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Figure 1: The SimSearch workspace, built around the central projection view (a), showing the projected results of the
similarity search algorithm for the query defined in the parameter designer (b). The tabular results view (c) shows the same
results, linked to the projected nodes by color and hover events. Both the projection and table view switch to a speculative
execution state on hovering a weight slider, indicating the changes occurring if the weight is adjusted accordingly.

ABSTRACT
The parameters of complex analytical models often have an un-
predictable influence on the models’ results, rendering parameter
tuning a non-intuitive task. By concurrently visualizing both the
model and its results, visual analytics tackles this issue, support-
ing the user in understanding the connection between abstract
model parameters and model results. We present a visual analyt-
ics system enabling result understanding and model refinement
on a ranking-based similarity search algorithm. Our system (1) vi-
sualizes the results in a projection view, mapping their pair-wise
similarity to screen distance, (2) indicates the influence of model
parameters on the results, and (3) implements speculative execu-
tion to enable real-time iterative refinement on the time-intensive
offline similarity search algorithm.

1 INTRODUCTION
Similarity search in large database systems is a crucial feature
in many applications and often requires a manual adjustment of
parameters to suit various search scenarios [17]. Such parameters
are hard to optimize by randomly probing the search space, but
they significantly influence the retrieved results’ quality [7]. In
many cases, even experts with prior domain knowledge struggle
to understand the inner workings of the used mining models and
the influence of abstract model parameters, which prevents them
from reaching the desired analysis goal. Systematic steering and
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exploration of different parameter settings can help to obtain the
proper combination more effectively. Thus, domain experts need
concurrent access to models, parameters, and results, enabling
them to understand how parameters influence the results and
how they can be refined to match the analysis goal.

Visual analytics enables users to explore and analyze data and
models by providing integrated visual representations for data,
models, and parameters. Such visual techniques enable interac-
tive parameter adjustment during exploration and analysis [6].
Visual analytics bridges the gap between heuristics to find suit-
able parameters and domain experts with the knowledge to steer
results in a human-centered direction. For instance, a visual inter-
active what-if analysis facilitates experts to understand black-box
model decisions by enabling direct data and parameter manipula-
tion [13]. The comprehensive understanding of the relationship
between model parameter choices and outcome is a fundamental
requirement for well-informed decision making [20]. By applying
standard visual analytics techniques, such as aggregation, filter-
ing, or speculative execution [18], the vast results- and parameter
spaces can be interactively explored, despite the algorithms being
time- and resource-consuming. Thus, visual analytics supports
the comprehension of parameter choices in similarity search ap-
plications for users and domain experts. Visual analytics enables
informed reasoning about a query’s results, allows the under-
standing and diagnosis of parameters, and supports the user in
refining those parameters to get the best possible results.

We propose a visual analytics workspace to support users in
result understanding and model refinement on a ranking-based
similarity search algorithm in the context of large data founda-
tions. Our system consists of a user-centered visualization of



parameters and results to facilitate the users’ exploration and un-
derstanding of the parameter choices. We enable users to interac-
tively updatemodel parameters based on their domain knowledge
and findings during the analysis process. Our visual analytics
system further facilitates real-time analysis using speculative ex-
ecution on a time-intensive similarity search algorithm, enabling
online exploration and execution of the offline algorithm.

Summarizing, we present a visual analytics system for sim-
ilarity search, providing the following main contributions: (1)
our system supports the understanding of results and parameters,
emphasizing the most critical data characteristics by mapping
similarity to spatial distance and highlighting communities of
similar attribute combinations. (2) Our system enables the diagno-
sis of results and parameters by allowing the real-time interactive
exploration of the parameter space to investigate the influence
of parameter choices, enabled by the speculative execution. (3)
Our system supports the refinement of the involved parameters,
supporting the iterative guided optimization of the model to solve
a given analysis task.

2 RELATEDWORK
To cover the various involved research domains and applications,
we structure our related work into sub-topics, summarizing the
most relevant works regarding one aspect of our approach.

Visual Analytics Foundations — Similarity searches in large
database systems are often automatically executed using pre-
defined similarity functions and distance measures. However,
user-adaptable similarity search applications increase in impor-
tance, and user integration rises [17]. Visual analytics combines
automated analysis techniques with interactive visualizations to
enable users to understand and reason about large datasets [6].
Sacha et al. [14] have presented a knowledge generation model
that describes how knowledge is generated during the analy-
sis process, building upon prior methodologies in visual ana-
lytics [2, 12]. Besides the computer system that visualizes and
models data, they describe the human as a core element whose
creativity, interaction abilities, and perception help find and com-
prehend patterns hidden in the data.

