
1 Introduction

Understanding how contact forces are transferred to the rim is a
crucial factor for a lightweight design of vehicle wheels. The
numerical models most widely used for the design of vehicle
wheels include the loads acting on the wheel rim in a simplified
way [1–5]. The knowledge of the actual distribution of the reac-
tion forces applied by the tire to the rim should be known in order
to design a lighter and more structurally efficient component. The
effect of camber angle is predominant in motorcycles, compared
to cars. In motorcycles, the forces acting along the radial direction
(and parallel to the wheel plane) are significantly higher than
forces acting in a pure lateral direction.

To the best of our knowledge, few papers on the structural
behavior of motorcycle tires can be found in the literature. Refer-
ring to motorcycle tire dynamic behavior, Lot [6] developed a
model for contact forces estimation and employed it for real time
simulations of the bike dynamics. An interesting work on motor-
cycle tire properties and issues related to experimental measure-
ments can be found in Ref. [7]. Pacejka’s magic formula was
employed in Ref. [8] for characterizing tires of a light motorcycle.
All the mentioned references are focused on the computation of
tire/road contact forces, but in no case, information about the tire/
rim interaction is given.

Several simplified structural models for car vehicle tires are
described in some papers. The rigid ring SWIFT tire model was
employed in Refs. [9] and [10] for describing tire vertical and
longitudinal dynamics when simulating vehicle ABS braking.

The studies on lateral and longitudinal tire dynamics through
simplified structural models were proposed in Refs. [11–13] for
evaluating the transient response of ground vehicles.

A flexible ring tire model was employed by Kim et al. [14] for
studies on vehicle handling and ride comfort for low frequency
ranges. The flexible ring scheme is based on a deformable ring on
an elastic foundation that represents the tire sidewalls. The same
model was used for investigating tire natural frequencies and
noise emissions of moving vehicles [15,16].

Structural models for the study of tire high frequency response
are discussed in Refs. [17–19].

Analytical expressions of vertical stiffness of several vehicle
tires can be found in Refs. [20] and [21].

A large number of tire models are based on finite-element
methods. Finite element based tire models can reach a high level
of accuracy since the detailed tire structure and all its components
can be modeled [22,23]. FEM models are very informative but, in
general, at a high computational cost. Moreover, the proper devel-
opment of a FEM model requires the knowledge of a large num-
ber of parameters related to the tire structure and material
properties [24–33]. Such an effort could be not always sustainable
by wheel manufacturers, especially because it is generally hard to
obtain tire structural and geometrical properties. In these cases, a
simpler, even if relatively less accurate, model that requires a very
limited number of parameters can be effectively employed for the
design of the rim. In fact, a simplified model able to predict the
distribution of the reaction forces on the rim at a low computa-
tional cost and requiring the knowledge of few tire parameters can
be a valuable tool. A simple analytical model of a motorbike tire
was developed by Ballo et al. [34], which is able to compute the
interaction forces between the tire and rim. In this paper, signifi-
cant improvements of the model are discussed and presented.

This paper is organized as follows: In Sec. 2, the mathematical
formulation of the analytical model is presented along with the
computed deformed shapes and reaction loads for a front and rear
tire subject to a vertical load. Then, a detailed FEM model of the
rear tire is developed to validate the analytical model. Experimen-
tal tests on a front and rear tire are described in Sec. 4, and the ex-
perimental validation of the analytical and FEM models is
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presented. An improved nonlinear tire model is presented in Sec. 
5. Section 6 shows the actual capabilities of the developed model 
through direct comparison with experimental measurements per-
formed on an actual motorcycle wheel.

2 Tire Analytical Model

The analytical model presented in this section is based on the 
model derived by Kim et al. [14]. The model was derived in order 
to compute pressure and shear stress/strain distributions in the 
contact patch of a car tire under a vertical load.

In the following, the model reported in Ref. [14] is adapted to a 
motorbike tire. The reaction forces acting on the wheel rim when 
a vertical load is applied are explicitly computed.

The model is depicted in Fig. 1 and consists of an external 
deformable curved beam connected to the wheel rim (considered 
rigid and represented in Fig. 1 by the internal ring) by means of 
linear springs.

The linear springs are actually modeled as a distributed spring 
(stiffness per unit of length). The wheel rim is assumed as a rigid 
body; therefore, the internal ring is fixed to the ground.

