
Journal of Intelligent & Robotic Systems (2021) 102:59
https://doi.org/10.1007/s10846-021-01386-2

REGULAR PAPER

Formally-based Model-Driven Development of Collaborative
Robotic Applications

Mehrnoosh Askarpour1 · Livia Lestingi2 · Samuele Longoni2 ·Niccolò Iannacci3 ·Matteo Rossi3 ·
Federico Vicentini4

Received: 25 November 2019 / Accepted: 31 March 2021
© The Author(s) 2021

Abstract
The development of Human Robot Collaborative (HRC) systems faces many challenges. First, HRC systems should be
adaptable and re-configurable to support fast production changes. However, in the development of HRC applications safety
considerations are of paramount importance, as much as classical activities such as task programming and deployment.
Hence, the reconfiguration and reprogramming of executing tasks might be necessary also to fulfill the desired safety
requirements. Model-based software engineering is a suitable means for agile task programming and reconfiguration. We
propose a model-based design-to-deployment toolchain that simplifies the routine of updating or modifying tasks. This
toolchain relies on (i) UML profiles for quick model design, (ii) formal verification for exhaustive search for unsafe
situations (caused by intended or unintended human behavior) within the model, and (iii) trans-coding tools for automating
the development process. The toolchain has been evaluated on a few realistic case studies. In this paper, we show a couple
of them to illustrate the applicability of the approach.

Keywords Formal verification · Model-based software engineering · Safety analysis · Task deployment · Task modeling ·
UML profiling

1 Introduction

Collaborative robotic applications often need to be adapt-
able and reconfigurable to change behavior with respect to
programmed tasks, to update devices or layout, etc. Mod-
ularity, composability and reusability in component-based
engineering are key enablers for replacing and reloading the
tasks of a robot system in human-centeredmanufacturing [33].
Such abilities are essential in flexible production where
operational requests are unknown or unavailable at design
time, and humans have a substantial decision power. Opera-
tors in FlexibleManufacturing Systems (FMS) are no longer
bound to a single station with fixed action schedules;instead,
they can devote more added-value time to supervising tasks,
as in the collaborative robotic application used to validate

These authors contributed equally to the work presented in this
article: Mehrnoosh Askarpour, Livia Lestingi, Samuele Longoni

� Livia Lestingi
livia.lestingi@polimi.it

Extended author information available on the last page of the article.

the approach presented in this work (see Fig. 1), which
upgrades a formerly manual load/unload station. Examples
of physically- or mentally-heavy workload tasks that bene-
fit from collaborative robots include, but are not limited to:
setting fixtures, mounting/dismounting workpieces into fix-
tures before/after machining, inspecting the pre-machining
setups, inspecting the quality of machined parts. In these cases,
robots can provide a number of assistive tasks such as kitting
parts and tools, handling parts, supporting manual assembly,
moving sensors for inspections, etc., according to nominal
task plans or inline alternatives requested by operators.

Normally, collaborative tasks can be freely organized by
operators—e.g., suspend and resume, swap assignments
between human and robot, temporarily switch to totally
autonomous robot execution and later resume some man-
ual tasks. Correspondingly, layouts (e.g., robot approach
directions to the pallet, types of tools, geometries of work-
pieces and fixtures) can also change. The actual creation
of collaborative tasks can be done by different actors in
several ways: through automatic composition of programs
by factory planners/schedulers [25, 53], if robot-level con-
trol is part of their architecture [30] and whenever human
tasks can be modeled [9]; through off-line programming

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-021-01386-2&domain=pdf
http://orcid.org/0000-0001-6526-2544
mailto: livia.lestingi@polimi.it

 59 Page 2 of 26 J Intell Robot Syst (2021) 102:59

Fig. 1 The first two photos from the left show a production scenario with heavy-duty manual tasks, whereas the last one shows a collaborative
version of pallet preparation

by technicians; inline by users, through interactive lead-
through or GUI-based task composition. No matter the
approach used for task design and composition, software
development needs to efficiently support the rapid creation
of new/ updated target applications for robots.

This variability increases the difficulty of ensuring that
the designed applications satisfy safety requirements before
their deployment. In fact, the close proximity and fre-
quent interactions between robots and humans make risk
assessment more challenging than usual, even when merely
considering the intended uses (i.e., behaviors that do not
deviate from the designed plan). Further, human operators
are prone to errors or out-of-training behaviors, and may
follow different non-codified workflows (e.g., circumvent-
ing instructions or hazardous troubleshooting), depending
on the situation. In addition, user-driven customization of
applications usually improves their usability and synchro-
nization with human activities (e.g., setting a preferred
comfortable robot trajectory). However, while changing the
timing of robots could result in a greater attention by opera-
tors on a single task, it could also jeopardize their situation
awareness when multiple tasks are supervised. As a result,
misbehavior during transient conditions might become very
common (e.g., wrong actions for catching up with a robot
operation). Finally, with the advent of mobile manipula-
tion, layout organization can change over time, increasing
the number of possible combinations of physical interaction
between robots, operators and objects inside the environ-
ment as a result of task scheduling, as in Nielsen et al. [31].

Hence, it is crucial that task and workspace design
provide suitable protection for operators in changing
conditions, and that the actual application deployment
conforms to such a safe design.

To tackle the issues highlighted above, in this paper
we propose a toolchain that facilitates the development of
HRC applications by covering the main steps of design,

safety verification, and deployment of the application in
the shopfloor. The toolchain relies on the following main
ingredients: (i) a domain-specific UML profile for the
design of tasks composing HRC applications; (ii) a formal
model of HRC applications, expressed in terms of metric
temporal logic, that precisely captures the concepts defined
in the UML profile and that is amenable to automated
formal verification; (iii) a mechanism to translate each
UMLmodel conforming to the aforementioned profile into
a metric temporal logic one, on which the safety of the
designed application is thoroughly and precisely assessed
through a process based on automated formal verification
techniques; (iv) a mechanism to automatically deploy the
designed task on the chosen infrastructure, in a way that
preserves the safety measures introduced at design time.
Developments (i), (iii) and (iv) are presented in this paper
for the first time. To make the paper self-contained, we also
briefly summarize the formal model, which has previously
been presented in Vicentini et al. [49].

