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Abstract

The generic model of a cable with small bending stiffness and anchored to flexible supports in
rotation and translation is considered. An asymptotic analysis of the natural frequencies of this
generic model is derived and shows that, for small bending stiffness, the first few natural frequencies
can be expressed as a function of the cable axial force, the small bending stiffness and a single
dimensionless group collecting the information of all other problem parameters. This formulation
is used to develop an identification procedure of the cable axial force. Two formulations are
proposed, one numerical and one semi-analytical based on a simple linear regression model. Both
methods do not attempt at separately identifying the problem parameters since the observability
analysis has revealed that only the cable axial force, the bending stiffness and the dimensionless
group can be identified. In particular, the second method is very simple to implement and provides
estimates of the cable axial force which account for the flexibility of the support. The proposed
method can therefore be seen as an extension of usual identification techniques based on linear
regressions of natural frequencies vs. mode number relations, by considering at the same time the
bending stiffness and the deformability of supports. Being simple and robust as shown by means
of an uncertainty quantification analysis, the proposed method can be conveniently embedded in
the framework of a continuous monitoring strategy.

Keywords: Stay cables, Axial force, Bending stiffness, Parameter identification, Structural
health monitoring, Differential Evolution

1. Introduction

The identification of cable axial force is of paramount importance for structural health moni-
toring and safety assessment of stayed bridges [1] and other special structures, such as large-span
cable roofs [2]. Experimental testing campaigns, hence, are typically carried out both at early
construction stages, to check the compliance of the cable axial force with design requirements, and
during the service life of the structure. Monitoring variations in time of the axial force, indeed,
can allow for early detection of potentially harmful damage phenomena [1, 3, 4, 5, 6].

Direct measurements of the axial force in stay cables can be obtained through permanent
installation of load cells or by means of lift-off tests performed with hydraulic jacks. Both testing
techniques require expensive instrumentation. Moreover, lift-off tests are potentially dangerous
and need to be executed with great care, since they involve removal of portions of the anchoring
system [7, 8, 9]. On the other hand, indirect measurements based on both static (e.g. [10]) and
dynamic (e.g. [11, 12, 13]) testing can be effectively used to get axial force estimates.
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Dynamic testing techniques have been thoroughly investigated in the past decades and are
nowadays widely employed in practice, since they can be performed in operational conditions and
provide the ground for quick and cheap structural parameter identification procedures [14, 15, 16,
17, 18].

Vibration-based identification procedures typically rely on the knowledge of (i) a set of ex-
perimentally determined natural frequencies of the stay cable, and (ii) a mechanical model that
relates the natural frequencies to the axial force value. Reliability of results, hence, is inherently
affected by the predictive capabilities of the underlying mechanical model.

Due to their slenderness and inherent flexibility, structural cables are often modeled as “per-
fectly flexible” one-dimensional continua, that can only withstand axial forces. The dynamic
behavior of perfectly flexible cable models has been widely studied by accounting for the effects
of both geometric and elastic stiffness terms (see e.g. [19, 20, 21]).

Small vibrations of shallow cables, i.e. suspended cables characterized by small values of the
sag-to-span ratio δ (in the order of δ < 1

8 ), have been thoroughly investigated by Irvine and
Caughey [19, 22] under the assumption of quasi-static stretching. A key feature of the linearized
model derived by Irvine and Caughey is the decoupling between in-plane and out-of-plane vibra-
tions, i.e. between the components of motion respectively belonging to and perpendicular to the
plane of the gravity loads . In-plane spectral properties are shown to be governed by a single
non-dimensional parameter λ2 that can be conveniently regarded as a characteristic ratio of the
elastic to the geometric stiffness terms. Small values of the Irvine’s parameter λ2 (i.e. λ2 . 1)
are related to cables strung at relatively high values of axial force and with a small sag-to-span
ratio, such as the ones typically employed as stays (see e.g. [12]). It is worth noting that, for
vanishing values of the parameter λ2, both the effect of the elastic deformation (i.e. the cable
extensibility) and of the static curvature of the cable (i.e. the cable sagging) become negligible
with respect to the geometric stiffness contribution and the in-plane linearized behavior of the
cable tends the one of the well-known unstreatchable taut string model. The small out-of-plane
vibrations of the shallow cable model, on the other hand, turns out to be always governed by the
taut string equation of motion [19].

A generalization of the model of Irvine and Caughey, that fully accounts for the transition
from shallow to deeply non-shallow cable profiles has been proposed by Lacarbonara et al. [23]
and served as the basis to a thorough investigation of the non-linear free vibrations of suspended
cables [24]. Excellent reviews on the non-linear deterministic and stochastic dynamics of perfectly
flexible cables have been provided, respectively, by Rega [21, 25] and Ibrahim [26].

Enriched cable models, accounting for bending and torsional stiffness terms, have also been
proposed in the literature to correctly represent some characteristic features of the static and dy-
namic response of structural cables, such as the geometric coupling between torsional and bending
behavior [27] or between axial and torsional behavior [28], and the hysteretic bending behavior
of metallic cables [29]. Moreover, accounting for these “beam-like” stiffness terms is of pivotal
importance for the characterization of the stress-strain state within the boundary layers that can
occur in the neighborhood of the constraints [30, 31, 32].

Small planar vibrations of taut cables (with sag-to-span ratio δ << 1) characterized by small
values of the Irvine’s parameter λ2 are often investigated by resorting to the classic unstreatchable
Euler-Bernoulli beam model [12]. As it has been clearly shown by Arena et al. [30], however,
the Euler-Bernoulli model can be inaccurate whenever in presence of significant torsional effects
or static configurations characterized by values of the sag-to-span ratio in the order of δ = 1/15
or greater. In these cases, a general formulation based on three-dimensional geometrically exact
curved rod models should be preferred (e.g. [30, 33]).

Different modeling assumptions have been adopted in the literature on stay cable axial force
identification problems, including: (a) the well-known taut-string model [34, 14, 15], (b) cable
models accounting for the bending stiffness, but neglecting cable sagging and axial extensibility
effects [35, 36, 9, 37], and (c) cable models accounting for bending stiffness, cable sagging and
axial extensibility effects [38, 39, 40, 41]. Within this context, it has been clearly highlighted
that cable sagging and axial extensibility play a negligible role on the in-plane dynamics of stay
cables characterized by small values of the sag-to-span ratio, often encountered in practice (e.g.
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[19, 40, 12]). Neglecting bending stiffness effects, on the other hand, can lead to oversimplified
structural models and unacceptable inaccuracies on the estimates of the axial force, as it has been
shown e.g. in [36, 9]. The bending stiffness is usually treated as an additional unknown of the
structural identification problem, due to the complex internal geometry of stay cables.

Boundary conditions are typically introduced in the form of either perfectly hinged or perfectly
clamped cable end sections, to simplify the analytical treatment of the problem. A more realistic
structural scheme could be defined, however, by considering equivalent translational and rotational
springs at the beam end sections (see e.g. [11, 36]) to model the flexibility of the restraint devices
and of the support structures (e.g. deck and tower for cables in stayed bridges). Proper definition of
equivalent springs strongly depends on the particular technology adopted to realize the restraints
and is inherently related to several different sources of uncertainties, such as those related to
geometric imperfections and aging of the support devices. Physical parameters characterizing the
cable restraints, hence, should be added to the unknown of the structural identification problem.
Extra sophistication of the model with axial stiffness is also possible and would allow consideration
of auto-parametric instabilities [42]. Because of assumed small transverse displacements, this
instability can be studied on a separate note and is therefore not considered in this paper.

Identification procedures giving axial force estimates independent of the boundary conditions
are recently surfacing in the literature [43, 44, 45]. They all rely on synchronous recording of
the cable motion at several different locations along its length to get experimental information
on the dynamic deflection shape of the element. The experimental setup and signal acquisition
system, hence, turns out to be inherently more complex than the ones required by conventional
identification techniques based on natural frequencies only. The latter, indeed, can be effectively
implemented by acquiring acceleration signals at a single point of the cable. Standard dynamic
testing techniques (see e.g. [46, 47]), then, can be used to get estimates of the lowest natural
frequencies of the element.

In the present paper, we investigate the problem of the identification of cable axial force,
on the basis of observed natural frequencies. The mechanical model employed to represent the
cables is introduced in the beginning of Section 2 and the governing equations are formulated
with or without dimensions in Section 2.1 and Section 2.2, respectively. Then, the proposed
mechanical model is validated against a finite element model in Section 2.3 by comparing their
natural frequencies. After that, in Section 2.4, we provide an asymptotic expansion of the natural
frequencies of cables with flexible supports in rotation and translation by assuming a small relative
bending stiffness of the cable elements, which is typical of stay cables and cement-grouted parallel-
bundle wire cables. This expansion is further used to demonstrate that only two parameters can
be identified in the asymptotic case of small bending stiffness. It will thus be used to derive an
identification procedure which is able to determine the axial force and the bending stiffness, while
lumping all other problem parameters in a single dimensionless group.

In Section 3.2 and Section 3.3, two different versions of an identification strategy are proposed.
The first one is based on a least-square approach embedded in a numerical procedure and the
second one relies on a standard linear regression in a conformal space. This latter approach is
seen to generalize the current practice aiming at fitting the frequency vs. mode number relation
obtained with simpler structural models, such as the taut string model introduced in Section 3.1.
These two strategies are both analyzed within the scope of an uncertainty quantification analysis.
While the former provides accurate estimates of the confidence on the identified tension, the latter
reveals by means of simple formulae the main quantities affecting the quality of the identification
process. These analytical expectations are finally observed as well in the numerical illustrations
enclosed in Section 4.

2. Transverse free-vibrations of stay cables

2.1. Statement of the problem
Let us consider a stay cable of length l, with constant bending stiffness EI and mass per unit

of length m, subject to the axial force T > 0. The cable is assumed to be anchored to flexible
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supports, herein modeled by means of uncoupled translational and rotational springs with stiffness
coefficients KTj ≥ 0 and KRj ≥ 0 (j = 0, 1), as it is schematically depicted in Fig. 1.

Stay cables are typically characterized by small values of both the sag-to-span ratio (in the
order of few percents [12]) and the Irvine’s parameter λ2 (usually lower than one, with slightly
larger values associated to very long stay cables [12]). As a consequence, both in-plane and out-
of-plane small vibrations can be effectively described through the unstreatchable Euler-Bernoulli
straight beam model. By neglecting damping, hence, planar transverse free vibrations are governed
by the partial differential equation (e.g. [48]):

EI∂4
xv − T∂2

xv +m∂2
t v = 0 (1)

where the function v = v (x, t) describes the transverse displacements of the cable centerline,
x ∈ [0, l] is a coordinate spanning the chord of the element and t∈ R+ is the time.

The equation of motion (1) can be integrated, for prescribed initial conditions on the displace-
ment and velocity fields v (x, 0) and v̇ (x, 0), under the boundary conditions:

EI∂3
xv (0, t)− T∂xv (0, t) +KT0v (0, t) = 0

EI∂3
xv (l, t)− T∂xv (l, t)−KT1v (l, t) = 0

EI∂2
xv (0, t)−KR0∂xv (0, t) = 0

EI∂2
xv (l, t) +KR1∂xv (l, t) = 0.

, ∀t > 0 (2)

Stationary oscillatory solutions of Eq. (1) can be sought in the form:

v(x, t) = Φ(x) sin (Ωt+ Θ) , (3)
where Ω is the vibration frequency, Θ is a constant phase depending on the initial conditions of
the problem and Φ (x) is a mode shape. Substitution of Eq. (3) in Eqs. (1) and (2) yields the
fourth order Sturm-Liouville problem defined by the ordinary differential equation:

EIΦ′′′′ − TΦ′′ − Ω2Φ = 0, Φ = Φ (x) , x ∈ [0, l] (4)
along with the boundary conditions:

EIΦ′′′(0)− TΦ′(0) +KT0Φ(0) = 0

EIΦ′′′(l)− Φ′(l)−KT1Φ(l) = 0

EIΦ′′(0)−KR0Φ′(0) = 0

EIΦ′′(l) +KR1Φ′(l) = 0

(5)

Please notice that in Eqs. (4) and (5) the prime denotes derivation with respect to x, i.e. (·)′ = d(·)
dx .