Weight Space Exploration — As visual analytics is concerned
with integrating human knowledge with automated machine
learning, it is frequently used for model exploration and opti-
mization. Sedlmair et al. [16] provide a conceptual framework of
visual parameter space analysis, structuring the design space. Pa-
jer et al. [10] present a tool for the visual analysis and exploration
of weight spaces, tackling the problem of setting abstract weight
parameters. Their tool supports the understanding of sensitivity
and helps identify weight regions of interest for a desired output.
Mühlbacher et al. [9] present TreePOD, a sensitivity-aware ap-
proach to selecting Pareto-optimal decision trees. In contrast to
most existing work, we tackle the exploratory analysis of simi-
larity queries and rely on the analyst’s intuition rather than on
quality metrics.

Parameter Optimization for Mining Models — Parameter
optimization for data mining systems or hyper-parameter opti-
mization in machine learning is an open problem that frequently
occurs in scientific or industrial use-cases. Analytic optimiza-
tion or exhaustive search for parameter optimization is often
impossible in these models due to black-box methods or high-
dimensional parameter spaces. Torsney et al. [22] apply a guided
semi-automatic method to this problem by first sampling from

the parameter space and then guiding the user by estimating
the effects of parameter changes on the result. Schall et al. [15]
propose a heat-map method to superimpose the prediction of a
deep neural network over its input image. This allows the model
engineer to identify problems in the prediction and tune the
hyper-parameters accordingly. The resulting workflow is iter-
ative and guided by the provided visualization. This method is
applied to offline handwriting recognition, where spatial infor-
mation is essential but not available in ground-truth data.

Speculative Execution and Guidance — Sperrle et al. [18]
present an adaptation of speculative execution for visual ana-
lytics to support exploratory model analysis and -optimization in
visual analytics. Inspired by speculative execution in CPUs, they
define it as “the proactive, near-real-time computation of compet-
ing model alternatives” to support model state-space exploration.
Our system uses speculative execution to execute queries au-
tomatically using adapted weights, serving two purposes: first,
speculatively preparing those results while the system would oth-
erwise idle enables a near-realtime analysis of related parameter
configurations. Second, our system compares all obtained results
and guides the user in their exploration by visually highlighting
alternative feature weights that produce significantly different
results. In recent years, such guidance has been identified as one
of the main challenges in visual analytics [3, 4] characterized by
user and machine teaching each other while mutually learning
from each other [19]. Such guidance enables a more efficient
human-machine collaboration and paves the way towards true
mixed-initiative [1] systems.

Application Background — Related to our application, we fo-
cus on work for similarity search on heterogeneous data collec-
tions. Gionis et al. [5] tackle the curse of dimensionality for search
in high-dimensional attribute spaces by hashing data entities
and performing an approximate nearest-neighbor search on the
hashes. Sun et al. [21] present a metapath-based search algorithm,
deriving similarity from linkage paths in the network, addressing
the advent of heterogeneous information networks. Patroumpas
and Skoutas [11] frame the problem as search on enriched, geo-
graphical data, i.e., geospatial attributes with additional textual,
numerical, or temporal information. Our approach builds upon
their work, tackling the open challenge of user-centered model
optimization.

3 THE SIMILARITY SEARCH SYSTEM
While search is an essential tool to locate entities of interest in
large data foundations, it has significant limitations when the
data distribution is unknown and, hence, explorative access to the
data is required. Specifically, the exact attribute combination of
the results might not be known beforehand, or multiple entities
in a particular region might be of interest. The used similarity
search (SimSearch) algorithm [11] fulfills these requirements by
considering entities that feature attribute combinations close to
the desired search parameters. By specifying the number 𝑘 of
ranked closest matches, the analyst can explore the region of
interest and refine the search parameters according to the anal-
ysis goal. The high-dimensional search space poses particular
challenges for the visual representation of the results: pair-wise
distances between entities and the root search have to be consid-
ered, as well as the influence of each single search attribute.