As depicted in Fig. 2, our toolchain is made of three
major modules, organized in a development lifecycle (outer
loop) and safety verification iteration(s) (inner loop).

The DESIGN module, described in Section 4, implements
the dedicated UML profile and provides the model-based
abstraction of target tasks, with the definition, instantiation
and organization of available resources (robots, operators,
devices), layouts, actions, goals, etc. This module is the
starting point of applications’ development lifecycle, where
any change in the system or goals entails a new iteration in
the development process. The main user of this module is
the solution developer, or any other task-composing actor
(e.g., automatic planners and reasoners).

The SAFETY VERIFICATION module, presented in
Section 5, implements the translation of UML models into
corresponding metric temporal logic ones and performs
automated verification on the latter to assess the safety of

J Intell Robot Syst (2021) 102:59 Page 3 of 26 59

Fig. 2 Overview of the main modules of the toolchain. The inner loop
is dedicated to the verification and update of the model generated by
the design tool. The outcome of the verification step is then passed to
the outer loop, where the deployment and interaction with the actual
real environment take place. Any change in the executable re-enters
the outer/inner loops

the designed application. All safety-critical aspects of the
target scenario introduced by the abstract model—hazards,
their associated risks and all the means for mitigating such
risks—need to be formally verified in order to ensure the con-
sistency and validity of assumptions in the candidate sys-
tem. The inner verification loop is executed whenever the task
model is modified, to analyze the effects of changes on the
safety of the application. Verification results are then looped
back to the abstract model to (i) drive necessary modifica-
tions when the design does not meet its goals, or (ii) green-
light the deployment into the physical system when goals
are met. The main users of this module are the safety stake-
holders participating in the application risk assessment.

The DEPLOYMENT module, described in Section 6, gen-
erates, compiles and launches controls and routines on target
hardware components, starting from verified abstract mod-
els. The deployment framework provides the architecture
for combining hardware interfaces, protocols, commands
and data, as well as the runtime middleware for field oper-
ations. In collaborative robotics, typical recipient devices
of deployed functions are robot controllers, intuitive user
interfaces, end-effectors and external axes. Additionally,
since the collaborative robotic application is part of a larger
automation and production system, the framework supports
both horizontal (e.g., other workcells, logistics) and vertical

integration (e.g., shopfloor management, factory planning
and scheduling). Observations from the field (e.g., sen-
sors, tracking services, user interactions) are implemented
to monitor the correspondence between runtime executions
and abstract models, to enable both system updates due to
new requests and re-planning activities when actual execu-
tions do not match their models. This module is primarily
used by developers, for hardware and framework configura-
tion, application maintenance and interfacing with devices
(e.g., sensor placement to monitor shopfloor activity).

1.1 Structure of the Paper

The rest of this paper first discusses relevant related
literature (Section 2), then it provides some details about
the features provided by the modules of the toolchain.
In particular, Section 3 describes the running example,
which is used to illustrate the features of the toolchain and
to validate its effectiveness. Section 4 presents the UML
profile that we developed, which is the starting point of the
whole approach. Section 5 first explains how the toolchain
generates instances of the formal model from UML ones;
then, it describes how the toolchain allows designers to (i)
use generated formal models to assess the safety of the
application and (ii) iteratively update the abstract model by
introducing new risk mitigating factors. Section 6 describes
how the toolchain allows users to deploy the designed
tasks in the shopfloor. Section 7 reports on experiments
we carried out on two realistic applications to validate
the effectiveness of the toolchain. Section 8 discusses
how our model-verification and model-deployment loops
can support reconfiguration of HRC applications. Finally,
Section 9 concludes.

2 RelatedWork

As mentioned in Section 1, the work presented in this paper
covers a variety of aspects concerning the development of
HRC applications: high-level task modeling, their safety
assessment through an exhaustive analysis of human-robot
interactions, their deployment in shopfloors. To the best of
our knowledge, there is no available toolchain that covers
all aforementioned aspects, even though the various issues
tackled by this work have been separately researched in the past.

In this sectionwe briefly explore the literature on modeling
and deployment issues. We invite interested readers to find
more details in Askarpour [5]; Lestingi and Longoni [27].

2.1 Modeling

Various works model task workflows through Petri nets
(e.g., van der Aalst [2], Salimifard and Wright [40]), which

 59 Page 4 of 26 J Intell Robot Syst (2021) 102:59

have a rigorous mathematical foundation and employ a
rather intuitive state-based approach, but are weaker when
it comes to capturing more advanced patterns [3]. Petri nets
also are at the basis of YAWL [48], which aims to efficiently
cover as many advanced patterns as possible.

Safety in HRC environments involves not only work-
flows, but also other types of features and relations among
elements, such as geometry (e.g., the layout of the robotic
cell), proximity, or attachments. Hence, a notation focus-
ing exclusively on describing workflows, however effective,
is not enough for our goals. Therefore, we broadened
the investigation to more comprehensive Domain-Specific
Modeling Languages, which are usually part of a wider
toolchain involving one or multiple conversions. Blanc
et al. [12] propose a model-driven approach for Aibo, one
of the robotic pets developed and manufactured by Sony,
which is able to react to audio and visual inputs. The pro-
posal consists of three meta-models, Robot-, Validation- and
Behavior-specific, which can also be translated into code
thanks to predefined sets of rules, one for each meta-class.
Another example is V 3CMM by Alonso et al. [4], a 3-View
Component Meta-Model directly specified using OMG’s
Meta-Object Facility (MOF) and including three differ-
ent views (structural, coordination and algorithmic) of the
system under analysis, which can be mapped to platform-
specific primitives to generate code. Other DSLs, such as
those introduced by Bischoff et al. [11] and Klotzbucher
et al. [26], share a similar structure and allow users to
model different perspectives of the same system, mostly
revolving around architectural, behavioral and environmen-
tal aspects critical for deployment- or formal verification-
oriented transformations. On the other hand, HRC task-
modeling requires to capture similar concepts, but also to
maintain a higher-level point of view, since delving in such
detail into technical issues (e.g., the instantiation of spe-
cific control system components) is less significant than
representing the way agents interact with one another.