As it is well known, the problem (4)-(5) admits countably infinite non trivial solutions: {Ωk,Φk(x)},
k ∈ N+. Exact closed form solutions can only be obtained in the particular case of doubly-hinged
stay cables (e.g. [48]) and read:

Ωk = kπ

√
T

ml2

√
1 + (kπ)

2 EI

T l2
, k ∈ N+ (6)

Φk (x) = Ak sin

(
Ωk
VT

x

)
, k ∈ N+ (7)

where Ak ∈ R is the modal displacement amplitude and VT =
√
T/m is the propagation speed of

transverse waves in a taut string with mass per unit of length m subject to the axial force T (e.g.
[49, 19]).

For any other boundary conditions, such as those described by Eq. (5), exact closed form
solutions of the boundary value problem (3)-(4) are not available and the modal properties (natural
frequencies and mode shapes) of the structure are typically obtained through numerical solution
strategies.
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Figure 1: Schematic representation of a stay cable anchored to flexible supports and subject to a tensile load T .
Cross sections are characterized by constant mass per unit of length m and bending stiffness EI. The distance
between the supports is denoted as l. Please notice that, under the small displacement assumption, at leading order
the following equations hold true: T cos (θ0) = T cos (θ1) = T .

2.2. Non-dimensional formulation
The dynamic problem formulated in Section 2.1 can be restated in a non-dimensional form by

introducing the characteristic frequency

Ω0 =
VT
l

=

√
T

ml2
, (8)

and the non-dimensional bending stiffness

ε =

√
EI

T l2
. (9)

Values of ε typical of stay cables are lower than 0.01 [12, 13, 40]. Slightly higher values of ε,
up to ε = 0.02 − 0.03, can also be found in cement-grouted parallel-bundle wire cables used in
stayed bridges [9, 36] or in comparatively shorter cables used e.g. in tensile structures [2].

Substitution of Eqs. (8) and (9) in (1), yields the non-dimensional governing equation

ε2∂4
ξν − ∂2

ξν + ∂2
τν = 0 (10)

where ξ = x/l ∈ [0, 1] is the non-dimensional coordinate, τ = ω0t is the non-dimensional time and
ν (ξ, τ) = v (x (ξ) , t (τ)) /l is the non-dimensional transverse displacement of the cable centerline.
The Eq. of motion (10) can be integrated, for prescribed initial conditions, under suitable boundary
conditions that can be easily obtained from Eq. (2) and are herein omitted for the sake of
conciseness.

Stationary oscillatory solutions of Eq. (10) can be expressed as ν(ξ, τ) = φ(ξ) sin (ωτ + Θ),
where ω and φ (ξ) are the non-dimensional counterparts of the vibration frequency Ω and mode
shape function Φ (x) in Eq. (3), i.e. ω = Ω/Ω0 and φ (ξ) = Φ (x (ξ)). After some straightforward
computations, the boundary value problem (4)-(5) can be re-written as

ε2φ′′′′ − φ′′ − ω2φ = 0, with ξ ∈ [0, 1] (11)
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
ε2φ′′′(0)− φ′(0) + kT0φ(0) = 0

ε2φ′′′(1)− φ′(1)− kT1φ(1) = 0

ε2φ′′(0)− kR0φ
′(0) = 0

ε2φ′′(1) + kR1φ
′(1) = 0

(12)

where the prime denotes derivation with respect to ξ (i.e. (·)′ = d(·)
dξ ), while kTj and kRj (j = 0, 1)

are non-dimensional translational and rotational stiffness coefficients defined, respectively, as

kTj =
l

T
KTj and kRj =

1

T l
KRj , with j = 0, 1. (13)

Both translational (kTj) and rotational (kRj) non-dimensional stiffness coefficients can take
values on the left-bounded interval Ik = [0,+∞), with free and perfectly restrained boundary
conditions corresponding, respectively, to the lower bound value k− = 0 and to the limit value
k+ →∞. For modeling purposes, however, it is more convenient to characterize the translational
and rotational cable restraints by means of degree-of-fixity parameters taking values in the closed
unit interval Iρ = [0, 1], with free and perfectly fixed restrained boundary conditions corresponding,
respectively, to the lower and upper bound values ρ− = 0 and ρ+ = 1 (e.g. [36, 50]).

Starting from this observation, the following definitions are introduced in the present work for
the translational (ρTj) and rotational (ρRj) degree-of-fixity parameters

ρTj =
εkTj

1 + εkTj
, j = 0, 1 (14)

ρRj =
kRj

ε+ kRj
, j = 0, 1 (15)

Equations (14) and (15) define two mappings of the left-bounded interval Ik onto the closed
unit interval Iρ. Figures 2(a) and 2(b) respectively show the values of the translational and
rotational degree-of-fixity parameters as a function of the corresponding non-dimensional stiffness
coefficients for different values of the non-dimensional bending stiffness ε typical of stay cables.
It can be observed how the translational (rotational) degree-of-fixity parameter asymptotically
approaches the unit value, corresponding to perfectly fixed boundary conditions, with increasing
rapidity for increasing (decreasing) values of ε. The transition from 0 to 1 in ρRj takes place for
kRj ∼ ε while the transition from 0 to 1 in ρTj takes place for kTj ∼ ε−1.

By exploiting the definitions in (14) and (15), then, the boundary conditions (12) can be
re-written as 

(1− ρT0)
(
ε3φ′′′(0)− εφ′(0)

)
+ ρT0φ(0) = 0

(1− ρT1)
(
ε3φ′′′(1)− εφ′(1)

)
− ρT1φ(1) = 0

(1− ρR0) ε2φ′′(0)− ρR0εφ
′(0) = 0

(1− ρR1) ε2φ′′(1) + ρR1εφ
′(1) = 0

(16)

This formulation of the boundary conditions generalizes several interesting particular cases.
Indeed, by setting ρTj = ρRj = 1 in the above equation, the boundary conditions φ = 0 and εφ′ = 0
at both ends is recovered. They correspond to the perfectly restrained problem in translation and
rotation (provided ε 6= 0, the end rotation is equal to zero; otherwise the rotation cannot be
specified). By setting ρTj = 1 and ρRj = 0, one recovers the boundary conditions of the hinged-
hinged stay cable while setting ρTj = ρRj = 0 corresponds to the free-free stay cable.

As it has been previously mentioned, values of the non-dimensional bending stiffness typical of
stay cables are much smaller than unity, i.e. ε� 1. The small number ε multiplying the highest
order derivative in Eq. (11) makes the boundary value problem (11)-(16) singularly perturbed
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Figure 2: Translational (ρTj , Fig. (a)) and rotational (ρRj , Fig. (b)) degree-of-fixity parameters as a function
of the corresponding non-dimensional stiffness coefficients. The results are shown for different values of the non-
dimensional bending stiffness ε.

and hints the existence of boundary layers in the mode shapes of the stay cable (e.g. [51, 52, 31]).
It is worth noticing that the singular perturbation of Eq. (11) can also entail ill-conditioning, for
vanishingly small values of ε, of numerical solvers associated to classic discretization techniques
such as Finite Difference or Finite Element formulations (see e.g. [32]).

In the ideal limit case characterized by ε = 0, the order of Eq. (11) is lowered from four to
two. The resulting degenerate ordinary differential equation reads

φ′′ + ω2φ = 0, φ = φ (ξ) , with ξ ∈ [0, 1] (17)

and the boundary conditions (16), i.e. φ(0) = φ(1) = 0. It corresponds to the classic taut
string model (e.g. [49, 19]). The non-dimensional mode shapes are φ(ts)

k (ξ) = ak sin
(
ω

(ts)
k ξ

)
,

with ak ∈ R, and the dimensionless natural frequencies, obtained as integer multiples of the
fundamental one, simply read

ω
(ts)
k = kπ, with k ∈ N+. (18)

2.3. Semi-analytical solution
General solutions of Eq. (11) can be expressed as:

φ(ξ) = α1 sin (z1ξ) + α2 cos (z1ξ) + α3 exp (−z2ξ) + α4 exp (−z2 (1− ξ)) (19)

where αi ∈ R (i = 1, ..., 4) are integration constants, while the arguments z1 and z2 are the two
functions of the non-dimensional vibration frequency ω:

zj = zj(ω) =
1

ε
√

2

√
(−1)

j
+

√
1 + (2εω)

2
, j = 1, 2. (20)

Notice that using exponential instead of hyperbolic functions in Eq. (19) is more appropriate to
highlight the existence of two boundary layers when ε� 1. Substitution of Eqs. (19) and (20) in
the boundary conditions (16) yields the algebraic eigenvalue problem:

B (ω; P)α = 0 (21)

where α = (α1, ..., α4)
T is a column vector listing the integration constants of Eq. (19), 0 is the

four-dimensional null column vector and B is the 4 × 4 “boundary condition matrix” depending
on ω and on the set of parameters: P = {ε, ρT0, ρT1, ρR0, ρR1}. Closed form expressions for the
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components of the matrix B are fully reported in Appendix A. These, again, generalize simpler
formulations known in particular cases.

Countably infinite non trivial solutions {ωk,αk}, with k ∈ N+, of the algebraic eigenvalue
problem (21) can be readily obtained by complementing Eq. (21) with the characteristic equation

D (ω; P) = det [B (ω; P)] = 0 (22)

The eigenvalues ωk, i.e. the non-dimensional natural frequencies of the stay cable, corre-
spond to the roots of Eq. (22). Generally speaking, hence, they can be regarded as functions
of the five parameters belonging to the set P. Intuitive symmetry reasons, however, allow one
to observe that the eigenvalues ωk should depend on two mappings ρT and ρR of the degree-of-
fixity parameters that need to satisfy the symmetry conditions: ρT (ρT0, ρT1) = ρT (ρT1, ρT0) and
ρR (ρR0, ρR1) = ρR (ρR1, ρR0). This indicates that the non-dimensional natural frequencies of the
cable shall not depend on the 5 parameters of the problem, independently, but rather by means
of some dimensionless groups.

For instance, symmetry requirements allowed to state that the non-dimensional natural fre-
quencies of the cable should depend (at most) only on the non-dimensional bending stiffness ε
and on two parameters (ρT and ρR) describing the boundary conditions, i.e. ωk = ωk (ε, ρT , ρR).
Appropriate definitions for the parameters ρT and ρR will be introduced later in this Section.
Notice that this discussion on symmetry is only valid for the natural frequencies but not for mode
shapes.

Exact solutions of the characteristic Eq. (22) are only available for the special case of doubly-
hinged cables. They correspond to the non-dimensional counterparts of (6) and read

ωk = kπ

√
1 + (kπ)

2
ε2. (23)

For other boundary conditions, the roots of Eq. (22) can be numerically evaluated through a
suitable root finding algorithm.

Beside numerical solutions, a deeper insight into the properties of the functions ωk = ωk (ε, ρT , ρR)
can be gained by expanding the determinant D (ω; P) in Taylor series around ε = 0. By trun-
cating the series expansion at first order in ε and focusing on the engineering meaningful case of
non-zero translational stiffness of the anchorages (i.e. ρT0, ρT1 > 0), one can get

D (ω) = ρT0ρT1

{
sin (ω)− 2ω cos (ω)

[
1 +

ρR0 + ρR1

2
− 1

2

(
1

ρT0
+

1

ρT1

)]
ε

}
+ o(ε) (24)

where o( ) denotes the Landau symbol (“little-o”). Inspection of Eq. (24) naturally leads to the
following definitions for the parameters ρT and ρR

ρR =
1

2
(ρR0 + ρR1) and ρT =

2ρT0ρT1

ρT0 + ρT1
(25)

Moreover, by introducing the parameter

p = 1 + ρR −
1

ρT
, (26)

Eq. (24) can be re-written in the more compact form
D (ω) = ρT0ρT1 (sin (ω)− 2pεω cos (ω)) + o(ε). (27)

The non-dimensional cable frequencies, hence, should satisfy the first order accurate transcen-
dental equation

tan (ω) = 2pωε+ o(ε) (28)

whose first-order accurate solutions read
ωk ≡ ωk (ε, p) = kπ (1 + 2pε) + o(ε), k ∈ N+ (29)
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Equations (28) and (29) clearly allow to appreciate how, for ε� 1, boundary conditions affect
the lower-order non-dimensional cable frequencies through the global parameter p only, rather
than through the two independent parameters ρT and ρR. This latter point, that will be further
investigated in the next Section, has a major impact on the setting up of frequency-based axial
force identification procedures, since it suggests that the progression of the natural frequencies of
a stay cable anchored on flexible supports depends at first order only on two parameters, namely
the non-dimensional bending stiffness ε and the parameter p defined in Eq. (26).