The above-described tire model, when loaded by a vertical 
load, is symmetric with respect to a vertical axis passing through 
the center of the tire.

The curved beam accounts for the bending stiffness of the tread, 
described by the parameter EJ. k (N/mm2) is the residual radial 
stiffness per unit of length of the tire carcass. In the radial stiffness 
k, the stiffening effect of the inflation pressure is also considered. 
EJ and k represent the physical properties of the tire and, there-
fore, their numerical values have to be identified for the actual tire 
under consideration.

The identification of the parameters can be performed experi-
mentally as shown in Sec. 4.2.

Let us consider a portion ds defined by an infinitesimal angle d/ 
of a general curved beam (Fig. 2).

A positive displacement u in the radial direction n moves point 
Q to point Qd.

If u� r, the length dsd of the deformed arch can be expressed
as (r < 0 since it points toward the center)

dsd ¼ ds� u
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ds (1)

The curvature of the undeformed beam reads
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where d/d is obtained by considering the deformed beam of
Fig. 2 and reads
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The change in the curvature is proportional to the bending
moment M
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The portion ds of the curved beam is subjected to internal and
external forces as shown in Fig. 3.Fig. 1 Simplified analytical tire model for radial deflection [14]

Fig. 2 Portion ds of a general curved beam



The equilibrium in the tangential direction t reads

�N þ ðN þ dNÞcosðd/Þ þ ðSþ dSÞsinðd/Þ ¼ 0 (6)

which, by considering cos ðd/Þ � 1 and sin ðd/Þ � d/ and
neglecting higher order terms, gives

dN ¼ �Sd/ (7)

From the equilibrium of rotation, we obtain

M � ðM þ dMÞ þ ðSþ dSÞcos ðd/Þ � rd/

� ðN þ dNÞsin ðd/Þ � rd/ ¼ 0 (8)

which, by remembering that cos ðd/Þ � 1 and sin ðd/Þ � d/
and neglecting higher order terms, can be rewritten as

S ¼ 1

r

dM

d/
(9)

Finally, the equilibrium in the radial direction n reads

S� Sþ dSð Þ þ N þ dNð Þd/þ kurd/ ¼ 0! dS

d/
¼ N þ kru /ð Þ

(10)

By substituting Eq. (9) in Eq. (10), the following relation is 
obtained:

1

r
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¼ N þ kru /ð Þ (11)

By deriving Eq. (11) with respect to / and remembering 
Eqs. (7) and (9), we obtain
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Equation (13) is a homogeneous linear differential equation in 
the unknown displacement uð/Þ. The solution of this equation 
provides the radial displacement uð/Þ of the tire when subjected 
to a concentrated force. The solution of Eq. (13) has the general 
form

uð/Þ ¼ U0em/ (14)

The characteristic equation reads

ðm5 þ 2m3 þ d2mÞU0em/ ¼ 0 (15)

with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkr4=EJÞ þ 1

p
.

Equation (15) has five distinct roots
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(17)

The solution therefore reads

uð/Þ ¼ U1e
m1/ þ U2e

m2/ þ U3e
m3/ þ U4e

m4/ þ U5e
m5/ (18)

which, after rearranging the terms and grouping some constants,
simplifies to

uð/Þ ¼ C0 þ cos ðb/Þ½C1coshða/Þ þ C2sinhða/Þ�
þ sin ðb/Þ½C3coshða/Þ þ C4sinhða/Þ� (19)

The five constants can be computed by applying the following
boundary conditions:
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(20)

where the first two conditions account for the symmetry of the 
solution with respect to the vertical axis. The third and fourth 
conditions express the shear force at / ¼ 0 and  / ¼ p. The last 
condition, when the first two conditions hold, states the conser-
vation of the length of the curved beam representing the tire 
tread. Equation (20) shows that the effect of a concentrated force 
can be introduced only as boundary condition. External loads can 
be introduced only under the form of continuously distributed 
loads acting on the whole curved beam as it will be shown in Sec. 
5.