UML, on the other hand, has enough expressive power and
predisposition to automated translation to meet these require-
ments. Nevertheless, its standard semantics is typically too
generic for Domain-Specific applications. A typical approach
to overcome this limitation is through stereotypes that pro-
vide a custom semantics to standard UML elements, thus
casting them in a collaborative industrial task-modeling per-
spective [43]. These stereotypes are typically collected in a
custom UML profile. The strength of this approach has been
proved in various works, such as for example Ritala and
Kuikka [38], which aims at covering all requirements of a con-
trol application, and RobotML [17]. The latter is an Eclipse-
based toolchain for the development and deployment of
robotic missions. Despite leading to thorough results, it
mainly emphasizes the definition of the robotic system’s

technical components, hence it covers only partially the
safety-related concerns that are at the core of our work.

2.2 Deployment

Process development for robot control and abstraction
of components have been major objectives for robot
software engineering for decades. Among others, Sousa
and Ramos [41] present a holonic architecture where the
scheduling function, resources and tasks are represented
by interacting holons. Scheduling and resource allocation
is thus obtained after an initial negotiation phase and
holons exchange messages with a proper negotiation
protocol. Castelli et al. [16] propose a scheduling system
based on a multi-step negotiation protocol by using a
detailed simulation model of an existing factory. Strasser
et al. [44] present methods for obtaining an adaptive
control system which allow dynamic reconfiguration at
runtime. Brugali and Scandurra [13] focus on software
component encapsulation, describing design principles and
implementation guidelines that enable the development of
reusable and maintainable software building blocks (task
engineering). Brugali and Shakhimardanov [14], instead,
discuss the role of software components as architectural
units of large, possibly distributed, robotic systems. They
address issues related to hardware integration (standard
interfaces), with special attention to hardware heterogeneity,
computational and communication resources and to design
techniques to assemble components into systems. Valente
and Carpanzano [47] demonstrate a dynamic scheduling
algorithm for automation tasks via task modeling, which
offers a control system with more responsiveness, reduced
impact of uncertainties and unexpected changes, and higher
resource utilization. Task modeling is also the focus of
Wang et al. [52], where modular composite function blocks
based on sequences of operations are built and activated
during runtime. Regarding skill-based task modeling,
Backhaus and Reinhart [8] propose a planning module
for composing robot applications, ready for deployment
through the encoding of planned robot tasks modeled in
AutomationML.

Among the possible alternatives of component-based
and modular architectures for robot system control, we
choose to deploy models to the physical layer using the
specifications proposed in the IEC 61499 standard [28, 51,
54]. The standard is based on the notion of Function Blocks
(FB), which are modular and reusable entities that constitute
one of the best-known approaches to component-based
engineering. FBs can be a natural extension of abstract
models, encompassing concepts like self-consistent tasks
and hardware resources. Some previous works developed
methods for automatic or semi-automatic building of

J Intell Robot Syst (2021) 102:59 Page 5 of 26 59

executable targets from higher-abstraction models, which
are translated into control components. Panjaitan and
Frey [34], which provide an early example of IEC 61499-
compliant stand-alone automation application, use a UML
activity diagram as starting model for the generation of
the IEC 61499 application. The work by M. Plasch [29]
and Plasch et al. [35]) introduces an Eclipse plug-in that
supports the modeling of workflows and nested operations
through the syntax of FBs, and that can automatically
translate a model of activity into a IEC 61499 application.
Both approaches usually result in rigid control sequences
and complex connections, which need a further (manual)
optimization phase by the programmer.

3 Running Example

Before explaining the proposed toolchain and its modules,
we describe the scenario shown in Fig. 1, used as a running
example throughout the paper. This scenario has been used
as a showcase demonstration at the EuRoC Project [50], and
it is the basis for the empirical evaluation of Section 7.1.
Please notice that, although the framework is application-
agnostic, in the following sections we describe modeling
components tailored to this scenario.

In this scenario, one human operator and one 7-DoF
KUKA LBR manipulator arm collaborate to perform a
machine tool pallet assembly task. The robot is not
mobile, it is mounted on a still platform, and it has two
interchangeable end-effectors (a gripper and a screwdriver).
The operator has a gesture-detecting armband1 that sends
moving or stopping signals to the robot.

The layout is an industrial manufacturing setting with
an assembly pallet, a close-by bin (reachable by the robot
arm), and an area for the operator to move to or supervise.
The final goal is for the robot and human to pick several
workpieces from the bin, take them to the assembly pallet,
screwdrive, and tighten them on the pallet. The workpieces
should be held on the pallet steady up until the tightening
is completed. There are therefore two main activities to
be done for each workpiece: bin-picking actions (including
picking a workpiece from the bin, taking it to the pallet,
holding it while the tightening is executing), and tightening
actions (moving to the front of the pallet, positioning the
screwdriver on the right spot, screwdrive until the workpiece
is tightened, retract from the pallet and move away). These
actions are repeated for each workpiece, until the desired
number of workpieces are taken care of, creating an iterative
loop. In each iteration, bin-picking actions are done by one
of the agents (human or robot), and tightening actions are
done by the other. The agent roles do not have to be the same

1Myo by Thalmic Labs, Inc. www.myo.com

for all of the iterations, meaning agents could swap roles at
any iteration, which generates multiple variant workflows.
Additionally, swapping roles adds changing end-effector
actions (detecting the need for changing the end-effector,
sending stop signals to the robot, loosening the current
end-effector, removing it, placing the right end-effector)
to the task. For example, if the operator chooses to do
bin picking, then the robot should have a screwdriver end-
effector; otherwise, the human should change it. In the
opposite case, the end-effector must be a gripper.

One possible variation is shown in Fig. 13, where the
human operator (Bill) moves to the bin location, picks a
workpiece and brings it to the pallet; in the meantime,
he double checks if the robot has a suitable end-effector.
The operator then places the workpiece on the pallet and
sends an activation signal to the robot. Consequently, the
robot arm approaches the pallet, tightens the piece with its
screwdriver end-effector, and then retracts from the pallet.

Another variation is for the operator to choose to do the
tightening, inwhich case the robotmoves to the bin, goes down
the bin, and picks a workpiece with its gripper. It then gets
out of the bin while holding the workpiece, takes it to the
pallet, approaches the pallet, and places the workpiece on it;
then, the human starts tightening the piece, while it is being
held by the robot. After finishing, the human sends a signal
to the robot, which retracts from the pallet and moves away.

