distance. Given two discrete probability distributions p and q the Hel-
linger distance is defined as: 

DH =
1̅
̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k

i=1

( ̅̅̅̅
pi

√
−

̅̅̅̅
qi

√ )2

√
√
√
√ (40)  

where DH it is a number between 0 and 1. The closer the value is to 0, the 
closer the compared distributions are. For the case analysed the Hel-
linger distance is 0.2935. There is a small difference in the scale of the 
density: the MC distribution has a higher peak, then it decreases faster 
than the PDF found with the density-based approach. This is probably 
due to the approximations used in the three-dimensional methodology 
and to the time discretisation approximation used for estimating the 
joint PDF. However, the MC analysis required a very high number of 
samples to correctly estimate the footprint distribution, while the 
density-based methodology can reach comparable results with only 
1000 samples. Fig. 12 represents the strewn field distribution obtained 
with a MC analysis using the same number of samples of the density- 
based approach. In this last case the Hellinger distance is 0.3681. This 
value is 25% larger with respect to the one obtained with the density- 
based method. Therefore, with the same 1000 samples, the density- 
based method gives a better estimation of the strewn field with 
respect to the MC approach. 

6.2. Results – area-to-mass binning approximation 

When using the binning approximation, the steps are equivalent to 
the reduced domain approximation, but it is possible to exploit one more 
advantage so that the fitting provides good results for every bin at every 
instant along the trajectory. The fragments in each bin are identical and 
the velocity and angle variation are relatively small, each object moves 
close to the others along the trajectory. Consequently, at each time step, 
the height variation among the fragments in the cloud is small. There-
fore, the range distribution at the time of impact can be approximated as 
the range distribution at ground. This approximation is especially valid 
for small fragments because of the lower velocity. Fig. 13 proves the 
validity of this assumption. It shows the range probability density 
function fitted at the time of impact and the range distribution at ground 
estimated using an MC simulation for 1-m sized fragments. The Hel-
linger distance between these distributions is 0.1740. It is then possible 
to approximate the range distribution at the time of impact as the range 
distribution at ground for 1 m fragments. 

After evaluating the marginal for each bin, the weighted sum is 
performed (Eq. (38)). However, in the test case considered, the strewn 
field distributions for each bin are narrow, and their sum does not give a 
smooth function as shown in Fig. 14. The resulting total range distri-
bution shows peaks in correspondence to each one of the selected bins. 

This problem may be solved increasing the number of bins; however, 
because the distributions are very narrow, a much higher number of bins 
would be required. An alternative strategy, that is the one implemented 
in this work, is to consider a denser bin grid when sampling the PDF, but 
to propagate only a small part of the bin. At this point, since the indi-
vidual range distributions are very narrow, the range PDFs obtained 

S. Limonta et al.                                                                                                                                                                                                                                



Icarus 367 (2021) 114553

14

from the propagated bin can be approximated as vertical lines. In this 
way, the missing information about the non-propagated bins can be 
recovered simply by interpolating the maximum points of each line 
(Fig. 15). 

Following this procedure, we obtain a smooth function that describes 
the fragments density on ground (Fig. 16). The improved range PDF is 
obtained considering 64 bins, 10 of which have been propagated and 
fitted. 

The function obtained agrees with the MC estimation (Fig. 17) except 
for in the right end part of the curve. This is probably because the 
approximation of the time fitting with the altitude fitting assumed in this 
analysis is weaker for the big and fast fragments. The Hellinger distance 
between the distributions of Fig. 16 and Fig. 17 is 0.0388. 

Even if the domain remains relatively compact during the propaga-
tion (Fig. 10), when analysing the smaller fragments some problems 
arise in the fitting when γ approaches 90 degrees. In fact, the right angle 
is the accumulation point of γ: after some time, the lighter bodies will 
fall vertically causing the collapsing of the flight-path angle dimension. 
Then, all the other parameters will evolve independently from γ. This 
behaviour is not currently supported by the Starling software, so it 
should be treated with a different approach. When γ ~ 90◦ the range can 
be considered approximately constant in time; hence, when analysing 
the smaller fragments, the fitting is performed before the ‘vertical fall’ 
event initiates. The smaller the fragments are, the bigger the inaccuracy 
of this approximation is, because they reach the limit angle at higher 
altitude. If the trajectory is not exactly perpendicular to the ground, the 
range distribution evaluated at a high altitude can be different from the 
one at ground, causing a non-negligible variation in the footprint 
determination. 