Moreover, Eq. (27) allows to conclude that, thanks to the scaling of the governing equations
herein adopted, the determinant D (ω; P) of the boundary condition matrix admits a Taylor series
expansion with a bounded and order-one leading order term for vanishingly small values of ε. This
makes searching for the roots of the characteristic Eq. (22) a well-conditioned problem that can
be efficiently solved by means of simple root finding algorithms.

In the present work, the zeros of Eq. (22) are found through sequential applications of a
standard dichotomy root finding algorithm. As an example, Fig. (3-a) shows the absolute value
of the determinant D (ω) for a doubly-hinged stay cable (p = 0) and two different values of non-
dimensional bending stiffness, namely: ε = 0.01 and ε = 0.02. The red circles denote the first
ten zeros of the function, numerically evaluated with a tolerance equal to 10−5 on |D (ω)|. As
it can be easily inferred from Fig. (3-b), for both values of ε the non-dimensional frequencies
obtained through the proposed semi-analytical solution strategy are in excellent agreement with
the exact values calculated through Eq. (23). Fig. (3-b) also shows a comparison with the
first ten natural frequencies of a Finite Element Model (FEM) relying on a discretization of the
cable in 100 three-dimensional (3D) two-node equally spaced corotational Euler-Bernoulli beam
elements [53, 54], fully accounting for the geometric nonlinearities that characterize the cable
response and with consistent mass matrix. Focusing on planar vibration modes, displacements of
the 3D finite elements have been constrained to belong to the vertical plane. As a consequence,
each node of the elements can only undergo to transverse and longitudinal displacements and
planar rotations (which amounts to a total number of 300 degrees-of-freedom, in the most general
case of elastically restrained end sections). The beam elements are assumed to be straight in the
reference configuration of the problem. Cubic and linear shape functions are adopted, respectively,
for transverse and axial displacements. Preliminary parametric analyses have been performed by
varying the number of FE to carefully check the convergence of the discrete model in terms of
the lower natural frequencies and mode shapes. Preliminary comparisons with the outcomes of
a lumped mass FEM have also have been carried out, leading as expected (due to the inherent
slenderness of the structural element herein considered) to practically negligible differences in the
results. The natural frequencies of the FEM are in good agreement with both the semi-analytical
and the exact solutions, with maximum discrepancies smaller than 1% for the tenth mode.

The validity of the proposed semi-analytical model has been further assessed, under different
boundary conditions, through extensive comparisons with the outcomes of the FEM. Results are
shown in Figure 4 in terms of the first ten non-dimensional natural frequencies of stay cables with
non-dimensional bending stiffness equal to ε = 0.01 (Fig. 4(a)) and ε = 0.02 (Fig. 4(b)) and the
following five different boundary conditions: (I) ρR = 0, ρT = 1 (p = 0, doubly-hinged stay cable),
(II) ρR = 1, ρT = 1 (p = 1, doubly-clamped stay cable), (III) ρR = 0.5, ρT = 1 (p = 0.5), (IV)
ρR = 1, ρT = 0.5 (p = 0), (V) ρR = 1, ρT = 0.25 (p = −2). It can be observed that the outcomes
of the two models are in excellent agreement for all values of ε and boundary conditions herein
considered, with maximum discrepancies smaller than 1% for the tenth mode.

It is also interesting to notice that the curves corresponding to the boundary conditions (I)
and (IV), associated to the same value of restraint parameter p = 0, are practically coincident
up to the fifth and third mode for respectively ε = 0.01 and ε = 0.02. Differences between the
curves increase with the order of the mode, but are less than 0.5% and 4% at the tenth mode for
respectively ε = 0.01 and ε = 0.02. These numerical results further strengthen the conclusion,
previously reached through inspection of Eqs. (28) and (29), that lower-order non-dimensional
frequencies of stay cables are affected by the global restraint parameter p only, rather than by the
two independent parameters ρT and ρR.
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Figure 3: Doubly-hinged stay cable (p = 0). Results are shown for two different values of the non-dimensional
bending stiffness ε. (a) Absolute value of the determinant D (ω) of the boundary condition matrix (Eq. (22)). The
red circles denote the zeros of the determinant, numerically evaluated with a tolerance equal to 10−5 on |D (ω)|.
(b) Non-dimensional natural frequencies: comparison among the results of the proposed semi-analytical model, the
exact solution (Eq. (23)) and the outcomes of a finite element model.

2.4. Closed-form asymptotic solution
Closed form equations for the natural frequencies of stay cables are of valuable interest to define

efficient vibration-based axial force identification procedures. As it has been already mentioned
in Section 2.3, however, exact closed form solutions of the fourth order Sturm-Liouville problem
(11)-(16) can only be found in the special case of doubly-hinged cables (see Eq. (23)). During
the years, this observation led researchers to adopt both pragmatical approaches and approximate
solution strategies.

Pragmatical approaches of the literature mainly consist in: (a) neglecting the effects of the
bending stiffness, (e.g. [34, 14, 15]) so that Eqs. (11)-(16) boil down to the taut string eigenvalue
problem (17), whose natural frequencies are reported in Eq. (18); or (b) properly accounting for
the effects of the bending stiffness, but approximately modeling cable anchorages by assuming
a doubly-hinged structural scheme (e.g. [35]). It is worth noting that, for values of the non-
dimensional bending stiffness ε typical of stay cables, both pragmatical approaches (a) and (b)
usually deliver an excellent estimate of the fundamental frequency, while higher order natural
frequencies are predicted with a level of accuracy decreasing with the modal order.

Approximate closed form expressions of the stay cable natural frequencies have also been
obtained in the literature under particular assumptions on the boundary conditions, namely for the
doubly-clamped and the doubly-hinged structural schemes. Focusing on doubly-clamped axially-
loaded elements, Morse and Ingard [55] derived, through a Taylor series expansion of the terms
of the characteristic equation (22), a second-order accurate asymptotic expression later used for
axial force identification purposes by several authors (e.g. [11, 9, 12])

ωk = kπ

(
1 + 2ε+

(
4 +

(kπ)
2

2

)
ε2

)
+ o

(
ε2
)
, k ∈ N+ (30)

where the leading order term gives, as expected, the non-dimensional natural frequencies of the
taut string model (cf. Eq. (18)). By following the same approach as Morse and Ingard [55], a
similar result can also be easily obtained for doubly-hinged elements
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Figure 4: Comparison between the non-dimensional natural frequencies obtained through the semi-analytical and
the finite element model. Results are shown for ε = 0.01 (Fig. (a)) and ε = 0.02 (Fig. (b)) and five different
boundary conditions: (I) ρR = 0, ρT = 1 (p = 0, doubly-hinged stay cable), (II) ρR = 1, ρT = 1 (p = 1, doubly-
clamped stay cable), (III) ρR = 0.5, ρT = 1 (p = 0.5), (IV) ρR = 1, ρT = 0.5 (p = 0), (V) ρR = 1, ρT = 0.25
(p = −2).

ωk = kπ

(
1 +

(kπ)
2

2
ε2

)
+ o

(
ε2
)
, k ∈ N+ (31)

Notice that Eq. (31) can also be readily obtained through a Taylor series expansion of the
exact solution (23).

A novel second-order accurate closed form asymptotic expression, that generalizes Eqs. (30)
and (31) to account for a partial flexibility of cable anchorages, is developed in the following
through a standard perturbation approach (e.g. [52]).

Let us search for a second-order accurate asymptotic solution of the algebraic eigenvalue prob-
lem (21) that can be expressed through the regular expansion

ω = ω(0) + ω(1)ε+ ω(2)ε
2 + o(ε2), (32)

α = α(0) +α(1)ε+α(2)ε
2 + o(ε2). (33)

Substitution of Eq. (32) in the definitions (A.1)-(A.16) and subsequent Taylor series expansion
in a neighborhood of ε = 0, yields the following second-order accurate expression for the boundary
condition matrix B

B = B(0)

(
ω(0)

)
+ B(1)

(
ω(1), ω(0)

)
ε+ B(2)

(
ω(2), ω(1), ω(0)

)
ε2 + o(ε2) (34)

where B(0), B(1) and B(2) are 4 × 4 matrices whose components are fully reported in Appendix
B. Substitution of Eqs. (33) and (34) in (21), then, leads to the matrix equation(

B(0) + B(1)ε+ B(2)ε
2
) (
α(0) +α(1)ε+α(2)ε

2
)

= 0 (35)

The individual vanishing of the coefficients of the different powers in ε in Eq. (35) yields the
system of equations 

ord(ε0) : B(0)α(0) = 0

ord(ε1) : B(0)α(1) + B(1)α(0) = 0

ord(ε2) : B(0)α(2) + B(1)α(1) + B(2)α(0) = 0

(36)
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that can be easily solved for the variables ω(i) and α(i) (i = 0, 1, 2) through a cascaded approach,
starting from the leading order problem (i.e. ord(ε0)) and moving towards the higher order ones.
Solution of (36) is fully detailed in Appendix C and leads to the following second-order accurate
asymptotic expression for the non-dimensional natural frequencies of the cable

ωk = kπ

(
1 + 2pε+

(
(kπ)

2

2
+ 4p2

)
ε2

)
+ o(ε2), k ∈ N+ (37)

The leading order term in Eq. (37) coincides, as expected, with the frequencies ω(ts)
k of the

taut sting model (Eq. (18)), while the effects of the bending stiffness and of the flexibility of the
cable anchorages enter the first and second order correction terms through the non-dimensional
variables ε and p. Equation (37), hence, can also be re-written in the more expressive form

ωk = ω
(ts)
k (1 + fk (ε, p)) + o(ε2), k ∈ N+ (38)

with the definition

fk (ε, p) = 2pε+

(
(kπ)

2

2
+ 4p2

)
ε2, k ∈ N+ (39)

It is also worth noting that the proposed asymptotic solution easily allows one to recover the
equations previously introduced for the special cases of doubly-clamped (Eq. (30)) and doubly-
hinged (Eq. (31)) cables, by respectively setting p = 1 or p = 0 in Eq. (39). More importantly,
Equations (38-39) show that, at leading order the natural frequencies are given by the taut string
model, ωk ∼ ω

(ts)
k . Then, the second and third order terms explicitly given in fk (ε, p) indicate

that natural frequencies only depend on p and ε. The only possibility to separate, on the sole
basis of natural frequencies, the influence of translational and rotational flexibilities of anchorages,
would be to push the derivation to the fourth order. For practical reasons, the measurement noise
and epistemic uncertainties make it unrealistic to derive an identification procedure based on a
fourth-order small detail. This also justifies the reason why the two identification procedures
presented in the following Section (Sections 3.2 and 3.3) do not pretend to identify more than
3 parameters. Furthermore, Equations (38-39) indicate that the sequence of {ωk}, as a function
of k, takes the form of a quadratic expression in k with only two terms, namely the intercept
and the second degree coefficient). The adjustement of a mathematical model to the sequence of
{ωk}, as a function of k, is therefore not able to capture more than 2 independent parameters.
This explains why p is considered as a parameter, while the proposed identification techniques will
provide estimators for the cable tension and bending stiffness.

Figure 5 shows a comparison between the outcomes of the asymptotic solution (38) and the
ones of the semi-analytical model described in Section 2.3. Results are presented in terms of the
first ten non-dimensional natural frequencies of stay cables with non-dimensional bending stiffness
equal to ε = 0.01 (Fig. 5(a)) and ε = 0.02 (Fig. 5(b)) under the same five different boundary
conditions labeled as (I)-(V) in Section 2.3. Notice that the asymptotic solutions corresponding
to cases (I) and (IV) are coincident, since they are both associated to the same value of the
non-dimensional restraint parameter: p = 0.