At any point in the middle of the first or second variation,
the swapping of roles could happen, thus creating additional
workflows.

4 Task Design

This section describes the first module of the toolchain,
DESIGN. In particular, it presents the novel high-level
modeling notation, based on the UML standard [32], that
is at the core of the DESIGN module, and that allows users
to describe the different aspects of an HRC application: the
task to be collaboratively performed by human operators
and robots and the workspace in which they operate.
We organized the key elements of human-robot shared
tasks, with their architectural and functional relationships,
in a UML profile, which is briefly presented in the rest
of this section (interested readers can find more details
in Lestingi and Longoni [27]). The use of a standard
modeling language in the toolchain facilitates the creation of
models which can be systematically explored during the two
main trans-coding steps (i.e., DESIGN→VERIFICATION
and DESIGN→DEPLOYMENT). The profile presented in
this paper has been built using standard principles for the
creation of UML profiles described, for example, in Gogolla
and Henderson-sellers [20], UML [46], Sprinkle [42] and
applied in Bruning and Gogolla [15].

http://www.myo.com

 59 Page 6 of 26 J Intell Robot Syst (2021) 102:59

The UML profile models the main elements of HRC
applications (operators, robots, layout) via Class Diagrams.
Different sections of the layout and their connectivity
are modeled via Component Diagrams. Tasks to be
executed and their elementary actions are represented by
a customized version of Activity Diagrams. The rest of
this section briefly presents the different elements of the
UML profile, using the application presented in Section 3
to exemplify them. A snippet of a model representing our
running example is shown in Fig. 4. Note that the approach
described in this section is generic and can be used for any
other industrial collaborative scenario. The profile presented
in Fig. 3 is general, and can be used to describe instances
of specific scenarios such as the one shown in Fig. 4, but
also others. The rest of this section describes each of the
above-mentioned diagrams in some detail.

4.1 Class Diagrams

The twomain concepts in the modeling of HRC applications
are those of Resource and Layout, which are captured by
the stereotype classes of the same name shown in Fig. 3.
Class Resource is specialized into sub-classes, which differ
for their type of participation to the task goal. In particular,
class Agent refers to entities which play an active role in
the task, hence human operators and robotic systems. These
classes include attributes that are relevant for the safety
assessment of the application. With regards to the operator
(see Fig. 4), these refer to her mental and physical state, in
terms of expertise, fatigue and situation awareness, which
can affect the hazards that arise in the application [6]. The
relevant features of robotic devices (whose corresponding
classes are not shown here for the sake of brevity)

Fig. 3 Meta model of HRC applications, containing their main common concepts

J Intell Robot Syst (2021) 102:59 Page 7 of 26 59

Fig. 4 An example of modeling a HRC application using our proposed UML profile. The operator, robot system and other devices are defined via
stereotypes presented in Fig. 3. Additionally, the executing task is modeled by stereotypes on customized activity diagrams which are introduced
in Section 4.3

primarily concern their architecture, and in particular their
structure, operational workspace, degree of base mobility
and rated payload. Each agent-type class introduces a set
of operations, which represent the elementary actions that
the agent is able to perform during a task. As shown in
Section 4.3, the steps to be executed by an agent in a
task are defined by applying suitable stereotypes to the
activities of Activity Diagrams. These stereotypes include,
e.g., the ability to move, grasp and release an object, hold
something in place, use a tool (only available to operators),
and hook and unhook an end-effector (only available to
robotic arms for tool-changing sequences). Classes Mobile
device, Joint, EndEffector capture the various types of
elements that can appear in a robotic system. The relations
defined between them, instead, capture the kinematic chain
constraints—e.g., the fact that at any time the end-effector
and the robotic arm cannot reside at opposite ends of
the layout—that exist in real life because of physical
attachments, and which are then translated into suitable
logic formulae (see Section 5.2). Unlike agents, resources
that are of type SignalEmitter play a semi-active role,
since they cannot operate autonomously, but provide an
extension to an agent’s capabilities. Examples of devices are
buttons and other interfaces, as well as wearable devices like
gesture-detecting armbands. They are particularly useful for
communication between operators and robots, for example
to issue commands or to receive feedback about the state of
the system. Class Object of Fig. 3, instead, captures passive

items manipulated by agents during the task. These include
fixtures that can be assembled and workpieces which will be
subjected to manufacturing alterations. Class Object does
not have any methods, but it includes attributes concerning
the geometry of the object—which are parameters required
by some operations. To describe an HRC application
through the meta model showed in Fig. 3, a safety engineer
must define the instances of the elements that are part
of the application. For example, the diagrams in Fig. 4
introduce an instance of ClassOperator (named “Bill”), and
an instance of Class Armband, i.e., a subset of SignalEmitter
for gesture recognition.

4.2 Component Diagrams

To capture the Layout of an HRC application, our approach
employs a grid-like abstraction similar to the one presented
by Sadeghpour and Andayesh [39]. In our approach, a
Layout is discretized and divided in a set of Sections. Class
Section includes attributes describing the ID and obstruction
level of each section.

The actual layout of the application is described through a
Component Diagram, wherein each component corresponds
to a section of the layout, and connectors represent adjacency
constraints between sections. For example, the layout of the
case study described in Section 7.2 (the workcell depicted
in Fig. 14(top)) is captured by the Component Diagram of
Fig. 14(middle).

 59 Page 8 of 26 J Intell Robot Syst (2021) 102:59

4.3 Customized Activity Diagrams

The description of the workflow of a desired task, which
provides a dynamic perspective of the application, is given
in terms of Activity Diagrams. Indeed, Activity Diagrams
[32] are typically used to represent the procedural flow
of actions, focusing on their order of execution and on
the conditions that trigger or guard them. We customize
standard UML Activity Diagrams through stereotypes that
allow us to link each Activity to the concepts introduced as
class operations in Fig. 3. Figure 4 (top) shows a fragment of
an Activity Diagram including custom stereotypes. A task is
made of actions, which are modeled as suitably stereotyped
UML OpaqueActions. More precisely, each OpaqueAction
must be tagged with a stereotype corresponding to one of
the methods appearing in the Class Diagram of Fig. 3.
The instances of classes presented in the diagram of
Fig. 4 (bottom) illustrate the application of the stereotypes
introduced in Fig. 3 to model the instances for the running
example explained in Section 3. Indeed, for each operation
executable by an agent there is a precise stereotype
with a corresponding list of properties. For example, the
properties of action movePTP—which represents point-to-
point movements made by robots—include the agent that
performs it, and the layout sections that are the starting
point and the destination of the action.