The area-to-mass binning approach can be generalised also in the 
case of a three-dimensional dynamics. In this case, a two-dimensional 
strewn field distribution (Fig. 18a) is obtained, which can be 
compared with the traditional MC approach (Fig. 18b). 

The strewn field obtained with the density-based approach is com-
parable with the one obtained by the MC estimation. The Hellinger 
distance between the two distributions is 0.0796. This value is less than 
one-third of the Hellinger distance obtained by the reduced domain 
methodology of Sec. 6.1. In fact, in this case, the density magnitude is 
well estimated and the difference between the density-based and the MC 
approach is small. The probability magnitude estimated by the MC 
simulation is slightly higher, that means that the fitting of the density 
function overestimates the spreading of the fragments outside the 
symmetry axis. This effect might be related to the constant χ angle 
approximation. As in its two-dimension counterpart, also in this case the 
density-based result, lacks the representation of the second peak 
downrange. This behaviour is probably related to the binning approxi-
mation limitation that does not consider fragments larger than 1 m. 

6.3. Results – fragments size distribution at ground impact 

Another variable of interest used for characterising the strewn field is 
the fragments size distribution (A/M) inside the footprint area. This kind 
of analysis is particularly useful because it relates the position, the size, 
and the frequency of the fragments on ground. 

The binning methodology previously presented is used to evaluate 
the PDF marginal in a two-dimensional phase space. In particular, the 
fragment probability density function is considered along the range (i.e., 
the distance travelled along the orbit ground track) and A/M 
dimensions. 

Repeating the procedure of Sec.6.2, we obtain the A/M vs. range 

distribution, which is a curved bi-dimensional plane (Fig.19a) in 
agreement with the ones estimated with a corresponding MC simulation 
(Fig. 19b). The smaller fragments have a higher probability density 
values and are located at the leading edge of the strewn field. The 
density value decreases progressively as the range increases so that at 
the opposite side of the strewn field are located the bigger fragments. 
The Hellinger distance obtained from the comparison between the dis-
tributions of Fig. 19 is 0.7781. This value is representative of a lower 
similarity between the two distributions. The results may also be biased 
by the extremely localised nature of the distributions, which amplifies 
the comparison using the Hellinger distance. Additionally, the right part 
(corresponding to higher area-to-mass ratios) of the MC distribution is 
not estimated by the density-based approach. A difference can also be 
observed in the probability magnitude. This behaviour is likely due to 
the binning approximation used to have a better-behaved domain to 
perform the fitting. 

7. Application to the 2008TC3 event 

The methodology validated in Sec. 6, is now applied to the analysis of 
a real entry scenario, the 2008TC3 fall (Farnocchia et al., 2017; Jen-
niskens et al., 2009; Shaddad et al., 2010). 2008TC3 is an asteroid 
similar in size to the hypothetical one used in Sec. 6. The purpose of this 
analysis is to highlight the differences between a real case scenario and a 
simulated one. From their comparison, we can understand the limita-
tions of the model and gain insight for future developments. Thanks to 
the high quality of the available data, the analysis of the 2008TC3 fall 
provides strong and unique observational constraints to test the accu-
racy of the models used for strewn filed determination. 

The asteroid 2008 TC3 was observed on October 6, 2008 and the 
impact occurred above the Nubian Desert in northern Sudan (Shaddad 
et al., 2010). The entry velocity relative to the ground was 12 km/s with 
a flight-path angle γ of 21 degrees (Farnocchia et al., 2017). Jenniskens 
(Jenniskens et al., 2009) found that the asteroid broke up at an altitude 
of 37 km. Over 600 meteorites were recovered from the impact site, 
most of them of small dimension, with a total mass of 10.7 kg (Shaddad 
et al., 2010). The subsequent analysis of the meteorites indicated that 
the asteroid was an achondrite and that its original diameter was about 
4 m. 