On the overall, the asymptotic solution is in excellent agreement with the results of the semi-
analytical model. Discrepancies increase, as expected, with the increase of both ε and the modal
order. For ε = 0.01 (Fig. 5(a)), differences are less than 1% over the whole range of modes herein
considered and for all different boundary conditions. For ε = 0.02 (Fig. 5(a)), the maximum
differences between the asymptotic solution and the outcomes of the semi-analytical model are
less than 1.5% for boundary conditions (I), (II) and (III). Discrepancies are larger for the boundary
conditions (IV) and (V), being however in the order of 5% for the tenth mode.
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Figure 5: Comparison between the non-dimensional natural frequencies obtained through the asymptotic solution
(Eq. (37)) and the semi-analytical model (Section 2.3). Results are shown for ε = 0.01 (Fig. (a)) and ε = 0.02 (Fig.
(b)) and five different boundary conditions: (I) ρR = 0, ρT = 1 (p = 0, doubly-hinged stay cable), (II) ρR = 1,
ρT = 1 (p = 1, doubly-clamped stay cable), (III) ρR = 0.5, ρT = 1 (p = 0.5), (IV) ρR = 1, ρT = 0.5 (p = 0), (V)
ρR = 1, ρT = 0.25 (p = −2).

3. Parameter identification problem

Most vibration-based methods for the identification and monitoring of the axial force of stay
cables rely on the knowledge of a set of experimentally determined natural frequencies. Stay cables
are indeed lightweight and lightly damped structural elements, whose transverse vibrations can
be easily excited by providing relatively small amounts of input energy. Standard dynamic testing
techniques (see e.g. [46, 47]), hence, can be effectively used to get estimates of the lowest natural
frequencies of the cable. This experimental information, along with a suitable structural model,
serves as the basis to set up a model updating strategy to identify the value of unknown structural
parameters.

More specifically, assuming that the length l and mass per unit length m of the stay cable are
known, the axial force in the stay cable is determined from (8):

T = ml2Ω2
0, (40)

which indicates that the identification problem is limited to estimating Ω0.
Three different identification strategies are presented in this Section. Classic approaches relying

on application of the taut string model are firstly reviewed in Section 3.1. The closed form
asymptotic solution developed in Section 2.4 is used, within this context, to provide a rigorous
assessment of the effects on the axial force estimate due to the simplifying assumptions at the
base of the taut string model. Two novel strategies for the simultaneous identification of the
axial force and bending stiffness of stay cables anchored to flexible supports are then presented in
Sections 3.2 and 3.3. The first one (Section 3.2) relies on the numerical solution of a non-linear
optimization problem, while the second one (Section 3.3) is based on the application of a simple
linear regression model.

3.1. Taut string model
Let us denote asM∗ =

{
Ω∗k1 ,Ω

∗
k2
, ...,Ω∗kM

}
a set of M natural circular frequencies, identified

from a vibration test and associated to the modes k1 ≤ k2 ≤ ... ≤ kM (with kj ∈ N+, ∀j ∈ [1,M ]).
The measured frequenciesM∗ can be conveniently regarded as realizations of a set of independent
Gaussian variables M = {Wk1 ,Wk2 , ...,WkM }, with nominal average values and variances given
by

Ω̄kj = E
[
Wkj

]
and σ2

kj = E
[
W 2
kj

]
− Ω̄2

kj , j = 1, ...,M (41)
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where E[.] denotes the mathematical expectation [56].
The most simple axial force identification strategy proposed in the literature relies on the

adoption of the taut string model [11, 13], whose natural circular frequencies Ω
(ts)
k are given by

Ω
(ts)
k = Ω0 ω

(ts)
k = kπΩ0, k = 1, 2, ... (42)

since ω(ts)
k = kπ (see Eq. (18)). Due to both unavoidable measurements errors and the simplifying

assumptions of the adopted structural model (“modeling errors”), the measured frequencies M∗
will only approximately satisfy Eq. (42). An estimate Ω̂0 of the characteristic frequency can be
obtained by firstly solving for Ω0 each of the equations: Ω

(ts)
kj

= Ω∗kj (j = 1, ...,M), and then
taking the arithmetic mean of the results, i.e.

Ω̂0 =
1

M

M∑
j=1

Ω∗kj
kjπ

, M ≥ 1. (43)

Once Ω̂0 is known from Eq. (43), the axial force can be estimated from Eq. (40) as

T̂ = ml2Ω̂2
0 (44)

where m and l should be regarded as the nominal values of the linear density and length of the
cable. A simple and usual approach consists in considering only one natural frequency, in which
case the summation drops and makes the determination of the estimate Ω̂0 straightforward.

The bending stiffness of the stay cable and the flexibility of the anchorages, which are not
accounted for in the taut string model, unfortunately make Ω̂0 a biased estimator. The bias
associated to these modeling errors can be quantitatively assessed by exploiting the asymptotic
solution introduced in Section 2.4. Taking expectations of both sides of Eq. (43) yields

E
[
Ω̂0

]
=

1

M

M∑
j=1

Ω̄kj
kjπ

. (45)

For small values of the non-dimensional bending stiffness ε and focusing on the lower modes of
the cable, the average values Ω̄kj can be approximately assumed equal to Ω̄kj = Ω0ω

(ts)
kj

(
1 + fkj (ε, p)

)
(see Eq. (38)). Substitution in Eq. (45) yields

E
[
Ω̂0

]
= Ω0

1 +
1

M

M∑
j=1

fkj (ε, p)

 (46)

By recalling the definition of fk (ε, p) introduced in Eq. (39), the bias term in (46) reads

bias
[
Ω̂0

]
= E

[
Ω̂0

]
− Ω0 = Ω0

2pε (1 + 2pε) + ε2 π
2

2M

M∑
j=1

k2
j

 (47)

Figure 6 shows this theoretical bias of the estimator Ω̂0 as a function of the non-dimensional
bending stiffness ε and for three different boundary conditions: (I) p = 0 (doubly-hinged stay
cable), (II) p = 1, (doubly-clamped stay cable) and (III) p = 0.5. These boundary conditions
cover the whole range of values that the restraint parameter p can assume in the special case,
often encountered in practice, of stay cables anchored to supports characterized by negligible
translational flexibility (i.e. ρT = 1 in Eq. (26)). Figures 6(a) and 6(b) are referred to identification
procedures respectively based on the knowledge of (a) the fundamental frequency of the cable only
(i.e. j = M = 1 in Eqs. (45) and (47)), and (b) the five lower natural frequencies of the cable (i.e.
M = 5 and j = 1, 2, ..., 5 in Eqs. (45) and (47)).

As it can be easily observed from Figure 6, the bias tends to zero for structural elements
approaching the idealized taut string model, i.e. for vanishingly small values of ε. Moreover, the
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Figure 6: Bias of the estimator Ω̂0 relying on the application of a taut string model (see Eqs. (43) and (47)). The
bias is normalized for the characteristic frequency Ω0 and plotted as a function of the non-dimensional bending
stiffness ε. Results are shown for three different boundary conditions: (I) p = 0 (doubly-hinged stay cable), (II)
p = 1, (doubly-clamped stay cable) and (III) p = 0.5. Figure (a) is obtained by considering M = 1 and j = 1
(fundamental mode of the cable). Figure (b) is obtained by considering M = 5 and j = 1, 2, ..., 5 (first five modes
of the cable).

bias increases with the increase of both (i) the number of modesM considered in the identification
procedure, and (ii) the value of the degree-of-fixity parameter p. For fixed values of ε and M ,
indeed, the bias is minimum for doubly hinged stay cables (p = 0, curves labeled as (I) in Fig. 6)
and maximum for doubly clamped stay cables (p = 1, curves labeled as (II) in Fig. 6). It can be
concluded, hence, that the bias of the estimator Ω̂0 increases with the increase of the rotational
stiffness of the cable anchorages.

On the overall, inspection of the results depicted in Figure 6, shows that, depending on the
boundary conditions and the number of modes M , the bias introduced by modeling errors in the
identification procedure based on the taut string model can be quite relevant, i.e. in the order of
several percent of Ω0.

In spite of these potentially significant inaccuracies, identification strategies based on the taut
string model are widely used in practice due to their inherent simplicity, paving the way for a
straightforward assessment of uncertainties. With the probabilistic model (41) for the measured
frequencies, the variance σ2

Ω̂0
of the estimator Ω̂0 can be calculated as

σ2
Ω̂0

= E
[
Ω̂2

0

]
−
(
E
[
Ω̂0

])2

=
1

M2

M∑
j=1

σ2
kj

k2
jπ

2
(48)

By assuming that the measured frequencies are characterized by a constant coefficient of vari-
ation In = σkn/Ω̄kn (also termed in the following, with a slight abuse of terminology, noise
intensity), Eq. (48) can be re-written as

σ2
Ω̂0

=
I2
n

M2

M∑
j=1

Ω̄2
kj

k2
jπ

2
. (49)

The substitution of Ω̄kj = Ω0ω
(ts)
kj

(
1 + fkj (ε, p)

)
in Eq. (49), then, yields the following ex-

pression for the standard deviation σΩ̂0

σΩ̂0
=
InΩ0

M

√√√√ M∑
j=1

(
1 + fkj (ε, p)

)2 (50)

By neglecting higher-order terms, hence, σΩ̂0
can be approximately computed as
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σΩ̂0
=

In√
M

Ω0 '
In√
M

Ω̂0. (51)

It is worth noticing that the standard deviation of the estimator Ω̂0, contrarily to the bias due
to modeling errors, decreases with the increase of the number of modes M . As a consequence,
the selection of an appropriate value of M naturally claims for a trade-off between accuracy and
variability of the outcomes of the identification procedure.

Starting from Eq. (44) the combined uncertainty σT̂ on the estimated value T̂ of the cable
axial force can be evaluated through the well-known first-order accurate expression (e.g. [11, 13]):

σT̂
T̂
' σm

m
+ 2

σl
l

+ 2
σΩ̂0

Ω̂0

(52)

where σm and σl are the standard uncertainties (see e.g. [57]) associated to the nominal values m
and l of the cable linear density and length.

3.2. Non-linear optimization problem
Both bending stiffness and anchorage flexibility effects on the low-order natural circular fre-

quencies Ωk (k = 1, 2, ...) of a stay cable can be accurately accounted for by means of the closed-
form asymptotic solution presented in Section 2.4. Multiplication of Eq. (38) by the characteristic
frequency Ω0 = Ω0 (T,m, l) (see Eq.(8)) yields

Ωk = Ω0 ω
(ts)
k (1 + fk (ε, p)) , k = 1, 2, ... (53)

where ω(ts)
k = kπ are the non-dimensional frequencies of the taut string model (Eq. (18)).

Whenever a set of M measured frequencies M∗ =
{

Ω∗k1 ,Ω
∗
k2
, ...,Ω∗kM

}
is available from vi-

bration tests, the unknown model parameters Ω0, ε and p can be estimated by minimizing the
difference between predictions of Eq. (53) and experimental observations. To this aim, let us
introduce the cost (or objective) function

Fobj (X) =

√√√√ M∑
j=1

(
1−

Ωkj
Ω∗kj

)2

(54)

where X is the parameter vector X = (Ω0, ε, p)
T ∈ S ⊂ R3, taking values on the searching space

S subject to the physical constraints: Ω0 > 0, ε > 0 and p ≤ 1. Whenever the translational
flexibility of the cable anchorages can be assumed as negligible, the degree-of-fixity parameter p
can only take values in the closed unit interval, i.e. 0 ≤ p ≤ 1 and the definition of the searching
space S needs to be modified accordingly.

Identification of the structural parameters, within this context, amounts to solve the non-linear
constrained optimization problem

X̂ = argmin
X∈S

Fobj (X) (55)

Once the optimal parameters Ω̂0 and ε̂ are known from the solution X̂ of (55), estimates of
the cable axial force (T̂ ) and bending stiffness (ÊI) can be respectively obtained through Eq. (44)
and Eq. (9) as:

EI = T̂ ε̂2l2 (56)

The non-linear optimization problem defined in Eq. (55) is characterized by several peculiar
features that should guide the selection of an appropriate solution algorithm. Due to unavoidable
measurement errors affecting the natural frequencies Ω∗kj (j = 1, ...,M), the landscape of the cost
function (54) will be characterized, in general, by many local minima. Moreover, inspection of
Eqs. (53) and (39) allows one to observe that the sensitivity of the cost function (54) with respect
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to the parameter p tends to be substantially negligible for small values of the non-dimensional
bending stiffness ε typical of stay cables.