Other elements of our Customized Activity Diagrams
(ControlFlows, ControlNodes) provide the ordering and
synchronization (if any) among actions. ControlFlow edges
depict precedences between actions. Each OpaqueAction
can have multiple incoming and outgoing edges, and
each edge can have an associated stereotype. Specifically,
each edge between two activities a1, a2 has both a
state-describing stereotype (done, executing, hold or not
started) and a command-describing stereotype (start, stop,
pause, resume), where the former identifies the state which
must be entered by a1 for a2 to execute the transition
corresponding to the latter stereotype (see Fig. 4(top)). If
the synchronization between a1 and a2 is not strict—i.e.,
a2 can make the transition sometime after a1 enters the
desired state, but not necessarily immediately—stereotypes
SOFTstart, SOFTstop, SOFTpause, SOFTresume can be
used. If no stereotype is indicated, by default the done state
and the start command are assumed.

The incoming and outgoing edges correspond to pre-
and post-conditions of actions. We use UML ControlNodes
to represent logical combinations of the various conditions
(see also Table 2): JoinNode and MergeNode represent,
respectively, AND and (exclusive) OR combinations of
the conditions corresponding to the incoming arcs of
the ControlNode; dually, ForkNode and DecisionNode
indicate AND and OR combinations of the conditions
related to the ControlNode’s outgoing edges. This allows

for the creation of complex combinations of conditions
by cascading UML ControlNodes. For example, in the
fragment of Customized Activity Diagram shown in Fig. 4
(top), stereotype �executing,start� on the ControlFlow
between Actions �hold� and �fist� states that the latter
can start only when the former is executing. Stereotype
�done,start� between Actions �fist� and �close�,
instead, means that the former can start only when the latter
is completely done. The rightmost JoinNode defines that
the rest of the task can continue only after both the �fist�
and �close� actions have been completed. Finally, UML
LoopNodes are used to concisely depict iterative executions
of actions. The name field of a LoopNode states the number
of iterations of the loop. Only two edges can cross the border
of a LoopNode, one entering the first action of the iteration
and one exiting the last action (see an example in Fig. 5).

Models of collaborative applications, and in particular
task flowcharts, are created through a prototype tool which
has been implemented by customizing the open-source
Papyrus UML modeler.2 The tool allows users to select
stereotyped Actions through custom palettes (see Fig. 5),
to edit the properties of stereotypes and of actions, and
to navigate the diagrams. The tool is the front-end and
entry point to the design process; it provides the interfaces
to launch the automated procedures for trans-coding the
models for verification and deployment purposes (see
Fig. 2) and to iterate the development procedures.

5 Task Verification

This section describes the SAFETY VERIFICATION module
of the toolchain (see Fig. 2). The safety verification of target
tasks is based on a formal model that is generated from the
UML profile, which only accounts for operational aspects
of collaborative tasks. A formal verification tool is used to
comprehensively explore and check all possible interactions
between robots and human operators, with respect to risks,
along the designed task. The verification procedure is in
charge of exploring also the unintended interactions, where
some potential hazards may occur.

In the rest of this section we first introduce (Section 5.1)
the necessary preliminaries to understand the formal
model and its automated verification; then, we present the
general structure of the formal model (Section 5.2), the
automated translation of UML models into formal ones
(Section 5.3), and an additional feature to the toolchain to
more realistically reflect the impact of human or hardware
errors in an HRC scenario (Section 5.4); finally, we explain
how the toolchain can be used to perform the formal
verification, analyse the outputs (Section 5.5), and improve

2eclipse.org/papyrus

https://eclipse.org/papyrus

J Intell Robot Syst (2021) 102:59 Page 9 of 26 59

Fig. 5 Screenshot of the Papyrus
interface with customized
palettes for adding actions of
end-effector, operator or robot

the model according to the observed verification results
(Section 5.6).

5.1 Preliminaries on Formal Modeling and
Verification

The formal model is formulated using a temporal logic
language, called TRIO ([19]), suitable for expressing the
evolution over time of events and specific situations (e.g.,
“the operator approaches the pallet before the robot turns
on the tool”). The TRIO language features a quantitative
notion of time, which is useful for describing tasks such as
“the robot always reaches the working pose 3 time units
after leaving its homing position”. In a typical logic-based
approach, all relevant elements of a task being analyzed—
e.g., the intended workflow—and the causal relationships
among resources are captured through temporal logic
predicates and constraints.

TRIO formulae contain the usual first-order connectives,
operators, and quantifiers, as well as a single basic modal
operator, called Dist, that relates the current time to another
time instant (see list of operators in Table 1). In particular,
given a time-dependent formula φ (i.e., a term representing
a mapping from the time domain to truth values) and a
(arithmetic) term t indicating a time distance (either positive
or negative), formula Distφ, t specifies that φ holds at a
time instant at a distance of exactly t time units from the
current one. While TRIO can exploit both discrete and dense
time domains, here we assume the standard model of the
nonnegative integers N as discrete time domain.

TRIO formulae are well suited for expressing the
temporal characteristics of a HRC system that could
affect safety. For example, a different intensity occurs
in a collision between human and robot depending on
which actor arrives at the collision point first (e.g., they
arrive together, or the robot arrives first, hence it is still

Table 1 List of derived TRIO operators; φ, ψ denote propositions, and v is a variable and d is a constant value

TRIO Operator Definition Meaning

Past (φ, d) d > 0 ∧ Distφ, −d φ occurred d time units in the past

Futr (φ, d) d > 0 ∧ Distφ, d φ occurs d time units in the future

Alw (φ) ∀t (Distφ, t) φ always holds

Som (φ) ∃t (Distφ, t) φ occurs sometimes

Until (φ, ψ) ∃t (Futr (ψ, t) ∧ (∀t ′(0 < t ′ < t) ⇒ Distφ, tprime)) ψ will eventually occur and φ will hold till then

Untilw (φ, ψ) Until (φ, ψ) ∨ Alw (φ) weak until: ψ may never occur in the future

WithinF (φ, d) ∃t (0 < t < d ∧ Distφ, t) φ will occur within d time units

 59 Page 10 of 26 J Intell Robot Syst (2021) 102:59

when the collision happens). These timing differences can
be conveniently modeled in TRIO through its derived
temporal operators, which are defined from the basic Dist
through propositional composition and first-order logic
quantification. Table 1 defines some of the most significant
ones, including those used in this work.