Table 2 summarises the parameters of the meteoroid at the entry 
used in the simulation. However, some of the required data were not 
directly available from literature. For example, the ablation coefficient 
and the strength of the meteoroid. In these cases, reasonable assump-
tions have been made starting from the available information. 
Regarding the strength, knowing the altitude of fragmentation, it can be 
reasonably estimated computing the dynamic pressure at that altitude. 
On the other hand, a direct estimation of the ablation coefficient is not 
possible from the data available, hence the same value used in Sec. 6 has 
been adopted (Table 1). 

It is also important to point out that the drag model used is not an 
accurate representation of the behaviour of 2008 TC3 in the atmosphere. 
The asteroid experienced different drag coefficient depending on its 
orientation, but the constant value of cd = 1.8 could represent a good 
approximation as pointed out by Farnocchia et al. (Farnocchia et al., 
2017). A final remark is needed on the fragmentation phenomenon: in 
this simulation the fragmentation is treated as a unique event, but as 
Jenniskens et al. (Jenniskens et al., 2009) observed, the asteroid showed 
significant disruption at altitudes around 42, 37 and 33 km. However, 
the methodology described in this paper currently does not support 
multiple fragmentation points along the trajectory. For this reason, in 
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the simulation the altitude selected for the fragmentation is 37 km and it 
is assumed that all the fragments are generated at that instant. This 
assumption must be taken into consideration when comparing the re-
sults of the simulation with the real data. This event was selected for the 
analysis despite the multiple fragmentation events because of the quality 
of the data available and because of the insufficient available data on 
entry events with a single breakup point. 

7.1. Strewn field 

Fig. 20 shows the ground-projected approach path of the asteroid 
over the surface of the Earth and the location of the fragments collected 
after the impact. The masses recovered range from 1.5 g to 283 g and 
spreads for 29 km along the approach path. The comparison with this 
scenario is performed using the binning strategy described in Sec.5.4. 
This was considered the most suitable strategy given it ability to 
correctly estimates even the smaller fragments distribution, which are 
predominant for the case in exam. As explained in Sec. 2 the ABM re-
quires as input, together with the states of the asteroid at the breakup, 
also the maximum and minimum fragments size produced at breakup. 
Differently from the Sec. 6, in which the size of fragments produced by 
the ABM are assumed to be between 0.1 m and the 70% of the charac-
teristic length, Lc, in this analysis these boundaries have been modified. 
In fact, the fragments recovered from the meteoroid impact are much 
smaller than the original size of the body. The smaller fragments size at 
breakup is assumed to be 5 cm, while the maximum limit is assumed to 
be 1 m. 

Fig. 21a represents the normalised fragment density on ground: the 
yellow regions is the one with more concentration of fragments, while 
the blue region represents the absence of objects. Comparing the strewn 
field resulted from the simulation with the real one (Fig. 21b), it is 
possible to observe some differences and some similarities. First, the 
location of the strewn field on the Earth's surface is reasonably estimated 
by the model, despite the assumptions made (i.e., non-rotating Earth, 
constant drag coefficient, constant heading angle, etc.). The comparison 
shows a good accuracy of the latitude together with a small drift of the 
longitude towards west. The average distance between the 2 strewn field 
in Fig. 21b is about 0.02 degrees or 2.23 km. 

These results show that the model can reasonably estimate the 
location of the strewn field. However, the shape of the footprint has 
notable differences: the predicted footprint can be approximated as a 
line, while in the real case, even if it is possible to identify a line that 
interpolates the fragments' location, the fragments are more spread. 
Additionally, while in the model the line gets narrower as the strewn 
field evolves towards the left, in the real case the strewn field shows the 
opposite behaviour (Fig. 20). This behaviour is different also from the 
typical shapes of the asteroids strewn field, for which the bigger frag-
ments tends to be aligned with the ground track of the asteroid (Norton, 
2009). The difference between the model and the real footprint could be 
caused both by the ∆v distribution used in the ABM (that has not been 
modified from the original one in the NASA SBM) and the one frag-
mentation point approximation. In fact, multiple breakups can 
contribute to increasing the fragments spread (i.e., the velocity of each 
fragment is scattered multiple times). An alternative analysis of the 
entry using a different velocity distribution has been presented in Ap-
pendix C. 