Gradient-based optimization algorithms, hence, are not well suited for the particular problem
at hand, since they are prone to get trapped in local minima and their iteration operators could
potentially be ill-conditioned for small values of ε. Within the class of gradient-free algorithms,
the family of Differential Evolution (DE) algorithms, firstly proposed by Storn and Price [58],
has shown excellent performances in finding the global optimum of non-linear, non-convex, multi-
modal and non-differentiable functions (see e.g. [59, 60]).

DE is an Evolutionary Algorithm that iteratively operates on a population of candidate solu-
tions made of NP parameter vectors. The initial population is randomly chosen within an initial
searching volume V0 ⊆ S and offsprings are generated by perturbing trial solutions with scaled
differences of randomly selected population elements. As the number of iterations grows, the
characteristic size of these differences tend to automatically adapt to the natural scales of the ob-
jective landscape [60]. It is worth noting that the peculiar strategy adopted to generate offsprings
and evolve the population of candidate solution makes DE algorithms able to deal with objective
functions characterized by low or moderately low sensitivity with respect to one ore more variables
of the searching space without numerical problems. Selection of the better fitted elements of the
population is performed through a one-to-one parent/offspring competition scheme. The physical
constraints can be enforced through a simple penalty criterion and the iterations are performed
until a termination criterion is satisfied.

In the present work, a custom implementation of a well-known variant of the DE algorithm
proposed by Das et al. [61] has been adopted to solve the non-linear optimization problem in
Eq. (55). The termination criterion has been defined such that iterations are stopped whenever
one of the following conditions is satisfied: (a) the relative difference between the best and worst
objective function values ∆ =

(
Fworst

obj − F best
obj

)
/max

{
Fworst

obj , 1
}
of a population is below a given

threshold Toll (cf. the ’Diff’ termination criterion proposed by Zielinski and Laur [62]), (b) the
value of the cost function is lower than a prescribed value Fmin

obj , (c) the number of iterations NIT
is equal to a prescribed maximum number of iterations MAXIT .

Whenever multiple sets of observed frequencies are available, the non-linear optimization prob-
lem (55) can be repeatedly solved by means of independent runs of the DE algorithm. The average

values and variances of the structural parameter estimates X̂ =
(

Ω̂0, ε̂, p̂
)T

and the combined un-

certainty of the estimated axial force T̂ , then, can be calculated a posteriori, through a standard
statistical analysis of the results of the identification procedure.

In order to better illustrate a typical run of the DE algorithm, a reference stay cable anchored
to flexible supports and characterized by Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.25 (“target values”) is
considered in the present section. The cost function (54) was defined by assuming that the first five
natural frequencies of the system are known. Measured frequencies were numerically simulated by
corrupting the theoretical results, obtained from the solution of the algebraic eigenvalue problem
(21), through the addition of a small error term drawn from a zero-mean Gaussian distribution with
coefficient of variation In = 0.5% (notice that In can be conveniently regarded, within this context,
as the measurement noise intensity). The optimization problem (55) has been solved by running
the DE algorithm (“DEGL/SAW/bin” scheme, with scale factor F = 0.8 and crossover parameter
CR = 0.9, see [61] for further details), starting from a population of NP = 30 trial solutions
randomly chosen in the initial search volume V0 : 10−5 ≤ Ω0 ≤ 50, 10−5 ≤ ε ≤ 1, 0 ≤ p ≤ 1.
The parameters of the termination criterion have been set up as: Fmin

obj = 10−6, Toll = 10−7 and
MAXIT = 5000.

Figures 7 and 8 show the initial and final populations of candidate solutions, along with the
result of the optimization run, i.e. the best member of the final population, and the target solution.
The two figures allow one to clearly appreciate how the initial population, uniformly distributed
in the initial searching volume V0, evolves to a final population clustered in a small region of the
searching space close to the target solution. It is also worth noting that the dispersion of the
members of the final population with respect to variables Ω0 and ε is much lower than the one
with respect to p. This result is a direct consequence of the already mentioned low sensitivity of
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Figure 7: Illustration of a typical run of the DE algorithm. An initial population of NP = 30 trial solutions
randomly chosen in the initial search volume V0 : 10−5 ≤ ω0 ≤ 50, 10−5 ≤ ε ≤ 1, 0 ≤ p ≤ 1 evolves to a final
population close to the target solution characterized by the values: Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.25

the cable natural frequencies with respect to the degree-of-fixity p.
Figure 9(a) shows the evolution of the best and worst values of the cost function (54) through

the iterations of the DE algorithm. These two quantities converge to a common small value
as the population of candidate solutions tends to concentrate in a neighborhood of the target
solution. The components of the best parameter vector are shown in Figures 9(b), (c) and (d)
as a function of the number of iterations. It is worth noting that parameters Ω0 and ε rapidly
converge to the corresponding target values. As expected, instead, variations of the parameter p
do not significantly affect the value of the cost function. This topic will be further discussed in
Section 4.1

3.3. Linear regression model
Axial force identification strategies based on the numerical solution of a non-linear optimization

problem, such as the one proposed in Section 3.2, can be computationally expensive and not well
suited for structural health monitoring applications requiring continuous acquisition and on-line
processing of experimental data. Furthermore, error propagation analyses can only be carried out
through a posteriori statistical treatment of the outcomes of the identification procedure. This
can lead to a considerable increase of the overall computational burden and prevents a deeper
understanding of the effects on the axial force estimates of the main mechanical and geometrical
parameters entering the structural model.

To circumvent these drawbacks, a novel approach is developed in the present Section for the
simultaneous identification of the cable axial force and bending stiffness. The proposed procedure
accounts for both the bending stiffness of the cable and the effects of the anchorage flexibility.It
is based on the following steps: (a) a transformation of coordinates, mapping the non-linear
asymptotic equation (53) into a linear one, (b) ordinary linear regression analysis. Once the
regression coefficients are known, simple closed form equations allow one to get estimates of the
characteristic frequency (Ω̂0) and non-dimensional bending stiffness (ε̂) of the cable. Propagation
of uncertainties is then investigated through approximate closed form equations, leading to a clear
picture of the main geometrical and mechanical parameters affecting the results of the proposed
identification procedure.
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Figure 8: Illustration of a typical run of the DE algorithm. Projections of Figure 7 on the coordinate planes (p,Ω0)
(Figure (a)), and (p, ε) (Figure (b)).
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Figure 9: Illustration of a typical run of the DE algorithm. Figure (a) shows the best and worst values of the cost
function (54) as a function of the number of iterations. Figures (b), (c) and (d) show the value of the components
(Ω0, ε, p) of the best parameter vector as a function of the number of iterations.
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Let us consider an ordered set of M natural frequencies {Ωk1 ,Ωk2 , ...,ΩkM }, with k1 ≤ k2 ≤
... ≤ kM (kj ∈ N+, ∀j ∈ [1,M ]), and introduce the integral coordinate

ηm =
1

m

m∑
j=1

Ωkj
πkj

, m = 1, ...,M (57)

Substitution of (53) into this definition yields

ηm =
1

m

m∑
j=1

πkjΩ0

(
1 + fkj (ε, p)

)
πkj

=
Ω0

m

m∑
j=1

(
1 + 2pε+

(
(kjπ)

2

2
+ 4p2

)
ε2

)
, (58)

which can also be written
ηm = β0 + β1γm, m = 1, ...,M (59)

where

γm =
1

m

m∑
j=1

k2
j (60)

and

β0 = Ω0

(
1 + 2pε+ 4p2ε2

)
and β1 = Ω0

ε2π2

2
. (61)

The use of this new coordinate shows that the original problem involving a quadratic sequence
of the mode orders {kj} can be replaced by the simple linear relationship (59) in the new coordinate
system (γm, ηm).

Whenever a set of frequenciesM∗ =
{

Ω∗k1 ,Ω
∗
k2
, ...,Ω∗kM

}
, associated to the modes k1 ≤ k2 ≤

... ≤ kM , is known from vibration tests, Eqs. (57) and (60) can be used to calculate the cor-
responding “experimental” points (γ∗m, η

∗
m), m = 1, ...,M . Notice that the set {η1, ..., ηM} can

also be regarded as sample of non-Gaussian random variable obtained by applying the non-linear
transformation (57) to the set of independent Gaussian variables M = {Wk1 ,Wk2 , ...,WkM }, al-
ready introduced in Section 3.1. A full characterization of the probability density function of this
resultant non-Gaussian random variable, although relatively straightforward, is outside the scope
of the present work.

The coefficients β0 and β1, then, can be estimated through an application of the ordinary least
squares method (see e.g. [63]):

β̂1 =
Sηγ
Sγγ

(62)

β̂0 = η̄ − β̂1γ̄ = η̄ − Sηγ
Sγγ

γ̄ (63)

where

η̄ =
1

M

M∑
m=1

η∗m, γ̄ =
1

M

M∑
m=1

γ∗m (64)

Sηη =
1

M

M∑
m=1

(η∗m − η̄)
2
, Sγγ =

1

M

M∑
m=1

(γ∗m − γ̄)
2
, Sηγ =

1

M

M∑
m=1

(η∗m − η̄) (γ∗m − γ̄) . (65)

The estimators β̂0 and β̂1 given by these formulae are also available in any commercial software
as a standard tool of basic fitting. The proposed linear fitting has therefore no specific difficulty,
other than the establishment of the transformed coordinates (η, γ). Figure 10 illustrates a typical
application of the coordinate transformation defined by Eqs. (57) and (60) to the first five natural
frequencies of a cable characterized by Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.5. Ten samples of
measured frequencies have been numerically simulated by corrupting the theoretical results of the
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Figure 10: First five natural frequencies of a stay cable characterized by Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.5.
Measured results are corrupted by a zero-mean Gaussian noise with intensity In = 0.5%. (a) Representation in the
plane (k, Ωk

kπ
). (b) Representation in the plane (γk, ηk), obtained through the coordinate transformation defined in

Eqs. (57) and (60).

semi-analytical model, presented in Section 2.3, through the addition of a low-intensity zero-mean
Gaussian noise. Figures 10(a) and 10(b) respectively show the simulated measurement results
and their transformed representation in the coordinate system (γm, ηm). The outcomes of the
underlying theoretical (i.e. free from noise) model are also shown for comparison purposes (red
dashed lines).

Once β̂0 and β̂1 are determined, substitution of β̂0 and β̂1 in Eqs. (61) yields, after some
rearrangements, the system of equations{

ε̂2

1+2pε̂+4p2ε̂2 = 2
π2

β̂1

β̂0

Ω̂0

(
1 + 2pε̂+ 4p2ε̂2

)
= β̂0

(66)

where Ω̂0 and ε̂ are estimates of the characteristic frequency and the non-dimensional stiffness of
the cable.

Equations (61) and (66) allow one to notice that the intercept β0 of the linear regression model
is of the same order of magnitude as Ω0, while the slope β1 is of the same order as ε2. For typical
stay cables, ε� 1 and Ω0 ∼ 1. A first-order accurate approximate solution of (66), hence, can be
expressed as

Ω̂0 = β̂0 − p
2
√

2

π

√
β̂0β̂1 (67)

ε̂ =

√
2

π

√
β̂1

β̂0

(68)

Once Ω̂0 and ε̂ are known, estimates of the cable axial force (T̂ ) and bending stiffness (ÊI)
can be respectively obtained through Eqs. (44) and (56).

Substitution of Eq. (68) in (67) yields the following, more expressive, equation for Ω̂0

Ω̂0 = β̂0 (1− 2pε̂) (69)

Inspection of Eqs. (68) and (69) allows one to observe that modeling errors on the boundary
conditions do not affect ε̂, but can introduce a bias on the estimator Ω̂0.

It is interesting to notice that, at first order, the linear relation between ηm and γm expressed
in (59) just depends on the two parameters β0 and β1. This indicates that it is impossible to
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independently determine the three parameters Ω0, ε and p. In principle, a third equation for the
third unknown could be determined by considering the governing equations at second order. This
investigation track (to form a well-posed set of equations) is not further developed because the
order of magnitude of the second-order terms are very likely to fall within the measurement noise
in most practical cases. Instead, in the solutions expressed in (67-68) we have considered p as a
parameter.