The solution of system (20) provides the five constants of Eq. 
(19)

Fig. 3 Free-body diagram of a portion ds of the curved beam

From Eq. (5), we know the relation between u and M and 
therefore



C0 ¼
Pr3

2pEJd2

C1 ¼
Pr3 acosh apð Þsin bpð Þ þ b cos bpð Þsinh apð Þ
� �

2EJab a2 þ b2
� 	

cos 2pbð Þ � cosh 2pað Þ
� �

C2 ¼ 0

C3 ¼ 0

C4 ¼
Pr3 bcosh apð Þsin bpð Þ � a cos bpð Þsinh apð Þ
� �

2EJab a2 þ b2
� 	

cos 2pbð Þ � cosh 2pað Þ
� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(21)

The described model is derived considering a concentrated ver-
tical force applied to the tire. In an actual tire, the vertical force is
applied by means of a pressure distribution in the contact patch
(Fig. 4).

Now if the uniform pressure distribution of Fig. 4 is considered,
the depicted loading condition can be approximated by a superpo-
sition of pointwise loads. In fact by discretizing the angular sector
of the contact patch with N increments, D/i the tire radial deflec-
tion can be expressed as

u /ð Þ ¼ P

N

XN

i¼1

�u /;/ið Þ (22)

where �uð/;/iÞ is the radial deformation of the tire subjected to a
concentrated unit load at /i.

Radial forces per unit length acting on the wheel rim can then
be computed as

dTrad;q ¼ ku /ð Þ r

rrim

(23)

where the scaling factor r=rrim accounts for the different values of 
the radius of the tire and the rim.

The forces in the lateral direction (i.e., the direction of wheel 
rotation axis) can be approximated according to the scheme of 
Fig. 5, where the half cross section of the tire is depicted.

The lateral force on the wheel rim reads

dTax �
ph /ð Þ

2
¼ p h0 þ u /ð Þð Þ

2
(24)

with the approximation dT0 ¼ dTax [1].
The model of Fig. 4 is not able to compute the contribution of 

inflation pressure on the reaction forces. For this purpose, the sim-
plified scheme of Fig. 6 is considered [21].

The tread is considered as a rigid ring with rectangular cross 
section. The sidewall is modeled as a membrane element 
[11,20,21], the tension force s reads

s ¼ phs

2 sin
h
2

� � (25)

The total forces acting on the rim are given by the sum of all
the contributions and read

dTrad ¼
dTrad;q

2
þ dTrad;p

dTax

8<
: (26)

where dTrad;p is the projection of s in the radial direction. In Table
1, the parameters pertaining to a front and a rear tire of a race
motorcycle are reported (see Sec. 4 for the experimental identifi-
cation of the structural parameters k and EJ).

The residual stiffness k is defined as the sum of the contribution
of the structural stiffness of the tire sidewalls and the stiffening
effect of the inflation pressure. In Fig. 7, the dependence of the
residual stiffness to the inflation pressure is shown. It can be
observed that the residual stiffness increases linearly with the
inflation pressure. The residual stiffness at inflation pressure equal
to zero represents the structural stiffness of the tire sidewalls.

Fig. 4 Tire analytical model with a distributed load

Fig. 5 Tire reaction forces in lateral direction: undeformed tire (left) and deformed tire (right)



obtained shape is discretized by finite elements. The actual struc-
ture of the tire is modeled, i.e., the beads, the 0 deg (circumferen-
tial) steel ply and the 90 deg (radial) ply are considered in the 
model. Figure 10 shows the FEM model of the tire, and the struc-
tural components are highlighted.

The tire beads and the rubber structure are modeled by the 
homogeneous material. Due to the lack of information on the 
actual compounds of the tire structure, an approximation is made 
by modeling the rubber structure with a single material. An 
incompressible Neo-Hookean model is employed for describing 
the rubber material property [35]. Steel material is employed for 
modeling the tire beads. The two plies are modeled by rebar layers 
embedded in the rubber solid elements as shown in Fig. 10. The 0 
deg ply is embedded in the tire tread and is made by equally spaced 
steel wires modeled by rebar elements. The 90 deg ply 
reinforcement is embedded in the entire rubber carcass and is made 
by elastic wires. Material and geometric parameters are identified 
basing on the experimental tests described in Sec. 4. The identified 
values are consistent with the ones that can be found in the 
literature [24,26,28,36,37] and are summarized in Tables 2 and 3.

The numerical simulation is divided in two steps [24–29,38]:

� two-dimensional axisymmetric FEM model of the inflated
tire and

� three-dimensional model generation by revolving the axi-
symmetric model and application of radial and lateral loads.