Another features to highlight in the real strewn field is that the 
smaller fragments show a south offset with respect to the ground track, 
which is likely caused by winds at the time of the atmospheric entry. 

However, winds and side forces are not currently included in the pro-
posed model. Nonetheless, the model correctly estimates the fragments 
density along the ground track: there is a higher density of fragments at 
the start of the strewn field (left part of the figure), which decreases 
going towards the right part of the figure. This behaviour seems different 
looking at the real strewn field, but it should be noticed that the mete-
orites have been searched only on the grey rectangles area. Furthermore, 
it is difficult to identify very small meteorites fragments. For these 
reasons, it is reasonable to assume that in the left part of the figures more 
fragments exist, but they have not been found yet. It could also be 
possible that the smaller fragments were dispersed by cross winds, like 
dust. 

7.2. Fragments ground distribution 

Fig. 21 is incomplete, it gives information only on the fragment 
density, but no information on their size. For this reason, for a more 
comprehensive analysis, Fig. 21 should be coupled with Fig. 22, which 
represents the fragments A/M distribution as a function of the latitude 
distance. Fig. 22 shows that the smaller fragments are more and are 
concentrated at smaller longitudes, while the bigger fragments are rare 
and concentrated at higher longitudes, coherently with what is observed 
in the real strewn field. 

However, there is a notable difference with respect to the location of 
the recovered fragments from the 2008TC3 event. The A/M range of the 
simulation is considerably more extended than the one of the observed 
footprints. An A/M value of 12 × 10− 3 m2/kg corresponds to a mass of 
130 g, while 2 × 10− 3 m2/kg corresponds to a mass of 28 kg. The 
presence of the big masses, larger than the meteorites collected on 
ground, in the simulated strewn field is due to the size limits used in the 
fragmentation model. An upper bound lower than 1 m was judged 
infeasible for a fragmentation of a 4 m-asteroid. However, it should be 
reminded that the proposed methodology is based on a probabilistic 
model: the absence of big fragments on the real case is compatible with 
the low probability density value estimated with the continuum 
approach. However, an overestimation of kilograms sizes fragments 
could derive from the model uncertainty (i.e., multiple fragmentation 
points or σab overstimation). In Fig. 22, the objects of different sizes are 
more grouped with respect to the real footprint, also in the along-track 
direction. In fact, the masses below 130 g are located before the 32.2◦ of 
longitude limit, while in the real strewn field, only the masses of 1 g can 
be found in the same location. Similarly, to the lack of spread in the 
direction perpendicular to the along track direction, this behaviour 
might be due to the underestimation of the ∆v at the breakup or to the 
multiple fragmentation points experienced by the real event. 

8. Conclusion 

The objective of this work is to propose new methodology to model 
the fragmentation of large meteoroids and small asteroids during entry 
events. This approach is based on the statistical description of the 
fragmentation event, which provides the distribution of the character-
istics of all the fragments generated at the breakup. The model describes 
the fragments cloud by means of a continuous distribution function 
defined in the A/M, v, γ space. To take advantage of the continuum 
formulation of the fragments cloud, a density-based propagation meth-
odology has been exploited to predict the evolution of the fragments 
along the entry trajectory until ground impact. 

From the presented analysis, the distribution of the meteoroid 
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fragments during the re-entry is characterised by a peculiar domain, 
which has an elongated shape, evolves quickly in time, and presents 
some challenges for the fitting routines. Simplifying the domain and 
focusing the analysis on the larger fragments have been proven feasible 
strategies for the prediction for the fragments strewn filed with the 
density-based method, with results comparable to Monte Carlo simula-
tions. This is a relevant result, because the main drawback of the Monte 
Carlo simulations is the high number of samples required to provide a 
good estimate of the distributions. The density-based methodology, 
instead, reached comparable results with a limited number of samples. 