The variety of data types and -domains that might occur in the
data attributes requires the concurrent use of different distance
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Figure 2: The SimSearch visual analytics system’s architecture, split into frontend (a) and backend (b) applications. Search
queries are issued to the SimSearch engine, which returns (1) a table of the top-𝑘 ranked results and (2) a 𝑘 × 𝑘 cross-
similarity matrix, encoding the pair-wise similarities between entities. The results are cached, filtered, projected, and
transformed by the SimSearch visual analytics backend before delivering them to the SimSearch workspace frontend.

functions, rendering an objective comparison between the ob-
tained distances impossible. For example, a geospatial attribute
might have a real-world geographical distance function associ-
ated, while a numeric attribute could exemplary have a loga-
rithmic distance function defined. Figure 4a illustrates the non-
comparability of those two measures in a two-axis plot. The
similarity search algorithm allows specifying weight parameters
in the interval [0; 1] to balance the distance functions between
different attributes, tackling this problem. Figure 4b illustrates,
how applying weights can scale the search space accordingly.

However, no objective can be optimized to automatically deter-
mine the ideal set of weights for a query since it heavily depends
on the data domain and the analysis task, rendering human feed-
back essential for parameter optimization.

We, therefore, identify three fundamental challenges: (1) the
high-dimensional and interconnected results must be presented
such that the analyst understands their meaning, mapping simi-
larity to the spatial distances in the visualization, (2) the analyst
must understand the influence of the parameters on the results,
and (3) the interactive exploration of the parameter space must
be possible to refine the parameters targeting the analysis goal.

Our proposed visual analytics system makes the similarity
search model accessible in a comprehensive workspace, combin-
ing different views and panels to address the identified challenges.

3.1 The Similarity Search Backend
To avoid computationally-, time-, and storage-expensive opera-
tions in the frontend, our implementation splits the SimSearch
system into frontend (2a) and backend (2b). The backend inter-
faces with the similarity search model, being exposed via REST
API. The result of a request to the SimSearch API consists of
(1) a ranked list of the top-𝑘 similar results together with (2) a
𝑘 × 𝑘 cross-similarity matrix, denoting the pair-wise similarities
between every two entities. The raw results are cached by the
backend application for later search queries with similar parame-
ters. The results are then transformed from the 𝑛-dimensional
attribute space down to the two-dimensional screen space and
converted into a graph representation using a specified projection
algorithm. We include different projection methods to achieve
good results for varying search attributes and input parameters:
for low-dimensional searches (𝑛 ≤ 4), the system supports PCA
and MDS, based directly on the attribute values or the cross-
similarity matrix, respectively. For higher-dimensional searches,
UMAP [8] can provide fast and stable projections highlighting
connections in the data while preserving its global topology. The

decisive criterion for choosing the provided projection methods
was their ability to derive a stable transformation under a chang-
ing set of input vectors. The cross-similarity matrix is filtered
for its top 𝑘 values and converted into a list representation to
reduce network load and computational complexity in the fron-
tend. Both results, the projected graph, and the cross-similarity
list are then cached and returned to the frontend application.
Figure 2 shows the architectural details of the system, including
data paths, caching, and the applied data transformations.

Caching Strategy and Requirements — The cache has a cru-
cial impact on the system’s responsiveness, requiring the caching
strategy to obtain the best possible balance between data topical-
ity and system performance. Since this choice is strongly depen-
dent on the frequency with which data evolution events occur
in the data foundation, we tackle this challenge by occasionally
querying the similarity search engine despite the results already
being present in the cache. Since this strategy triggers a request of
multiple similar parameter combinations, the results in the local
search space are updated, maximizing the probability of future
cache hits with the most recent data entities. The cache’s required
storage space is neglectable since, in a typical scenario, 𝑘 = 50
can be taken as a reasonable upper-bound for the top-𝑘 results
of interest. The storage consumption for a query grows linearly
with 𝑘 , except for the 𝑘 × 𝑘 cross similarity matrix, which grows
quadratically. Taking the upper bound of 𝑘 = 50, we can estimate
its storage consumption as 50 · 50 · 64 bit = 160 000 bit ≈ 20 kB.

3.2 The Similarity Search Workspace
To allow the interactive analysis of the SimSearch algorithms’ re-
sults and enable informed decision making during the parameter
tuning process, our proposed similarity search workspace com-
bines multiple components in a comprehensive user interface,
shown in Figure 1.

Central Projection View (1a) — After defining a search query
and receiving the similarity search engine results, the analyst
must understand (1) the connection between results and root
query and (2) the pair-wise relationship between the results. The
SimSearch workspace is built around a central projection view,
mapping the n-dimensional data points to the two-dimensional
screen space while preserving the distances between entities
as well as possible. The search attributes are projected as an
additional, virtual entity to set the result entities into relation
with the specified search parameters.