The satisfiability of TRIO formulae is in general
undecidable. However, in this paper we consider a decidable
subset of the language, that can be handled by automated
tools, to build the systemmodel and to express its properties.

[1] is a bounded satisfiability checker for TRIO formulae
([37]). We use Zot in this work to check the model of
the system against desired safety properties. In case the
property is not satisfied, Zot provides a counterexample
witnessing a system execution that violates the property.

We adopted TRIO and its supporting tool Zot because
of the generality of the language, which can be applied in
natural way to different types of applications,3 and for the
efficiency of the verification in comparison with the state
of the art [36]. For a comprehensive survey and comparison
among various logic languages tailored towards modeling
time-dependent phenomena see [18].

5.2 Formal Model

This section summarizes the formal model defined in
Vicentini et al. [49]. Here we explain the essence of
the model to make the current paper self-contained. As
mentioned above, the approach presented in this section is
general, and it relies on the scenario introduced in Section 3
(and visualized in Figs. 4 and 7) only as an illustrative
example.

The human body is discretized into a set O of eleven
body regions {Ohead, . . . , Oleg} [24], where each region
Oi = 〈pi, vi, mi, ki〉 is characterized by a set of predicates,
such as for example pi , representing the location of body
region i, vi , representing its velocity, etc. Similarly, the
model R of a robot includes a set of predicates Rj =
〈pj , vj , fj , mj , shapej 〉 for each of its n links.

As mentioned above, the model of the layout L includes
a tuple of predicates for each of the sections in which
it is divided, Lk = 〈shapek, materialk, obstk〉. Some
predicates, like shape, material or clearance/ occupancy
obstk carry safety-related information.

Every task is broken down into several atomic actions,
where each action ai =〈aexeT

i , a
agent
i , preCi, posCi, a

sts
i 〉

is characterized by a set of features: a constant (aexeT
i)

representing the required time for termination, a predicate
(aagent

i) defining the action’s expected executor agent

3Together with MTL, TRIO is one the first temporal logic languages
dealing with time in a metric way.

(operator or robot), a set preCi of formulae (pre-
conditions) that enable the execution of the action, a set
posCi of formulae (post-conditions) that capture conditions
that are enforced by the action at the end of its execution,
a predicate (asts

i) capturing its current state (not started ns,
waiting wt, executing exe, safe-executing sfex, hold hd,
done dn, exit exit).

The behavior of each operator action—i.e., an action in
which the agent is the operator—is governed by the finite
state automaton depicted in Fig. 6 (a similar automaton,
not shown here for brevity, captures the behavior of robot
actions), which is formalized in temporal logic.

The transition between states is governed by the features
of the action. For example, the transition between states
ns and exe occurs when the pre-condition preC of the
action holds; similarly, the transition between states wt
and exe occurs when the operator starts the action within
Δ time units from its enabling (i.e., from when the pre-
condition of the action holds) which is captured by formula
preC ∧ opStarts ∧ c ≤ Δ. For brevity, in this paper we do
not show the full formalization of all conditions appearing
on the transitions of the automaton of Fig. 6, but only
provide, for most of them, an informal name (as in the case
of label “opStarts within Δ” in the transition from wt to
exe); interested readers can find further details in Vicentini
et al. [49].

Using the features of O, R, L introduced above, the
formal model defines formulae that capture various safety-
related aspects of HRC applications. For example, the
following formula expresses a kinematic constraint for the

Fig. 6 Finite State Automaton governing the behavior of actions (from
Vicentini et al. [49])

J Intell Robot Syst (2021) 102:59 Page 11 of 26 59

robot through the features of R and L introduced above.
More precisely, it states that, always, the positions pro

1 and
pro
2 of the first two attached links of the robot (R1 and R2)

correspond to the same layout section, or to adjacent ones:

Alw
(
pro
1 = pro

2 ∨ Adj(pro
1 , pro

2)
)

(1)

where Alw (F) means that formula F holds in all time
instants, and Adj is a predicate of L that defines when
sections of the layout are next to one another.

A core part of the formal model concerns the definition
of hazardous situations—e.g., contacts in physical human-
robot interactions—and of Risk Reduction Measures
(RRMs) introduced to lower the risk associated with such
hazards. For example, two general types of hazards are
introduced by [24]: quasi-static (Qs)—sustained contacts
of body parts against a constraining object with continuous
energy flow from the robot—and transient (Tr)—fast
contacts where body parts are hit and then recoil because of
the kinetic energy transferred to the body. These situations
are formulated in terms of spatial and temporal relationships
among resources, so that informal conditions like “being
in between”, “standing close-by”, “approaching the same
place at the same time”, are captured through suitable logic
formulae. The following formula is an example of the
content of the model and formalizes Qs hazardous contact
hzdQsijk occurring in section Lk of the layout between the i-
th robot link (e.g., the end-effector) and the j -th body part
(e.g., the human hand):

hzdQsijk ⇔ InSameLijk ∧ movingRi
∧ Past

(
Sepij > close, 1

)

∧ Past
(
pro

i = Lk∧p
op
j �= Lk, 1

)
∧

(
obstk = occluded ∨ ∃Rm �=i ∈ R (InSameLimk)

)
(2)

where Past (F, 1) means that F held in the previous
instant from the current one, InSameLijk and movingRi

are abbreviations for formulae describing, respectively, that
Ri and Oj are in the same layout section, and that Ri

is moving, and Sepij is a predicate capturing the current
separation between Ri and Oj . The last two lines of the
formula formalize, respectively, the situation of Ri and Oj

getting closer to one another (with the robot arriving in Lk

before the operator), and the presence of obstacles (i.e., the
occlusion of section Lk) in that condition, or the internal
crunching of arms inside a manipulator.