The results obtained studying the 2008TC3 impact showed a good 
approximation of the landing site. However, differently form the real 
strewn field, the predicted one is narrower both in the along-track and 
cross-track direction. Furthermore, the location of the fragments inside 
the strewn field does not match accurately the one recorded on ground. 
This reduced accuracy can either derive from the formulation of the 
ABM, which underestimates the velocity difference between the frag-
ments after the breakup, or from the approximation used in the dy-
namics that does not account for the Earth's rotation, the presence of 
crosswinds, and the occurrence of multiple breakups, whose contribu-
tion can be significant for smaller fragments. Probably each one of the 
previous points contributed in part to the differences between the two 
strewn filed. 

At the current state of development, the model can predict the single 

fragmentation event and gives an estimation of the ground footprint and 
the fragments distribution inside it. However, a more refined breakup 
model may be required, which is directly derived from asteroid breakup 
data, instead than borrowed from satellite breakups. Furthermore, in 
some cases the generated fragments may experience further fragmen-
tations during the descent. The model used in this work assumes only 
one breakup point along the meteoroid trajectory. A further develop-
ment, which will improve the model accuracy and flexibility, can 
consider the presence of multiple fragmentation events. This model may 
also be integrated in others existing parent-child models to allow for a 
statistical representation of the cloud of small fragments. In fact, the 
structure of the methodology presented in this paper allow the inte-
gration of more representative fragmentation models, when available, 
without any modification on its other parts. 
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Appendix A. Probability density function transformation 

By definition, a given probability density function, px = p(x) is required to sum to unity if integrated over the whole state space x. The fragment 
distribution, instead, is described by the phase space density nx, that is the number of fragments in an infinitesimal volume around a state x. The 
integration of it over the full domain yields the total number of fragments, N. 
∫ +∞

− ∞
nx dx = N (41) 

Since nx and the px only differ via the normalization constant, the space density function can be treated as a probability density function. 
At this point, considering a one-to-one change of variables, y = φ(x) with ,y ∈ ℝn . If φ is differentiable, then the probability density function py can 

be derived from the probability density function px in the following way (Ghahramani, 2015): 

py(y) =
px(φ− 1(y) )

|detJ|
(42) 

With the Jacobian J ∈ ℝ ^ (n × n) defined as 

Ji,j =
∂φi

∂xi
(43) 

If the function φ is not invertible, the probability then is the sum of all the possible inputs (Frey and Colombo, 2020). 

Appendix B. Characteristic length bounds analysis 

As mentioned in Sec. 2.1, when different characteristic length bounds are considered, the strewn field may change, depending on which fragments 
size are neglected. Fig. 23 shows the comparison of different entry simulations considering different characteristic length bounds. These simulations 
provide a qualitative comparison of the strewn field shape and show the difference in the number of generated fragments for varying characteristic 
length bounds. The meteoroid considered for the simulation is the same test meteoroid analysed in Sec. 6. Depending on the different Lc bounds the 
ABM generate a different number of fragments so that the total meteoroid mass will be conserved. As expected, the larger the fragments the fewer the 
number of fragments generated. Fig. 23 shows that the strewn field shape changes substantially only when the analysis is limited to only small 
fragments (upper left) or to large fragments (lower right). In the first case, the number of fragments is high but is distributed only over a small area, in 
the second case the number of fragments is small, and they are concentrated along the meteoroid trajectory. The other two cases (upper right and 
lower left) in which the Lc bounds are wider, the fragments on ground are more distributed and the strewn field shape and range is relatively 
unchanged. 
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Fig. 23. Strewn field obtained considering different Lc bounds for the Test meteoroid entry (Table 1). Each point represents a child fragment and its colour its 
diameter. The bigger the fragments the larger is their range on ground. 