In the first step, a 2D nonlinear axisymmetric model of the tire 
cross section subjected to inflation pressure is considered. The 
inflation pressure is applied as follower distributed pressure forces 
acting at the inner side of the tire surface. Linear axisymmetric 
quad elements are employed for the analysis, the tire is fixed at the 
wheel interface (see Fig. 11).

In the second step of the analysis, the inflated section of the tire 
obtained from the first step of the analysis is revolved to generate a 
3D model of the whole tire. A dense mesh of linear brick ele-ments 
is created near the footprint, while for the remaining tire sector a 
coarser mesh of 12-nodes cylindrical brick elements with 
trigonometrical shape functions in the circumferential direction 
[39] is employed in order to reduce computation time by main-
taining accurate results. Twenty rows of linear brick elements are 
employed on a 40 deg sector across the contact patch, while for the 
remaining 320 deg ten rows of cylindrical brick elements are used 
(Fig. 12).

The road surface is modeled by a rigid plane (Fig. 12) and a

Coulomb friction model (l ¼ 1.3) is employed for defining the 
contact behavior between the tire and road surface.

Dealing with static loads, a constant friction coefficient is 
considered. Displacement of the rigid surface is controlled, and the 
vertical and lateral stiffness tests are simulated as shown in Fig. 13.

Fig. 6 Tire radial forces when only an inflation pressure is
applied

Table 1 Analytical model parameters for front and rear tires

Front tire (120/70 R420) Rear tire (200/60 R17)

r (mm) 290 320
h0 (mm) 80 105
hs (mm) 35 35
h (deg) 55 55
EJ (N/mm2) 18� 106 9� 106

k (N/mm2)a 0.241 pþ 0.175 0.187 pþ 0.0675

a

The residual stiffness is expressed as a function of the tire inflation pres-
sure p (bar).

The radial displacements of the front and rear tire (inflated at 
their nominal pressure) when subjected to a total vertical force of 
2500 N are reported in Figs. 8 and 9.

3 Tire FEM Model

In this section, a FEM model of the rear tire of a race motorbike 
(size 200/60R17) considered in Table 1 is described.

The FEM model takes into account the actual shape and inter-
nal structure of the tire. This model, being more detailed, can be 
used to validate the reaction forces computed by the analytical 
model developed in Sec. 2. The experimental validation of the 
FEM model in vertical and lateral directions is shown in Sec. 4.

The geometry of the tire actual cross section and the identifica-
tion of the tire structural components are obtained throughout 
optical measures performed by the wheel manufacturer. The

Fig. 7 Tire residual stiffness k as a function of the inflation pressure: front tire (left) and rear
tire (right). Dots: experimental data. Continuous line: expression of k from Table 1.



4 Experimental Tests and Model Validation

The developed analytical and FEM models of the tire are vali-
dated with the experimental results.

In this section, the experimental tests are first described. The
identification of the parameters of the analytical and FEM model
and the validation are then presented.

4.1 Experimental Testing. The radial and lateral stiffness
tests on the front and rear tire are performed. The tires are
mounted on a wheel and fixed to a device for applying the vertical
and lateral loads as shown in Fig. 14.

The device consists of a hydraulic actuator that provides the
vertical load by moving the entire system in the vertical direction.
A six-axis load cell is mounted between the actuator and the tire

Fig. 8 Front tire radial displacement: vertical load 2500 N and inflation pressure 2.1 bar

Fig. 9 Rear tire radial displacement: vertical load 2500 N and inflation pressure 1.8 bar

Fig. 10 Tire cross section: FEM model

Table 2 Material properties of the tire structure—200/60 R17
motorcycle race tire

Material type Value

Bead Isotropic E¼ 210 GPa, �¼ 0.3
0 deg ply Isotropic E¼ 210 GPa, �¼ 0.3
90 deg ply Isotropic E¼ 5 GPa, �¼ 0.4
Rubber Incompressible Neo-Hooke C10¼ 0.23 MPa

Table 3 Geometric properties of reinforcements—200/60 R17
motorcycle race tire

Distance between wires (mm) Area per wire (mm2)

0 deg ply 1 0.62
90 deg ply 1 0.70 Fig. 11 Tire cross section subjected to inflation pressure: 2D

axisymmetric model



surface. The employed load cell was conceived, realized, and
tested at the Politecnico di Milano, Milan, Italy. The six-axis force
sensor is thoroughly described in several papers [40–42]. The sen-
sor performances are reported in Table 4.