Let us denote as p∗ an assumed value of the restraint parameter p that, after substitution in
Eq. (69), allows to get Ω̂0 for given ε̂ and β̂0. Moreover, let us define as ∆p = p∗−p the difference
between the assumed (p∗) and the unknown “true” value (p) of the restraint parameter. A first
order accurate estimate expression of the bias of the estimator Ω̂0 can be easily obtained from Eq.
(69)

bias
[
Ω̂0

]
= 2∆p ε̂ Ω̂0. (70)

By assuming p∗ = 0, i.e. by modeling both cable restraints as perfect hinges, one gets ∆p = −p
and Eq. (70) approximately coincides with the first order term in the Eq. (47), describing the
bias of the identification procedure based on the taut string model. Furthermore, whenever the
translational flexibility of the cable anchorages is negligible, the “true” value of the degree-of-fixity
parameter can only vary in the range 0 ≤ p ≤ 1. As a consequence, the bias of the estimator Ω̂0

turns out to be bounded, with upper and lower bound values implicitly defined by Eq. (70). For
example, by pragmatically assuming the intermediate value p∗ = 0.5, Eq. (70) yields∣∣∣∣ 1

Ω̂0

bias
[
Ω̂0

]∣∣∣∣ ≤ ε̂ (71)

By denoting respectively as σ2
β̂0
, σ2

β̂1
and ρβ̂0β̂1

the variances and correlation coefficient of the

regression parameters β̂0 and β̂1, a standard linearized error propagation model (see e.g. [57])
allows to approximately evaluate the variances of Ω̂0 and ε̂ as

σ2
Ω̂0

=

(
∂Ω̂0

∂β̂0

)2

σ2
β̂0

+

(
∂Ω̂0

∂β̂1

)2

σ2
β̂1

+
∂Ω̂0

∂β̂0

∂Ω̂0

∂β̂1

ρβ̂0β̂1
σβ̂0

σβ̂1
(72)

and

σ2
ε̂ =

(
∂ε̂

∂β̂0

)2

σ2
β̂0

+

(
∂ε̂

∂β̂1

)2

σ2
β̂1

+
∂ε̂

∂β̂0

∂ε̂

∂β̂1

ρβ̂0β̂1
σβ̂0

σβ̂1
. (73)

Equations (72) and (73) rely on the assumption of small coefficients of variation
σβ̂0
β̂0

and
σβ̂1
β̂1

,

i.e.
σβ̂0
β̂0
� 1,

σβ̂1
β̂1
� 1. As it will be further shown in Section 4.2 through numerical examples,

typical values of the the ratio
σβ̂0
β̂0

are in the order of a few percent, while the order of magnitude

of the coefficient of variation
σβ̂1
β̂1

can rapidly approach the unity for decreasing values of the
non-dimensional bending stiffness ε and increasing values of the noise intensity.

Although approximate, Eqs. (72) and (73) allows one to gain a deeper insight on the propaga-
tion of uncertainties within the proposed identification procedure. By assuming that

σβ̂0
β̂0
∼ ε̂

σβ̂1
β̂1

,

substitution of the partial derivatives of Ω̂0 and ε̂ in Eqs. (72) and (73) yields, after some simple
rearrangements, the following second-order accurate approximate equations(

σΩ̂0

Ω̂0

)2

=

(
σβ̂0

β̂0

)2

− pε̂ ρβ̂0β̂1

σβ̂0

β̂0

σβ̂1

β̂1

pε̂2

(
σβ̂1

β̂1

)2

(74)

(σε̂
ε̂

)2

=
1

4

[(
σβ̂1

β̂1

)2

− ρβ̂0β̂1

σβ̂0

β̂0

σβ̂1

β̂1

+

(
σβ̂0

β̂0

)2
]
. (75)

22



Equation (74) clearly allows one to appreciate that the leading order term of the coefficient of
variation of Ω̂0 is equal to that of β̂0. Correction terms increase with ε̂ and are linearly proportional
to the value of the restraint parameter p. On the other hand, Eq. (75) shows that the coefficient
of variation of ε̂ is independent of the boundary conditions and with a leading order term equal
to 1

2

σβ̂1
β̂1

.
In summary, in this Section, we have proposed an extension of the identification procedure for

a cable with a focus on the influence of unknown end conditions. By exploiting the asymptotic
response for small bending stiffness, we have shown that it is only possible to determine two
of the three parameters Ω0, ε and p with the help of a simple linear regression model. For
practical reasons, parameter p is typically difficult to determine, a reason why we have suggested
to consider it as a known parameter of the model, since, in most cases of practical interest p ∈ [0, 1],
a pragmatical choice p = 0.5 could be formulated. It lessens the bias and standard error on the
estimate that could be obtained by assuming hinged-hinged end conditions. More importantly, the
bias on the estimated cable tension could be bounded by considering the two limit cases p = 0 and
p = 1. Finally, because of the simplicity of this asymptotic model, the uncertainty propagation
analysis of the proposed identification procedure could be derived. The main trends indicating in
which way the problem parameters do affect the standard errors of the estimated cable tension
and bending stiffness could be determined. These will be illustrated in the following Section.

4. Applications

The performances of the novel identification strategies described in Sections 3.2 and 3.3 have
been assessed through extensive numerical testing. The results will be presented in the following
with reference to a stay cable attached to anchorages with negligible translational flexibility and
characterized by Ω0 = 5.66 rad/s and T = 4000 kN. Three different values of non-dimensional
bending stiffness (ε = 0.01, 0.02, 0.03) have been considered, along with five different boundary
conditions: (IR) p = 0 (doubly-hinged cable), (IIR) p = 0.25, (IIIR) p = 0.50, (IVR) p = 0.75 and
(VR) p = 1 (doubly-clamped cable).

In order to simulate experimental input data, the algebraic eigenvalue problem (21) has been
numerically solved to get the first five natural frequencies of the system. These reference values,
then, have been corrupted through multiplication by a unit-mean and low intensity Gaussian noise,
to account for the effects of measurement errors. Different values of noise intensity, ranging from
0 to 2.5%, have been considered. Please notice that the range of noise intensity values herein
considered is consistent with the expected outcome of standard dynamic testing techniques for the
identification of natural frequencies of stay cables (see e.g. [46, 47]). For each noise intensity value,
a sample of 1000 sets of noisy natural frequencies has been independently randomly generated.

Sections 4.1 and 4.2 present the results of the proposed identification strategies based on, re-
spectively, the non-linear optimization problem (see Section 3.2) and the linear regression model
(see Section 3.3). Section 4.3 reports comparisons between the outcomes of the proposed identifi-
cation strategies and the ones of the classic approach relying on the taut string model (see Section
3.1).

4.1. Solution of the non-linear optimization problem
The non-linear optimization problem (55) has been solved by running the DE algorithm pre-

sented in Section 3.2 (“DEGL/SAW/bin” scheme, with scale factor F = 0.8 and crossover param-
eter CR = 0.9, see [61] for further details), starting from a population of NP = 30 trial solutions
randomly chosen in the initial search volume V0 : 10−5 ≤ Ω0 ≤ 50, 10−5 ≤ ε ≤ 1, 0 ≤ p ≤ 1.
The parameters of the termination criterion have been set up as: Fminobj = 10−6, Toll = 10−7 and
MAXIT = 5000. Please notice that the initial search space V0 satisfies all physical constraints
of the structural problem (i.e. Ω0 > 0, ε > 0 and 0 ≤ p ≤ 1). Since trial solutions are not
constrained within the initial search volume V0, however, no special criteria needs to be adopted
to define V0. As a consequence, the initial upper bounds values of the variables Ω0 and ε have
been herein defined in order to be large enough to highlight the good convergence properties of
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the optimization algorithm also whenever initial guesses for these structural parameters are not
available.

Figure 11 shows the results of the identification procedure, as a function of the noise intensity,
for a stay cable with target bending stiffness value ε = 0.02. Results are averaged over the number
of runs NR of the algorithm (i.e. NR = 1000) for every different noise intensity level and expressed
in terms of: (a-c) the identified values of the parameters Ω̂0,ave, ε̂ave and p̂ave; (d) the relative
error on the element axial force, ∆T =

T̂ave−Ttarget
Ttarget

, where T̂ave is the average identified value of
the axial force and Ttarget is the target value (i.e. Ttarget = 4000 kN); (e) F best

obj,ave is the average
value of the cost function associated to the identified optimal set of parameters; (f) NITave is the
average number of iterations of the DE algorithm.

The identification strategy gives fairly accurate results in terms of parameters Ω0 and ε for
all values of noise intensity herein considered. As already noticed in Section 3.1, the boundary
conditions do not significantly affect the cost function (54) and, as a consequence, the identification
algorithm is not able to correctly identify the parameter p. For each value of noise intensity, the
identification procedure tends to a mean value of p equal to about 0.5, no matter the target value in
[0, 1]. This mean value actually coincides with the mean value of p within the randomly generated
candidate solutions of the DE algorithm.

On the overall, in spite of a poor identification of the degree-of-fixity p of the beam end sections,
the procedure gives a good estimate of the axial force. Errors on the average identified axial force
value are not substantially affected by noise intensity and, since p→ 0.5, the bias is higher for the
two boundary conditions corresponding to the limit cases of doubly-hinged (label IR, p = 0) and
doubly-clamped (label VR, p = 1) cables, for which |∆p| = 0.5, see (70).

Figure 11(e) allows to appreciate how measurements errors, herein associated to non-zero noise
intensity values, determine a significant jump in the estimated minimum values of the cost function.
Figure 11(f) shows that convergence of the algorithm is usually reached after a number of iterations
significantly lower than the prescribed maximum numberMAXIT , because the relative difference
between the best and worst objective function is lower than the prescribed tolerance value (see
the description of the termination criterion in Section 3.1).

As it can be clearly appreciated from Figure 11(a), errors on the parameter p introduce a bias
on the estimates of Ω̂0. Numerical tests carried out for different values of ε, in the typical range
of values of stay cables, have shown that the bias of the estimator Ω̂0 is very well approximated
by the same Eq. (70) originally derived for the linear regression model. The analysis of the
outcomes of the DE algorithm, hence, suggests that, whenever in presence of cable anchorages
with unknown rotational flexibility, a pragmatical approach to reduce the computational burden
of the identification procedure without affecting the average values of the estimated parameters
Ω̂0 and ε̂0 is to assume p = 0.5. Under this assumption, the maximum expected relative error on
Ω̂0 turns out to be in the range ±ε̂ (cf. Eq. (71)).

Figure 12 shows a comparison between the results of the standard DE algorithm presented
in Section 3.2 and the one based on the pragmatical assumption p = 0.5, reducing therefore the
searching space to a two-dimensional space. In all cases, computations have been performed by
using the control parameters of the DE algorithm previously reported in this Section and the
outcomes averaged over the number of runs NR = 1000 for each noise intensity level. Reference
stay cables with the same boundary conditions (p = 0.5) and three different values of ε (ε = 0.01,
0.02 and 0.03) have been considered. The results are shown in terms of the average values of
Ω̂0 and ε̂ (Figures 12(a) and 12(c)) along with their associated coefficient of variation (Figures
12(b) and 12(d)). As it can be appreciated from Figure 12, the outcomes of the two-parameter
identification algorithm based on the pragmatical assumption p = 0.5 are practically coincident
with the ones of the three-parameter DE algorithm, with an important difference for the coefficient
of variation of Ω̂0. Enforcing the constraint p = 0.5, indeed, leads to values of σΩ̂0

/Ω̂0 that are
independent of ε and well approximated by the linear relation σΩ̂0

/Ω̂0 = In. These values are in
general smaller than the ones coming from the three-parameter DE algorithm and shows the same
linear trend as the classic identification strategy based on the taut string model, see Eq. (51).
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Figure 11: Non-linear optimization problem. Results of the Differential Evolution (DE) algorithm, averaged over
one-thousand runs, as a function of the noise intensity. (a) Characteristic frequency Ω0 (target value: Ω0 = 5.66
rad/s). (b) Non-dimensional bending stiffness ε (target value: ε = 0.02). (c) Degree-of-fixity parameter p. (d)

Relative error on the axial force ∆T =
T̂−Ttarget
Ttarget

. (e) Value of the cost function associated to the identified optimal
set of parameters. (f) Number of iterations (the maximum number is MAXIT = 5000).
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Figure 12: Non-linear optimization problem. Comparison among the results of the Differential Evolution algorithm
with unknown parameters: Ω0, ε and p (DE) and the ones obtained under the assumption p = 0.5 (DE, p = 0.5).
The results are averaged over one-thousand runs and shown as a function of the noise intensity. (a) Characteristic
frequency Ω0 (target value: Ω0 = 5.66 rad/s). (b) Coefficient of variation of the estimated value of Ω0. (c) Non-
dimensional bending stiffness ε (target values: ε = 0.01, 0.02 and 0.03). (d) Coefficient of variation of the estimated
value of ε.
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4.2. Results of the linear regression model
As a first illustration, the linear regression model presented in Section 3.3 is applied to a stay

cable characterized by target bending stiffness ε = 0.02 and restraint parameter p = 0.5 (cf. the
boundary condition labeled as IIIR in Section 4.1). The results of the identification algorithm are
averaged over the number of runs NR = 1000 for each noise intensity level. Figure 13 shows the
average values of Ω̂0 and ε̂, (a) and (c), along with their associated coefficient of variations, (b)
and (d). Figures 13(a) and 13(b) report, for comparison purposes, the results obtained by setting
the restraint parameter p in Eq. (69) equal to: p = 0 (curves labeled as “LR, p = 0”), p = 0.5
(“LR, p = 0.5”) and p = 1 (“LR, p = 1”). Different assumptions on p do not affect the estimate ε̂
of the non-dimensional bending stiffness (see Eqs. (68) and (75)). As a consequence, a single curve
labeled as “LR” reports the results of the proposed identification procedure in Figures 13(c) and
13(d). The outcomes of the approximate closed-form equations (74) and (75) for the coefficients
of variation σΩ̂0

/Ω̂0 and σε̂/ε̂ are also reported in Figures 13(b) and 13(d) (see the dashed curves,
labeled as “Approx. Model”). Figures 14(a) and 14(b) respectively show the coefficient of variation
of the linear regression parameters β̂0 and β̂1 as a function of the noise intensity.