Appendix C. Alternative velocity distribution 

The results obtained with the application of the ABM to a real case scenario suggest that the velocity distribution is critical for the fragments cloud 
evolution and for the subsequent strewn filed formation. In this section the 2008TC3 entry will be analysed using a traditional velocity distribution 
that will substitute the one derived from the NASA SBM. As pointed out by Register (Register et al., 2020) the most commonly adopted velocity model 
to describe meteoroid fragmentations derives from the research of Passey and Melosh (Passey and Melosh, 1980). They calculated the dispersion 
velocity by which two spherical fragments separate after undergoing a breakup event: 

vdisp =

(

3 C
D1

D2

ρ
ρm

)1/2

v (44)  

Where vdisp is the velocity increment in the perpendicular direction. D1 and D2 are the parent and child object diameters, respectively, ρ is the air 
density and ρm is the meteoroid density, v is the airstream velocity, i.e., the meteoroid velocity, and C is the minimum edge-to-edge separation distance 
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(in multiples of D1) for the fragments to have independent bow shocks. The authors estimated the value of C to be on the order of 0.5 (Passey and 
Melosh, 1980). 

It has been demonstrated that for two identical fragments the dispersion velocity becomes constant for separations greater than C and its value is 
three times smaller than the value predicted by Eq.1 (Register et al., 2020). This result agrees with findings from McMullan and Wheeler (McMullan 
and Collins, 2019; Wheeler and Mathias, 2019). In this analysis, the 2008TC3 entry has been simulated using both the original Passey and Melosh 
velocity distribution (P&M) and considering the velocity reduction factor demonstrated by Register (Register et al., 2020). In this second case the 
velocity correction, proposed for two identical fragments, is extended to the whole debris cloud. The expression of the dispersion velocity including 
the considerations by Register is therefore: 

vdisp,R = fR vdisp (45)  

where the correction factor fR = 0.34. It is useful to compare the velocity magnitude increment given to each fragment for each of the proposed model 
and with the NASA SBM (Fig. 24). The NASA SBM is probabilistic while the alternative models are only a function of the fragments size. Given its 
statistical nature, the NASA SBM can assign high velocity increments event to larger fragments, even though these types of events have very low 
probability of occurrence. On the contrary, the Register and P&M models do not allow for this random variation and admit a maximum velocity 
threshold, depending on the characteristic length cut off. The Register model for example admits a Δvmax= 50 m/s for 10 cm fragments. Fig. 24 shows 
that, on average, the velocity estimated for fragments of the same size with the NASA SBM is lower than the one obtained by the Passey-Melosh and 
Register models; however, the presence of a long-tailed distribution such as the log-normal can introduce outliers with high Δv compared to the size of 
the fragment.

Fig. 24. Velocity magnitude increment given to each fragment during the fragmentation process.  

For each one of the velocity models discussed, a MC analysis has been performed evaluating the meteoroid fragmentation and the ground strewn 
field. Results are summarized in Fig. 25. Fig. 25a, Fig. 25c, Fig. 25e represent a two-dimensional binning of the fragment cloud generated by the ABM. 
The fragments have been grouped depending on their size and velocity increment. On average, the fragments velocity increment generated by the 
NASA SBM are lower than the ones obtained with the P&M model and comparable with the one obtained with the register model. The only difference 
is that the NASA SBM velocity distribution can generate a small amount of high velocity fragments, which may not be physically consistent with the 
with failure of a meteoritic material subject to an external pressure. However, looking at the strewn field obtained in each case (Fig. 25b, Fig. 25d, 
Fig. 25f) there is only a small difference. It should be noted that in Fig. 25b and Fig. 25d the domain in the Y direction has been scaled in a way that it 
was easier to compare the different strewnfield. The original extension of the domain is bigger, especially in Fig. 25b, due to the presence of sporadic 
fragments with high velocities. However the probability associated with these fragments is negligible with respect to the order of magnitude of the 
strewn field. The main part of the strewn field in in agreement considering all the velocity models and also the velocity magnitude increment has the 
same order of magnitude. 
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Fig. 25. 2008TC3 entry simulation results considering different velocity models.  
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Appendix D. Nomenclature  

Lc Characteristic length 
Nc Number of fragments generated larger than a given Lc 
Ntot Total number of fragments 
Cd Drag coefficient 
pa, Probability density function in a,b space 
ρm Meteoroid density 
σab Ablation coefficient 
ℎ Altitude 
A/M Area-to-mass ratio 
M Meteoroid mass 
R Meteoroid radius 
St Meteoroid strength limit 
f Power factor of the Lc distribution 
k Tuning parameter for mass conservation 
n State space density 
ν Velocity 
w Bin relative weight  
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