Besides the spatial position of entities in the result space, the
pair-wise relation between entities is essential to interpret con-
nections and reveal proximities in the data that the projection
could not preserve. Therefore, we indicate these relations by ex-
tracting the top k values from the cross-similarity matrix and
displaying them as links between the respective entities. The
edges’ line width is proportional to the similarity between two
entities, visually highlighting the most important connections.

Important information for each entity is attached directly to
the projected node: the similarity rank is annotated persistently
on each node, while the exact attribute combinations and simi-
larity scores for each attribute can be displayed by hovering an
entity either in the projection view or in the tabular results view.
By coloring the results according to their spatial position in the
projection using a two-dimensional colormap, the entities are
visually clustered and linked to the tabular results view.

Besides displaying the inter-linkage, we also apply k-means
clustering to the projected points, reducing visual clutter by form-
ing local groups and highlighting results with spatial proximity
in the projection space instead of the attribute space. While the
cross-similarity would ideally correspond with the k-means clus-
ters in the 𝑛-dimensional space, this is not valid for the projected
entities since not all information can be preserved in the projec-
tion. Therefore, the clustered entities can share similar attributes,
which, at the same time, might diverge from the most similar
entities denoted by the cross-similarity matrix. I.e., entities might
be close in only a subset of their attributes, causing them to be
assigned to the same cluster, while the total similarity across all
attributes might be vanishing, preventing their cross-similarity
link from being strong enough to be displayed.

Tabular Result View (1b) — Complementing the projection
view, we include the tabular results view in the SimSearch work-
space, showing the ranked entities together with their attribute
set and the corresponding similarity scores. The table’s rows
are linked to the nodes in the projection view, simultaneously
highlighting a specific node in both views on mouse hover. By
clicking the table header for one attribute column, the column
can be re-ordered according to its contained values, enabling the
direct comparison between the individual similarity scores for
each attribute.

Parameter Designer (1c) — The parameter designer is the pri-
mary interface for specifying and refining search queries, pro-
jection settings, and weight parameters. Search attributes can
be added from a list of all available attributes in the dataset, al-
lowing to set a target value for each selected parameter. A slider
attached to each attribute enables the analyst to set the attribute’s
relative importance concerning all other defined attributes, giv-
ing full control over the balance between attributes and their
corresponding distance function.

To diagnose the weight parameters’ influence on the result
set, hovering a weight slider triggers the projection and tabular
result view to switch to the speculative execution state. In the
speculative execution state, the views indicate the change in the
result set under a speculative de- and increase of the respective
attribute weight. In the projection view, this is done by inserting
the possible new positions of the entities under the changing
projection, marking the results under a positive weight adjust-
ment with a red outline and the results under a negative weight
adjustment with a green outline. Complementing the projection,
the tabular results view is extended by two additional columns,
indicating the change in each result entity’s rank and marking

Search A

Search B

Search C

Figure 3: Cached subsets of the search space covered by
three consecutive searches with slightly changed parame-
ters. The stability of the central entities is maximal, while
the stability for the border-cases vanishes.

entities that are descending from the top 𝑘 results, causing them
to lose their place in the table.

Time-consuming search operations are executed speculatively
before an actual user interaction is performed, enabling the itera-
tive refinement of search parameters. When the user performs an
action, and the resulting parameter combination causes a cache
hit, the results can be delivered and visualized in real-time. Be-
sides the increase in responsiveness, more and more discrete
samples of the local search space are present in the cache with
the ongoing analysis process. By setting the frequency of an en-
tity in the latest result sets into relation with the total number
of results, we derive a measure for an entity’s stability over the
changing search parameters, as shown in Figure 3. The stability
is then mapped to the node size in the projection view, with
larger nodes indicating entities that appear more frequently in
the recent result sets.

4 USE-CASES
We show the applicability and advantages of the proposed Sim-
Search workspace based on two exemplary use-cases. The first
use-case (subsection 4.1) is hands-on and describes in detail how
our proposed system can be used to reach the analysis goal,
while the second use-case (subsection 4.2) demonstrates how our
system can be applied to varying tasks and domains.

4.1 Assessing the Local Business Landscape
This use-case is based on a real-world, large-scale (≈ 120GB)
dataset containing information about companies in Italy.