The six-axis load cell is mounted on a sliding platform (see Fig.
14) that allows loads to be applied in the lateral and longitudinal
directions. The sliding platform is made by two thick steel plates
with two linear ball bearings that allow the two degrees-of-
freedom (lateral and longitudinal). Another actuator connected to
the sliding platform provides the lateral force. The vertical and
lateral displacements of the sliding platform are measured by
means of displacement transducers.

Tire footprints are also measured. White chalk powder is scat-
tered on the tire tread, and a black thin cardboard is placed on the
pressing surface. The tire footprint left on the cardboard sheet at a
given inflation pressure and vertical load is then measured.

4.2 Parameters Identification. The structural parameters k
and EJ of the analytical model are identified based on the meas-
ured stiffness curves.

The squared error between the experimental and the simulated
vertical force is minimized

min
k;EJ
ð
XK

i¼1

ðFi
z;eðzÞ � Fi

zðzÞÞ
2Þ (27)

where Fz;e and Fz are the measured and simulated vertical loads
for the K points considered.

The identification is conducted for several values of the infla-
tion pressure. The results showed that EJ is weakly affected by
the tire pressure, and therefore, a constant value for this parameter
is considered. The tire residual stiffness k instead exhibits a linear
trend with p as shown in Fig. 7.

The same approach is followed for the FEM model. In this
case, the unknown parameters are the Neo-Hooke coefficient C10

of the rubber material, material parameters of the 90 deg ply layer,
and the equivalent geometrical properties (area and distance
between wires) of the two reinforcements (Table 3). Numerical
values are obtained by minimizing the distance between the meas-
ured and simulated stiffness characteristics. Several inflation pres-
sures are considered in the identification process, and the unique
set of material and geometrical parameters of Tables 2 and 3 is

Fig. 12 Three-dimensional tire model for stiffness test
simulation

Fig. 13 Tire radial (left) and lateral (right) stiffness test simulation

Fig. 14 Test bench for tire radial and lateral stiffness
measurement



derived. The identified values are comparable with the data
available in the literature (mostly related to vehicle tires)
[24,26,28,36,37].

4.3 Model Validation. The simulations from the analytical
model are compared with experiments on both the front and rear
tires as shown in Figs. 15 and 16.

The rear tire FEM model is validated for radial and lateral stiff-
nesses (see Figs. 17 and 18).

The results show a very good agreement of both the analytical
and the FEM models with the experimental data. Also, the tire

footprint is measured and compared with the output of the FEM
simulation with satisfactory results as shown in Fig. 19. The dif-
ference between the measured and computed contact area is 12%.

In Figs. 20 and 21, the reaction forces acting on the rim calcu-
lated by the analytical model are compared with the ones obtained
from the FEM simulations. Outside the contact patch, the radial
force curves differ by about 19%. The error increases up to 35%
for angles around 130 deg. For the axial force, a lower discrepancy
is found.

Despite its simplicity, the analytical model proved to be effec-
tive in describing the actual interaction between the tire and rim.
This simplified model could provide the designer important infor-
mation on how radial forces should be applied on the wheel.

5 Nonlinear Tire Model

The residual stiffness k depends on the tire structural character-
istics and geometry. As shown in Fig. 5, when a vertical load is
applied the tire cross section undergoes significant geometric
variations which affect the local stiffness of the tire carcass.
Therefore, a nonuniform value of the residual stiffness along the
tire circumference has to be considered.

Since geometric variations of the tire cross section are related
to the radial deflection, a relation between the residual stiffness k
and the radial displacement u is introduced

kðuð/ÞÞ ¼ aþ b � uð/Þ (28)

Table 4 Technical data of the six-axis load cell

Maximum force Fx 5 kN
Fy 10 kN
Fz 5 kN

Uncertainty 95% full scale (FS) 0.35 %
Maximum torque Mx 0.5 kN m

My 0.25 kN m
Mz 0.5 kN m

Uncertainty 95% FS 0.23 %
Total mass 2.7 kg
Bandwidth 350 Hz
Cross-talk <61%
Hysteresis % FS <0.1% FS

Fig. 15 A 120/75 R420 front tire radial stiffness for two different inflation pressures: 1.8 bar
(left) and 2.5 bar (right)

Fig. 16 A 200/60 R17 rear tire radial stiffness for different inflation pressures: analytical
model (dashed lines) and experimental measurements (dotted lines)



where the parameters a and b have to be identified.
In the curved beam model of Fig. 22, a generic distributed load

qð/Þ is added.
The distributed load qð/Þ acts on the entire length of the beam

and can be described by any continuous function. In this case, the
uniform load q is approximated with the following sigmoid
function:

q /ð Þ ¼ A � 1

1þ exp �s/þgð Þ (29)

where the parameters A, s, and g depend on the load magnitude
and the distribution arch (reference values are reported in
Table 5).