Figure 13(a) shows that the average values of Ω̂0 are substantially independent of the noise
intensity and biased by modeling errors on the boundary conditions, herein globally modeled
though the restraint parameter p. As expected from Eq. (70), bias-induced discrepancies between
the estimated and target values of the characteristic frequency Ω0 are practically negligible for the
model “LR, p = 0.5”, while relative errors equal to about +ε and −ε (i.e. ±2%) are respectively
associated to the models “LR, p = 0” and “LR, p = 1”.

As it can be appreciated from Figure 13(b), the coefficient of variation σΩ̂0
/Ω̂0 is almost linearly

related to the noise noise intensity In. Slope values increase with the restraint parameter, ranging
from about 0.9 for p = 0 to about 1.7 for p = 1. The numerical results shown in Figure 13(b)
are practically coincident with the outcomes of the approximate closed-form error propagation
Eq. (74) for the special case p = 0 (i.e. doubly-hinged stay cable). Discrepancies between the
numerical results and the outcomes of the approximate model increase with the increase of both
p and the noise intensity. The reason for these discrepancies can be traced back to the behavior
of the coefficient of variation of the linear regression coefficient β̂1, which satisfies the considered
assumption σβ̂1

/β̂1 � 1 only for small values of the noise intensity, as it can be clearly observed
from Figure 14(b).

The proposed identification procedure also delivers fairly good estimates of the non-dimensional
bending stiffness ε, as it can be appreciated from Figure 13(c). Discrepancies between the average
value of ε̂ and the target value ε = 0.02 increase with the noise intensity, ranging from about 1.8%
for In = 0 to about 11% for In = 2.5%. It is worth noting that the small error corresponding to
the ideal case of experimental data free from noise (i.e. In = 0) can be regarded as a modeling
error due to the adoption of the asymptotic closed form Eq. (37) instead of the exact solution of
the semi-analytical model presented in Section 2.3.

The values of the coefficient of variation σε̂/ε̂ increase with the noise intensity, as it is shown in
Figure 13(d). A comparison between Figures 13(d) and 14(b) clearly allows one to appreciate that
σε̂/ε̂ is mainly governed by the leading order term of the approximate equation (75), i.e.: 1

2

σβ̂1
β̂1

.
It can also be observed how the closed form Eq. (75) delivers a reasonably good approximation
of σε̂/ε̂ for small values of noise intensity, with discrepancies in the order of about 15% and 30%
for In respectively equal to 1% and 2.5%.

Parametric analyses have been carried out to assess the performance of the linear regression
model for different values of the non-dimensional bending stiffness ε. Figure 15 depicts the out-
comes of the proposed identification procedure for three stay cables characterized by Ω0 = 5.66
rad/s, p = 0.5 and different values of ε, i.e. ε = 0.01, 0.02 and 0.03. The linear regression model
has been applied by setting the restraint parameter p in Eq. (69) equal to p = 0.5, i.e. by modeling
boundary conditions without errors. The results of the identification algorithm are averaged over
the number of runs NR (i.e. NR = 1000) for each noise intensity level.

The average values of Ω̂0 (Figure 15(a)) are substantially independent of ε and unbiased,
according to the predictions of Eq. (70). Furthermore, the coefficient of variation σΩ̂0

/Ω̂0 turns
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Figure 13: Results of the linear regression model, averaged over one-thousand runs, as a function of the noise
intensity for a stay cable anchored to flexible restraints characterized by a theoretical value of the restraint parameter
equal to p = 0.5. (a) Characteristic frequency Ω0 (target value: Ω0 = 5.66 rad/s). (b) Coefficient of variation of the
estimated value of Ω0. (c) Non-dimensional bending stiffness ε (target value: 0.02). (d) Coefficient of variation of
the estimated value of ε. The results shown in Figures 13(a) and 13(b) have been obtained by setting the restraint
parameter p in Eq. (69) equal to: p = 0 (curves labeled as LR, p = 0), p = 0.5 (LR, p = 0.5) and p = 1 (LR, p = 1).
Approximate results (labeled as Approx. Model) in Figures (b) and (d) are respectively obtained through Eqs. (74)
and (75).
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Figure 14: Results of the linear regression model, averaged over one-thousand runs, as a function of the noise
intensity for a stay cable anchored to flexible restraints characterized by: Ω0 = 5.66 rad/s, ε = 0.02 and p = 0.5.
Coefficients of variation of the linear regression parameters: (a) β̂0 (see Eq. (63)), and (b) β̂1 (see Eq. (62)).
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Figure 15: Results of the linear regression model, averaged over one-thousand runs, as a function of the noise
intensity for a stay cable anchored to flexible restraints characterized by: Ω0 = 5.66 rad/s, p = 0.5 and three
different values of ε: ε = 0.01, 0.02 and 0.03. The results have been obtained by setting the restraint parameter p
in Eq. (69) equal to: p = 0.5. (a) Characteristic frequency Ω0 (target value: Ω0 = 5.66 rad/s). (b) Coefficient of
variation of the estimated value of Ω0. (c) Non-dimensional bending stiffness ε (target values: 0.01, 0.02 and 0.03).
(d) Coefficient of variation of the estimated value of ε.
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out to be only weakly affected by ε (Figure 15(b)). This remark is consistent with the predictions of
Eq. (74), characterized by a leading-order term independent of the cable non-dimensional bending
stiffness. Figure 15(c) allows one to observe that the proposed identification procedure delivers
average values of ε̂ in very good agreement with the target ones (i.e. ε = 0.01, 0.02 and 0.03),
for all values of noise intensity herein considered. Within this context, it is worth noting that the
already mentioned modeling errors associated to the ideal condition of zero noise (In = 0) decrease
for decreasing values of ε, being practically negligible for ε = 0.01. The coefficient of variation
σε̂/ε̂ is shown in Figure 15(d) as a function of the noise intensity. It can be easily observed that,
for a fixed value of noise intensity, σε̂/ε̂ rapidly increases with the decrease of the non-dimensional
bending stiffness ε.

These illustrations show that, at the limited extra cost of a coordinate transformation before
the linear regression, we could develop a simple identification procedure that provides very good
estimates of the cable tension, through Ω̂0, with limited, controlled and rather noise-insensitive
bias. At the same time, the method provides accurate estimates of the cable bending stiffness ε̂
which are insensitive to the assumed flexibility in the boundary conditions.

4.3. Comparisons among different identification procedures
The outcomes of the two novel identification procedures proposed in Sections 3.2 (non-linear op-

timization problem) and 3.3 (linear regression model) are systematically compared, in the present
Section, with reference to stay cables characterized by Ω0 = 5.66 rad/s, p = 0.5 and three different
values of ε, i.e.: ε = 0.01, 0.02 and 0.03. The results of the classic approach relying on the taut
string model (see Section 3.1) are also considered for comparison purposes.

The non-linear optimization problem (Section 3.2) has been solved by using the two variants
of the DE algorithm already described in Section 4.1, i.e.: (i) the three-parameter scheme with
unknown parameters Ω0, ε and p (curves labeled as “DE”), and (ii) the two-parameter scheme
based on the pragmatical assumption p = 0.5, with unknown parameters Ω0 and ε (curves labeled
as “DE, p = 0.5”). All control parameters of the DE algorithm are defined as explained in Section
4.1. Similarly as in Section 4.2, the linear regression model has been applied by considering three
different assumptions to set the restraint parameter p in Eq. (69): (i) p = 0 (curves labeled as
“LR, p = 0”), (ii) p = 0.5 (“LR, p = 0.5”), and (iii) p = 1 (“LR, p = 1”). As already shown in
Section 4.2, different assumptions on p do not affect the estimate ε̂ of the non-dimensional bending
stiffness and its associated coefficient of variation σε̂/ε̂ . As a consequence, a single curve labeled
as “LR” is used to report the results of the linear regression model in terms of ε̂ and σε̂/ε̂ . Two
different variants of the taut string model have also been considered for comparison purposes,
respectively based on the knowledge of: (i) the fundamental frequency of the cable only (curves
labeled as “TS 1f ”) , and (ii) the five lower natural frequencies of the cable (curves labeled as
“TS 5f ”).

Figures 16, 17 and 18 show the results of the different identification algorithms, averaged
over the number of runs NR = 1000 considered for each noise intensity level. Figures 16-18 (a)
report the average values of Ω̂0. The results of the two different variants of the DE algorithm
(“DE” and “DE, p = 0.5”) are practically coincident with the ones of the linear regression model
“LR, p = 0.5”. The results of the taut string model “TS 1f ”, on the other hand, turns out to
be very close to the ones of the linear regression model “LR, p = 0”. This was expected, since
both models neglect the effect of the rotational stiffness of the anchoring devices. Minimum and
maximum values of Ω̂0 are systematically delivered by, respectively the “LR, p = 1” and the
“TS 5f ” models. The difference between the two taut string models “TS 1f ” and “TS 5f ” can be
easily explained by recalling that, for these procedures, the bias of the estimator Ω̂0 increase with
the increase of the number of modes considered for identification purposes, see Eq. (47).

Figures 16-18 (b) show the coefficient of variation σΩ̂0
/Ω̂0 as a function of the noise intensity

In. All identification strategies, with the only exception of the three-parameter identification
algorithm (“DE”), are characterized by a somewhat linear relation between σΩ̂0

/Ω̂0 and In, with
slope values that are: (a) strictly independent of ε for the identification strategies “LR, p = 0”,
“TS 1f ” and “TS 5f ”, (b) substantially independent of ε for the remaining identification strategies
(also see the discussion in Sections 4.1 and 4.2). This distinction follows the motivation that a
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Figure 16: Comparison among different identification procedures. Target values are Ω0 = 5.66 rad/s, ε = 0.01,
p = 0.5.

feature of a robust identification strategy should be such that a discrepancy on the estimation of ε
shall not spoils the quality of the estimation of Ω0 and, hence, T . Minimum and maximum slope
values are respectively associated to the “TS 5f ” and “LR, p = 1” models.

Figures 16-18 (c) easily allow one to appreciate that both DE algorithms (i.e. “DE” and “DE,
p = 0.5”) give average values of ε̂ very close to the ones of the more simple linear regression model,
for any value of the noise intensity herein considered. On the other hand, DE algorithms estimates
are characterized, in general, by smaller values of the coefficient of variation σε̂/ε̂, as it can be
observed from Figures 16-18 (d).