In the use-case, a small company with ≈ 50 employees plans to
expand, for which several potential new locations are considered.
Since the company is dependant on the local infrastructure and
other supplying companies, geographical proximity to those com-
panies is an essential requirement. Simultaneously, the company
wants to avoid direct local competition through other companies
working in the same sector and having a similar corporate struc-
ture. Our proposed SimSearch workspace supports the search
and interactive exploration of the potential company locations
to fulfill the company’s requirements.

By specifying the attribute combinations in the parameter
designer according to the desired or declined company profiles
together with the considered company location, the local search
space can be explored. The projection view reveals the most
similar companies and indicates their pair-wise relationships, re-
vealing communities and enabling the analyst to assess the most
influential search attributes. In doing so, it becomes clear that the
geolocation only has marginal influence on the search results,
and the shown companies are too far for a business relationship.

Since the numerical search attributes, such as the number of
employees, can not be objectively compared to the geospatial
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Figure 4: Similarity search results {𝑐0, 𝑐1, 𝑐2} and cross-
similarities 𝑠 (𝑐𝑎, 𝑐𝑏 ) with 𝑎, 𝑏 ∈ {0, 1, 2}. Search attributes
originating from different data domains render an objec-
tive comparison of the similarity scores impossible (a). By
applyingweightings {𝑤1,𝑤2}, the analyst can adjust the dis-
tance functions according to his domain knowledge (b).

company location, the weights in the parameter designer have
to be iteratively refined to match the analyst’s understanding of
each attribute’s desired influence on the results. Figure 4 shows
how the weight adjustment helps to balance the different dis-
tance functions. By indicating the changes in the result set for a
possible weight adjustment, the analyst can exploit the systems
speculative execution feature to observe changes in real-time
and assess the most purposeful operation before the actual, time-
consuming execution. Using the tabular results view, the analyst
can verify the possible changes in detail by observing how each
attribute’s ranking would change under the operation or if the
company would be excluded from the result set. By iteratively
refining the search parameters, the analyst can explore the search
space ideally for each potential location, leading to well-informed
decision making for the new location.

4.2 Mail Forwarding
This use-case is based on internal mail forwarding within a large
company. Incoming postal mail is automatically opened and dig-
itized, using an OCR system, on arrival at the company head-
quarters. The digitized mail item is then used as a search query
on a structured database of the company’s customers, contracts,
products, or projects to electronically forward the scanned docu-
ment to the staff responsible for working this task needing the
document. This use-case requires both a robust search engine for
retrieving database entries (e.g., contracts) containing keywords,
names, or numerical values similar to the query document and
semantic understanding of the content to weigh these attributes.

The structured data in the database consists of categorical
attributes, person or item names, as well as spatial, temporal, nu-
merical, or general ontological values. These may occur within
the scanned document with different individual similarities as
well as in many different combinations. Thus the need arises
to weigh these database attributes against each other to model
the overall semantic similarity. This configuration of the search
query likely is done by a human engineer with expert domain
knowledge. One approach here is to use a set of example doc-
uments for evaluation and repeatedly querying for them and
modifying the attribute weights until relevant database entries
are found with high overall similarity to the query document,
with less relevant entries being significantly dissimilar.

We propose to use SimSearch in this process to both see the
overall similarity of the different database entries using the cur-
rent configuration and identify clusters in the embedding space.

The embedding method will be chosen to reflect the expert’s do-
main knowledge of semantically different and similar documents.
Cross-similarities will show potential miss-classifications. This
allows adjusting the weights of the similarity search to increase
the similarity to semantically relevant documents and separate
them from semantically distinct ones.

5 DISCUSSION AND FUTUREWORK
While the presented similarity search workspace implements a
variety of features and techniques to make the data search space
and the model parameter space accessible by the analyst, possi-
ble extensions could further strengthen the system’s usefulness.
Such extensions could include improvements to the search func-
tionality and the explanation of results or the implementation
of advanced guiding techniques. Furthermore, the presented ap-
proach could be generalized to other domains and tasks with
a similar problem setting, i.e., where high-dimensional result
entities of complex mining models have to be visualized, and the
model must be refined to match a particular analysis task.

Extending the Search Functionality—Additional views could
augment the existing visualizations with an abstract overview of
possible actions and the resulting changes, enabling the analyst
to identify possible changes at first glance before descending into
detailed views. For example, an additional view visualizing all
possible weight combinations probed by the speculative execu-
tion component and their likely outcomes could provide first
hints where the region of interest might be located. Additional
interestigness measures could augment the parameter designer’s
weight sliders with information on the intervals corresponding
with the most significant changes in the result set. Extending the
interestingness feature, decision boundaries could be estimated
by probing the search space in regions with a high gradient,
providing a sensitivity analysis for each parameter.