Any hazardous situation is scored in terms of the
associated risk whenever it is encountered (recall that
the actual state is generated at verification time, and not
assigned a priori). When necessary, TRIO predicates are
used to capture the severity and occurrence of hazards
according to normative safety methodologies [22]. In
particular, the hybrid method for risk estimation in ISO/TR
14121-2 [23] is used for setting severity with discrete
scores in {1, 2, 3, 4} and occurrence factors (frequency of

situations, probability of errors and failures, probability
of the avoidability of the situation) with discrete values
cumulated in an aggregate score in the {1, . . . , 15} range.
Modeled hazards hzdijk are then assigned a combined score
riskijk ∈ {0, 1, 2}, according to the referenced method.
A discussion on the determinism of score assignment and
update of values is provided in Vicentini et al. [49].

The formal model includes also the safety strategy to be
implemented, if necessary in presence of unacceptable risk
level. The following formula, instead, captures an RRM in
the family of collision avoidance strategies for preventing
contact hazard hzdijk by activating the safety mode Speed
and Separation Monitoring (SSM, [24]):

RRMSSM
ijk ⇒ (

Sepij < Sepmin ⇒Futr
(
vij = none, 1

))

∧ (
Sepmin ≤ Sepij ≤Sepmid ⇒ Futr

(
vij ≤mid, 1

))
(3)

where Futr (F, 1) means that F holds in the next instant
from the current one, and Sepmin and Sepmid are two
thresholds on the distance between Oj and Ri , moving at
relative speed vij . Sepmid is used as a threshold for slowing
down Ri , so to maintain a Sepmin threshold.

5.3 FromUML to Formal Models

Models created through the UML profile described in
Section 4 are automatically translated into a set of TRIO
formulae, using an approach similar to the one presented
in Baresi et al. [10] to carry out automated formal
verification on UML models. This translation process
effectively provides a formal semantics—one that is suitable
for automated formal verification—to our custom UML
profile, since each one of its elements is associated with a
set of formal axioms.

In this section we provide an overview of the translation
process, which parses the XMI file created by Papyrus,
extracts the relevant information, and generates different
parts of the formal model; a more detailed explanation is
presented in Lestingi and Longoni [27].

Class and Component Diagrams are used to derive the
properties of the actual robots and operators involved in the
designed task, and of the layout in which they move. For
example, from a component diagram representing the layout
of a workcell such as the one of Fig. 14(middle), the tool
determines that predicate Adj(L9, L23) holds, and produces
the corresponding formula stating this fact. In addition,
the tool automatically produces formulae such as Formula
Eq. 1, which define kinematic constraints on robot and
human parts, and which rely on the definition of predicate
Adj previously introduced.

The formalization of the behavior of the application
along time originates from the stereotypes associated with
Actions and from the control nodes in the Customized
Activity Diagram. As described above, each action is

 59 Page 12 of 26 J Intell Robot Syst (2021) 102:59

formalized through logic formulae that correspond to the
automation of Fig. 6. The formalization depends on the
action pre- and post-conditions, whose corresponding logic
formulae are produced through an automatic examination
of the Customized Activity Diagram capturing the task,
depending on the stereotypes associated with edges, the
intrinsic nature of Actions, their assigned resource, and
the type of Control Nodes that link actions. This step
is recursively applied to each Action in the Customized
Activity Diagram until all upstream Actions are analyzed.

More precisely, for each Action i in the Customized
Activity Diagram, a set of TRIO formulae formalizing the
behavior of the automaton of Fig. 6 is produced. These
formulae include Action-specific predicates preCi , posCi

capturing the pre and post-conditions that govern the entry
and exit of the states of the automaton for that action. The
formulae defining predicates preCi , posCi are generated
partly from the stereotypes associated with each action,
and partly by recursively examining the structure of the
Customized Activity Diagram. Figure 7 shows examples of
the two cases.

Consider, for instance, Action 2 of Fig. 7b; it is tagged
with stereotype �close�, its attribute AGENT indicates
that it is executed by the gripper end-effector, and its
attribute SEC defines that the operation is carried out
in section L42 of the layout. This information is used
to produce the corresponding definitions for predicates
preC2 and posC2. In particular, preC2 implies that: the
end-effector must be in the desired section L42; the part
to be grasped is present (a condition which is captured
by predicate partP resent); and the human body parts
“lower arm” and “hand”—whose positions are captured by

predicates bp7reg and bp11reg in the formal model—are not
in section L42. Predicate posC2 is similarly defined. Notice
that, together, the pre- and post-conditions of an Action
tagged as �close� state that the position of the agent is the
same before and after the execution of the action. Action 1
shown in Fig. 7a is similarly translated taking into account
its �pick� tag and its attributes.

To illustrate how the Customized Activity Diagram
structure—i.e., the connections between atomic actions
(OpaqueActions in UML parlance) and control nodes
(JoinNodes, MergeNodes, etc.)—helps determine actions’
pre- and post-conditions, let us consider actions on the
right side of Fig. 7. In general, for each OpaqueAction
that appears in the Customized Activity Diagram the
translation mechanism determines its predecessor actions
by navigating backwards the incoming edges, through the
control nodes, until another OpaqueAction is reached. In
the fragment of Customized Activity Diagram of Fig. 7b,d,
the predecessors of Action 5 “Robot to pallet” tagged as
�moveREL� are, through the JoinNode, Action 3 and
Action 4—tagged, respectively, with the �movePTP� and
�wavein� stereotypes. The pre- and post-conditions for
each action are created from the list of predecessor actions,
taking into account the stereotypes (if any) associated with
each edge, and the type of control nodes the edges go
through. For example, the formula in Fig. 7(b) is produced
by considering that the node before Action 5 is a join—
that is, the “and”—of two flows, originating from Actions 3
and 4 and tagged as�done,start� and�executing,start�,
respectively; this corresponds to the condition “Action 5
can start only if Action 3 and 4 are both done”, which is
formalized by the formula in the figure. Table 2 summarizes

Fig. 7 Example of pre-/post-condition generation from portions of a customized activity diagram

J Intell Robot Syst (2021) 102:59 Page 13 of 26 59

Table 2 Converting customized activity diagram control nodes to logical connectors for producing pre-/post-conditions

Structure

Node Name Fork Decision Join Merge

Logic Condition and xor and or

Affected edges outgoing outgoing incoming incoming

how each type of control node is interpreted in the formal
model.