By applying all the passages of Sec. 2 and remembering that
the derivative of kð/Þ with respect to / can be obtained through
the chain rule as ðdk=d/Þ ¼ ðdk=duÞ � ðdu=d/Þ, the following
relation is obtained:

d5u

d/5
þ 2

d3u

d/3
þ 1þ k uð Þr4

EJ
þ r4

EJ

dk uð Þ
du

u

� �
du

d/
þ r4

EJ

dq /ð Þ
d/

¼ 0

(30)

Equation (30) is now a nonlinear differential equation in the
unknown displacement uð/Þ, and a numerical integration is
required.

The five boundary conditions now read

du
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����
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S/¼0 ¼ 0

S/¼p ¼ 0

r
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EJr
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0
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þ u

!
d/ ¼ 0
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(31)

Fig. 17 A 200/60 R17 rear tire radial stiffness for different inflation pressures: FEM model
(continuous lines) and experimental measurements (dotted lines)

Fig. 19 Measured and FEM-simulated footprint: vertical load
2500 N and p 5 1.8 bar. The two pictures have the same scale.

Fig. 18 A 200/60 R17 rear tire lateral stiffness for p 5 1.8 bar: 
FEM model and experimental measurements



which are identical to Eq. (20) except for the fourth condition that
now has to be equal to 0 for preserving symmetry.

The parameters a and b that describe the residual stiffness are
identified on the basis of the experimental data. For a 200/60 R17
rear tire at an inflation pressure of 1.8 bar, the identified values
are: a¼ 0.375 and b¼ 0.0013.

Figure 23 shows the stiffness curve computed with the nonlin-
ear model compared with the experimental results.

The radial forces acting on the wheel rim are reported in Fig.
24 and compared with the ones obtained from the linear and FEM
models. The nonlinear model is closer to the FEM results espe-
cially at the center of the contact patch.

6 Experimental Validation of the Rim Stress

Distribution

In this section, the comparison between the computed and
measured deformations on an actual motorcycle wheel rim is pre-
sented. The wheel rim is instrumented by means of a set of strain
gauges (SG) located on the outer rim as shown in Fig. 25.

Four 350 X uniaxial SG with a measuring grid of 3 mm are
employed. The tire is inflated at 1.8 bar, and a vertical load of
2500 N is applied with the same procedure described in Sec. 4.1. The
signals from the SG are acquired at a sampling frequency of 440 Hz.

The same test is simulated by means of a finite-element model.
The FE model of the wheel rim is shown in Fig. 26 and realized

by a second-order tetrahedral mesh with average element size of
5 mm. The rim is fixed at the bearings location.

Fig. 20 Distributed forces acting on the rim in radial (left) and axial (right) directions: 200/70
R17 rear tire, inflation pressure 1.8 bar, and vertical load 2950 N

Fig. 21 Distributed forces acting on the rim in radial (left) and axial (right) directions: 200/70
R17 rear tire, inflation pressure 2.5 bar, and vertical load 3180 N

Fig. 22 Curved beam model with a general distributed load

Table 5 Parameters of the load distribution function

Vertical load (N) A s g

500 8.29 100 97p
1000 9.95 100 95p
2100 10.99 100 90.5p
2800 12.89 100 89.2p
2950 13.10 100 88.8p



The wheel is loaded with a uniform inflation pressure acting on
the outer rim. The tire is replaced by the equivalent distribution of
the radial and axial forces acting at the tire–rim interface. The dis-
tribution of the radial and axial forces acting at the tire–rim inter-
face is computed by four different methods, namely, analytical

reactions, FEM reactions, cosine loading function, and complete
FEM. The analytical reactions and the FEM reactions methods are
described in Secs. 2 and 3, respectively. The other two methods
are briefly described in the following subsections (6.1 and 6.2).
The radial and axial distributed forces are introduced as nodal
forces. The radial forces are applied at the bead seats, while the
axial forces are applied at the middle of the contact surface
between the rim and tire sidewalls as shown in Fig. 26.