Extending Guidance — The system currently provides orient-
ing guidance to users alerting them to similar weight config-
urations that produce significantly different search results. In
addition to highlighting different possible weight settings, the
system could actively propose user actions like moving weight
sliders or switching to different projection methods. By analyzing
and learning from user interactions, the system could identify
the users’ preferences and provide suggestions adapted to their
understanding of the domain and analysis task. By giving the
system more initiative in the exploration process, the system
should become both more effective and efficient to use.

Generalization as Visual Analytics Technique — There are
several other problems in automated data mining pipelines with
the same or a similar structure as the similarity search appli-
cation addressed in the presented system, such as clustering,
classification, or graph merging. Specifically, our approach can
be generalized to understand, diagnose, and refine models where
(1) the result is a number of 𝑛-dimensional entities with arbitrary
distance functions associated, and (2) the outcome depends on a
set of parameters whose influence on individual results is opaque.

Scalability — The system’s scalability is directly dependent on
the underlying similarity search algorithm. Despite implementing
various techniques (caching, speculative execution) to enable
interactive visual analytics on the offline search algorithm, the
similarity search model’s response time is the limiting factor for
the approach. While response times of 1 − 30 s can be bridged
by applying the implemented techniques, longer response times



render an online analysis increasingly difficult since (1) non-
ideal sampling points might have been chosen for speculative
execution or (2) the analystmight change the search space context
more rapidly than results can be preemptively queried and cached.
The response times of the similarity search algorithm could be
reduced by parallelizing the main stages of the algorithm, namely
(1) generating a ranked list of results for each queried attribute
and (2) compiling the ranked lists into a list of top-𝑘 results [11].

Limitations and Future Work — Currently, views of higher
abstraction giving the analyst reference points on promising anal-
ysis directions are missing. We will tackle this issue by adding a
third view to the similarity search workspace, showing all pos-
sible weight combinations in a matrix view and indicating the
regions of the highest expected result change. Currently, the an-
alyst has to evaluate the speculative changes in results manually
by observing the predicted outcomes and comparing them across
the different parameter combinations. In future versions, we will
automatically highlight regions of interest using the number
of changes in the result set for each combination as an inter-
estingness measure. This functionality will be strengthened by
implementing interactive, adaptive guidance. If one operation
has significantly higher interestingness than others, it will be
actively proposed as a possibly rewarding action. Furthermore,
by tracking recent interactions of the user with the system, we
will estimate the likelihood of future interactions based on the
history, adapting the guidance to user preferences. Despite the
presented use-cases proving our approach’s applicability in dif-
ferent real-world scenarios and data domains, a future user study
will further validate the system’s usefulness and provide insights
on both benefits and open challenges. Besides measuring quanti-
tative criteria, such as task completion time and comparing the
analysis results to ground-truth data, an additional qualitative
evaluation will expose additional user requirements and future
points for improvements of the system.

6 CONCLUSION
Applying complex data mining models to large data foundations
introduces particular challenges to the analysis process. Both the
parameter space and the search space might be opaque, requiring
manual probing to approach the regions of interest and, hence,
rendering an interactive exploration impossible. Applying visual
analytics, models, parameters, and results can be made accessible
through interconnected visualizations, revealing hidden connec-
tions between components and providing advanced mechanisms,
such as speculative execution, to enable the real-time exploration
of otherwise time-consuming data processing pipelines.

The presented system implements views and techniques to
make the parameters and results of a novel similarity search
algorithm accessible to the analyst. Specifically, we provide a
projected view of the search results, highlighting the similarity
to the root query, the pair-wise similarity between the result en-
tities, the stability of the results, as well as communities of close
entities. The projected view is complemented with and linked to
a tabular view of the results, indicating their rank and providing
sorting functions on distinct attributes or their corresponding
similarity. Supporting parameter refinement and search space
exploration, the system implements speculative execution on the
time-consuming similarity search operation, presenting the user
with possible outcomes of parameter changes on-demand before
actually performing an action. The projection and tabular views

are coupled with the parameter refinement functionality, inte-
grating the speculative results into their visual representation.

We show our proposed similarity search workspace’s applica-
bility and usefulness based on two use-cases, both anchored in
real-world application examples and datasets.
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