5. Conclusions

Starting from the mechanical model of a cable with a small bending stiffness and flexible
anchorages in both translation and rotation, two different identification strategies have been de-
veloped. These identification methods provide estimates of the cable axial force T and of the
(small) dimensionless bending stiffness ε while considering the end restraints as unknown param-
eter. They rely on the asymptotic expansions of the natural frequencies of such a cable for small
bending stiffness, which is typical of stay cables and structural elements with similar aspect ratios.

Indeed, as a prelude to the derivation of the identification procedure, we have shown that, up
to the third order in ε, the natural frequencies of the cable are only affected by three parameters,
Ω0, ε and p. The first two are related to the axial force in the cable (which is the sole parameter
affecting the natural frequencies at leading order) and its bending stiffness while the latter is a
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Figure 17: Comparison among different identification procedures. Target values are Ω0 = 5.66 rad/s, ε = 0.02,
p = 0.5.
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Figure 18: Comparison among different identification procedures. Target values are Ω0 = 5.66 rad/s, ε = 0.03,
p = 0.5.
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dimensionless group translating the influence of boundary restraints. Since they all act through this
unique parameter, it is therefore impossible to separate, on the sole basis of natural frequencies, the
influence of translational and rotational flexibilities of anchorages, for vanishingly small bending
stiffness.

A first identification procedure naturally relies upon a constrained least-square optimization
problem, minimizing a norm of the difference between the measured natural frequencies of a cable
and those predicted by the asymptotic model. This optimization problem is solved with the
Differential Evolution algorithm which is based on the evolution of a swarm of best candidates,
non gradient-based and capable of dealing with several local minima. It has been implemented
in two versions, a three-dimensional one aiming at identifying Ω0, ε and p and a two-dimensional
one aiming at identifying Ω0 and ε, while p is imposed.

The second identification procedure is based on a linear regression in a transformed coordinate
system. The proposed identification method is as simple as the common method based on the taut
string model. It is also a straightforward generalization of the methods based on the fitting of a
two-parameter model (including the equivalent of Ω0 and ε), with the major difference that the
management of boundary conditions are herein explicitly taken into consideration. In the unlikely
case of known rotational and translational anchorage rigidities, parameter p can be imposed and
this yields the best performances in the proposed method. Otherwise, it is suggested to set p to its
median value p = 0.5 in order to limit the undesired influence of unknown boundary conditions.
Any other user-defined choice is also possible, including an interval analysis.

The quality of the results obtained with the two proposed identification methods is assessed
by means of the statistics of the bias and dispersion of the estimators Ω̂0 and ε̂. These are
compared to those obtained with the standard taut-string model. In short, it is shown that the
linear regression model performs as good as the first identification procedure which is based on
the Differential Evolution solver and much more computationally demanding. Compared to the
taut string model, the proposed linear regression approach provides a very similar estimate of
the cable axial force but, additionally and with almost no extra cost, an estimate of the cable
bending stiffness. Furthermore, the influence of the stiffness of anchorages is fully controlled
through parameter p. The simplicity of the proposed formulation also made it possible to derive
analytical expressions for the uncertainty propagation analysis which gives a clear picture of the
way parameters influence the quality of the identification procedure.

Finally, since it generalizes many particular cases, the proposed method can be used as such
in the various contexts today where cable tension and bending stiffness need to be identified with
the sole knowledge of measured natural frequencies.
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Appendix A: Components of the boundary condition matrix B

The components of the boundary condition matrix B (see Eq. (21) for definition) will be
denoted in the following as Bi,j (i, j = 1, ..., 4), with subscripts i and j identifying, respectively,
the ith row and the jth column of the matrix. Components Bi,j are, in general, functions of the
nondimensional frequency ω and of the parameters: P = {ε, ρT0, ρT1, ρR0, ρR1}. In order to avoid
cumbersome expressions, however, Eqs. (A.1)-(A.16) are written by exploiting the definition of the
variables zj = zj (ω) (j = 1, 2) introduced in Eq. (20) and without making explicit the functional
dependence on ω.

B1,1 = − (1− ρT0)
(
1 + ε2z2

1

)
εz1 (A.1)

B1,2 = ρT0 (A.2)

B1,3 = ρT0 + (1− ρT0)
(
1− ε2z2

2

)
εz2 (A.3)

B1,4 =
(
ρT0 − (1− ρT0)

(
1− ε2z2

2

)
εz2

)
exp (−z2) (A.4)

B2,1 = −ρT1 sin (z1)− (1− ρT1) cos (z1)
(
1 + ε2z2

1

)
εz1 (A.5)

B2,2 = −ρT1 cos (z1) + (1− ρT1) sin (z1)
(
1 + ε2z2

1

)
εz1 (A.6)

B2,3 =
(
−ρT1 + (1− ρT1)

(
1− ε2z2

2

)
εz2

)
exp (−z2) (A.7)

B2,4 = −ρT1 − (1− ρT1)
(
1− ε2z2

2

)
εz2 (A.8)

B3,1 = −εz1ρR0 (A.9)

B3,2 = − (1− ρR0) ε2z2
1 (A.10)

B3,3 = (ρR0 + (1− ρR0) εz2) εz2 (A.11)

B3,4 = (−ρR0 + (1− ρR0) εz2) εz2 exp (−z2) (A.12)

B4,1 = (ρR1 cos (z1)− (1− ρR1) sin (z1) εz1) εz1 (A.13)

B4,2 = (−ρR1 sin (z1)− (1− ρR1) cos (z1) εz1) εz1 (A.14)

B4,3 = (−ρR1 + (1− ρR1) εz2) εz2 exp (−z2) (A.15)

B4,4 = (ρR1 + (1− ρR1) εz2) εz2 (A.16)
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Appendix B: Components of matrices B(0), B(1) and B(2)

The components of matricesB(0), B(1) andB(2) (see Eq. (34) for definition) will be respectively
denoted as B(0)i,j , B(1)i,j and B(2)i,j(i, j = 1, ..., 4), with the same notation adopted in Appendix
A.

All non-zero components of the matrix B(0) are reported in the following Eqs. (B.1)-(B.7):

B(0)1,2 = ρT0 (B.1)

B(0)1,3 = ρT0 (B.2)

B(0)2,1 = −ρT1 sin
(
ω(0)

)
(B.3)

B(0)2,2 = −ρT1 cos
(
ω(0)

)
(B.4)

B(0)2,4 = −ρT1 (B.5)

B(0)3,3 = 1 (B.6)

B(0)4,4 = 1 (B.7)

All non-zero components of the matrix B(1) are reported in the following Eqs. (B.8)-(B.13):

B(1)1,1 = −ω(0) (1− ρT0) (B.8)

B(1)2,1 = −ω(0) cos
(
ω(0)

)
(1− ρT1)− ω(1) cos

(
ω(0)

)
ρT1 (B.9)

B(1)2,2 = ω(0) sin
(
ω(0)

)
(1− ρT1) + ω(1) sin

(
ω(0)

)
ρT1 (B.10)

B(1)3,1 = −ω(0)ρR0 (B.11)

B(1)4,1 = ω(0) cos
(
ω(0)

)
ρR1 (B.12)

B(1)4,2 = −ω(0) sin
(
ω(0)

)
ρR1 (B.13)

All non-zero components of the matrix B(2) are reported in the following Eqs. (B.14)-(B.24):

B(2)1,1 = −ω(1) (1− ρT0) (B.14)

B(2)1,3 = −ω2
(0) (1− ρT0) (B.15)

B(2)2,1 =
1

2
ω3

(0) cos
(
ω(0)

)
ρT1 +

1

2
ω2

(0) sin
(
ω(0)

)
ρT1

+ω(1)ω(0) sin
(
ω(0)

)
(1− ρT1)

−ω(1) cos
(
ω(0)

)
(1− ρT1)− ω(2) cos

(
ω(0)

)
ρT1

(B.16)

B(2)2,2 = −1

2
ω3

(0) sin
(
ω(0)

)
ρT1 +

1

2
ω2

(1) cos
(
ω(0)

)
ρT1

+ω(1)ω(0) cos
(
ω(0)

)
(1− ρT1)

+ω(1) sin
(
ω(0)

)
(1− ρT1) + ω(2) sin

(
ω(0)

)
ρT1

(B.17)
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B(2)2,4 = ω2
(0) (1− ρT1) (B.18)

B(2)3,1 = −ω(1)ρR0 (B.19)

B(2)3,2 = −ω2
(0) (1− ρR0) (B.20)

B(2)3,3 = ω2
(0)

(
1− 1

2
ρR0

)
(B.21)

B(2)4,1 = −ω2
(0) sin

(
ω(0)

)
(1− ρR1)

−ω(1)ω(0) sin
(
ω(0)

)
ρR1 + ω(1) cos

(
ω(0)

)
ρR1

(B.22)

B(2)4,2 = −ω2
(0) cos

(
ω(0)

)
(1− ρR1)

−ω(1)ω(0) cos
(
ω(0)

)
ρR1 − ω(1) sin

(
ω(0)

)
ρR1

(B.23)

B(2)4,4 = ω2
(0)

(
1− 1

2
ρR1

)
(B.24)

Appendix C: Solution of the system of equations (36)

In this Appendix, the system of Eqs. (36) is fully solved for the coefficients ω(i) and α(i)

(i = 0, 1, 2) of the second-order accurate asymptotic expansions of the eigenvalues ω (Eq. (32))
and eigenvectors α (Eq. (33)) of problem (21). The solution is sought through a cascaded
approach, starting from the leading order problem (i.e. ord(ε0)) in (36) and moving towards the
higher order ones.

Leading order solution
The solution of the leading order problem (i.e. ord(ε0)) in (36) amounts to find the the

eigenvalues and eigenvectors of the matrix B(0), whose components are defined in the Appendix
B (see Eqs. (B.1)-(B.7)).

It can be easily verified that the eigenvalues of B(0) coincide, as expected, with the non-
dimensional natural frequencies of the taut string model, i.e. (cf. Eq. (18)):

ω(0)k = kπ, k ∈ N+ (C.1)

The right (α(0)k) and left (βT(0)k) eigenvectors of B(0) can be expressed as:

α(0)k = α0 = (1, 0, 0, 0)
T
, ∀k ∈ N+ (C.2)

βT(0)k =

(
1, (−1)

k ρT0

ρT1
,−ρT0, (−1)

k
ρT0

)
, k ∈ N+ (C.3)
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First order correction
Once the leading order solution is known, the row corresponding to the ord(ε1) problem in (36)
can be pre-multiplied by βT(0)k yielding the scalar equation:

βT(0)kB(1)

(
ω(1)k, ω(0)k

)
α0 = 0 (C.4)

Solutions of Eq. (18) for ω(1)k read:

ω(1)k = 2p kπ, ∀k ∈ N+ (C.5)

where p is the restraint parameter defined in Eq. (26). By substituting Eqs. (C.1), (C.2) and
(C.5) in the second equation of (36), then, one can get the linear equation:

B(0)

(
ω(0)k

)
α(1)k = −B(1)

(
ω(1)k, ω(0)k

)
α0 (C.6)

whose solutions for α(1)k read:

α(1)k = kπ
(

0,−p0, ρR0, (−1)
k+1

ρR1

)T
(C.7)

with the definition:

p0 = 1 + ρR0 −
1

ρT0
, ρT0 > 0 (C.8)

Second order correction
Once both the leading order solution and the first order correction are known, the row cor-

responding to the ord(ε2) problem in (36) can be pre-multiplied by βT(0)k yielding the scalar
equation:

βT(0)kB(1)

(
ω(1)k, ω(0)k

)
α(1)k + βT(0)kB(2)

(
ω(2)k, ω(1)k, ω(0)k

)
α0 = 0 (C.9)

Solutions of Eq. (C.9) for ω(2)k read:

ω(2)k =

(
(kπ)

2

2
+ 4p2

)
, kπ ∀k ∈ N+ (C.10)

where p is the restraint parameter defined in Eq. (26). By substituting Eqs. (C.1), (C.2), (C.5),
(C.7) and (C.10) in the third equation of (36), then, one can get the linear equation:

B(0)

(
ω(0)k

)
α(2)k = −B(1)

(
ω(1)k, ω(0)k

)
α(1)k −B(2)

(
ω(2)k, ω(1)k, ω(0)k

)
α0 (C.11)

whose solutions for α(2)k read:

α(1)k = kπ
(

0,−p0p, ρR0p, (−1)
k+1

ρR1p
)T

(C.12)
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