6.1 Cosine Loading Function. This is the most widely used
loading method by wheels manufacturers. The effect of the tire is
approximated by a cosine pressure distribution acting at the bead
seats [1,4,5]. From the radial stiffness of the tire, the footprint
length is estimated, and a cosine-distribution pressure is applied
on an arch of 60 deg on the bead seats. The axial forces per unit
length acting at the tire/rim interface are applied on the whole rim
flange as shown in Fig. 27. The distributed force Tf reads

Tf ¼
p

4rf
a2 � r2

f


 �
(32)

with p as the inflation pressure, a as the tire radius, and rf as the
radius of the wheel rim.

6.2 Complete Tire FE Model. The physical models of the
tire (Sec. 3) and the wheel rim are considered (Fig. 28). A fric-
tional contact (l¼ 0.5 [30]) at the tire/rim interface is modeled.
The tire is discretized with linear brick elements of average size
of 6 mm. At the tire/rim contact surfaces, a finer mesh is
employed. The vertical load is applied to a rigid plane that simu-
lates the road surface as shown in Fig. 28.

Fig. 23 Vertical stiffness of a 200/60 R17 tire at 1.8 bar: experi-
mental (black) and nonlinear model (gray)

Fig. 24 Comparison of the radial forces acting on the wheel
rim: 200/70 R17 rear tire, inflation pressure 1.8 bar, and vertical
load 2950 N

Fig. 25 Location of the SG applied on the wheel rim

Fig. 26 Node sets for applying radial and axial reactions



6.3 Results. Strain levels at the SG locations are computed
for all the considered models and compared with the measured
values. The comparison is reported in Table 6.

The results show that the cosine loading function tends to sig-
nificantly overestimate the strain levels on the rim. The estimated
deformation is more than double of the measured values with a
difference of about 132% for the maximum measured deforma-
tion. Such an overestimation could be too conservative when high
performance and lightweight wheels are designed. The analytical
tire model provides more accurate results, with a difference with
the maximum measured deformation of about 48%. Such differ-
ence is reduced to about 18% by using the FE model of the tire or

the full FE model. The full FE model provides the closest results
for the two most stressed SG (SG2 and SG3).

7 Conclusions

In this paper, the computation of the reaction forces on a wheel
rim was dealt with. The analytical and the FEM models of the
race motorcycle tires were presented in this paper. The analytical
model consists of a flexible ring on a suspended foundation. The
ring accounts for the bending stiffness of the tread, while the elas-
tic foundation describes the tire residual stiffness. The model
computes reaction forces acting at the rim interface when the
wheel is subjected to a radial distributed load.

The developed FEM model, on the other hand, accounts for the
actual structure of the tire. Steel beads, 0 and 90 deg plies have
been modeled. Incompressible Neo-Hooke constitutive relation is
employed for describing the behavior of the rubber material.

The stiffness curves of the actual tires were obtained by means
of experimental tests and were compared with the simulated ones.
Both the analytical and FEM model showed a good agreement
with the experimental results.

The reactions acting on the wheel at the tire–rim interface were
computed from the analytical and the numerical models. The
accuracy of the analytical model is quite good, especially if the
simplicity of the model is taken into account.

Significant improvements in the analytical model were obtained
by introducing a residual stiffness that depends on the tire deflec-
tion. In this case, a nonlinear differential equation was obtained
and solved by means of finite difference method. The computed
forces acting on the wheel rim are now closer to the FEM values,
suggesting that geometric variations in the tire cross section due
to the vertical deflection affect the local stiffness of the tire.

Finally, a comparison between the deformation measured by
SG on a motorcycle wheel rim under a vertical load and the defor-
mations computed by considering the tire/rim interface forces
computed by different approaches was shown. The presented ana-
lytical model showed a consistent improvement in the accuracy
with respect to the commonly employed approach of considering
a cosine force distribution over a given rim angle with an error
reduction of more than 60% for the most strained strain gauge.
The FEM models of the tire showed a better accuracy, but at the
cost of the knowledge of a larger set of parameters and of substan-
tially larger computational times.

Despite its simplicity, the analytical model proved to be effec-
tive in describing the actual interaction between the tire and rim
and could provide useful information on the way in which radial
loads should be distributed on the wheel.
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