As mentioned in Section 4.3, the synchronization
between interdependent actions can be either strict or
soft, which have different formalizations. For example,
Formulae Eqs. 4 and 5 from Vicentini et al. [49] formalize
the difference between stereotypes �done,stop� and
�done,SOFTstop� applied to a flow between two Actions
i and j . More precisely, the former means “j stops
immediately after i has been completed”, whereas the latter
means “j stops sometimes after i has been completed”.

Past
(
asts
i =exe ∨ asts

i =sfex, 1
) ∧ asts

i =dn ⇒
Futr

(
asts
j =dn, 1

) (4)

Past
(
asts
i =exe ∨ asts

i =sfex, 1
) ∧ asts

i =dn ⇒
SomF

(
asts
j =dn

) (5)

For example, the formula in Fig. 7d shows that the
requirement of Action 6 to end is for Action 7 to terminate
in advance or simultaneously.

5.4 Exploring Human Errors and Hardware Failures

The formal model automatically generated from UML
diagrams captures the nominal behavior of the system
through pre-/post-conditions. However, deviations from the
nominal behavior could strongly affect safety. Hence, we
have enriched the model to capture also the operator’s
unintended uses. In [6] we proposed a formal model
of human error phenotypes, which captures the possible
misuses that violate the temporal, spatial or functional
constraints of a task execution. For example, repeating—
or attempting to redo—an already terminated action is a
temporal error that is formalized by the following formula,
which states that a “repetition” error for action x occurs
when the latter is started again by the operator even if its
status is dn, or when the operator does not terminate it (i.e.,
¬opStopsx holds) even after its post-conditions hold:

Repetitionx ⇔ a
agent
x = op∧

⎛

⎜
⎝

asts
x =dn ∧ opStartsx

∨
Past

(
asts
x �= dn, 1

)∧posCx ∧ ¬opStopsx

⎞

⎟
⎠

(6)

The full definition of the phenotypes and examples can be
found in Askarpour et al. [6].

5.5 Model Verification and Analysis of Outputs

The automatically-encoded formal model can be verified
through mechanisms that generate the model dynamics
(i.e., the states), analyze the sequences of intended actions,
systematically generate also unintended sequences from
errors or misuses (see above), and detect unacceptable
conditions whenever the level of risk is estimated as
non-negligible. Such mechanisms are enabled by the Zot
tool,4 which implements several techniques—employing a
so-called bounded satisfiability checking approach based
on off-the-shelf Satisfiability Modulo Theories (SMT)
solvers—for checking the satisfiability of TRIO formulae
in an automated manner (see also Pourhashem Kallehbasti
et al. [36]).

The Zot formal verification tool analyzes the global
state of the model in every instant of its evolution. The
formal definition of a hazard can be matched inside each
state, in which case the corresponding risk is estimated—as
mentioned in Section 5.2, the estimation of risks associated
with hazards (i.e., the function hzdijk → riskijk) is part
of the model itself. In particular, the Zot tool is used to
check all possible states where a hazard is present and
whose level of risk is higher than a certain threshold τ . Risk
threshold τ is decided at design time; it is usually set to
τ = 1 (negligible/low risk) for scores riskijk ∈ {0, 1, 2}
assigned using the ISO/TR 14121-2 hybrid method (see
Section 5.2). A low or negligible risk value (the desired
target!) can be obtained if a protective function is already
enforced or can be enabled. Such capabilities are captured
through predicates RRM

y
ijk , where y is the type of RRM

that mitigates riskijk . The example RRMSSM
ijk provided in

Section 5.2 is the model of the form of collision avoidance
known as Speed and Separation Monitoring (SSM)—
normatively defined in ISO/TS 15066 [24]—which could be
activated, for instance, to reduce the risks of the unintended
behavior generated by errors in occupying the programmed
position as in Section 5.4.

4Available from github.com/fm-polimi/zot.

http://github.com/fm-polimi/zot

 59 Page 14 of 26 J Intell Robot Syst (2021) 102:59

In general, the effect of a RRM
y
ijk is to change

the severity and/or the occurrence factors of a given
riskijk . This standard identification-mitigation procedure
informally describing the process of ensuring safety is
formalized by the following property, which states that
either the value of risk should always be less than a certain
τ , or that there must be a RRM that will mitigate the risk at
the next time instant (i.e., Futr

(
riskijk ≤ τ, 1

)
holds) if the

risk value exceeds τ . The property needs to be verified for
each combination ijk identified as potentially critical.

Alw

⎛

⎜⎜
⎝

riskijk ≤ τ ∨

riskijk > τ ∧ ∃y

(
RRM

y
ijk∧

Futr
(
riskijk ≤ τ, 1

)

)

⎞

⎟⎟
⎠ (7)

When the Zot tool is fed the property above to check
whether it holds for the model or not, it can either report
that no hazards with unacceptable risk levels are present,
or it returns a sequence of states which highlights, for each
of them, the salient features of the system in that state, and
in particular what hazards are present (if any), and what
RRMs (if any) are active. The toolchain includes a pair of
tools that aid the designer in interpreting the outcome of the
formal verification step. The first tool graphically overlays
the most critical parts of the operator and the robot on top
of a schematic representation of the layout. An example of
output from this tool is shown in the middle of Fig. 8, in
which the operator’s head (blue dot) and the robot (red dots
with links, the larger dot being the robot base) are depicted,
together with the label of the active hazards at the current
step (the top of Fig. 8 shows the real-world application to
which the example refers). This rendering can be navigated
for each instant, highlighting possible hazardous conditions.
The second tool, instead, produces a more detailed textual
output which highlights additional information, such as
active RRMs. Figure 8 (bottom) shows an example of table
output by the second tool, which details, in addition to the
active actions, the layout sections occupied by the parts of
the operator and by those of the robot, the hazards present,
and what RRMs are activated (force limitation in this case).

It should be noted that the safety requirement could be
modified or replaced, which would consequently require to
update the structure of the model accordingly. For example,
different values for τ (τ = 1 or τ = 2) in Formula Eq. 7
could result in defining two very different system behaviors.
One allows for the risk value to reach up to two, while
the other triggers RRMs before that even happens. This
would consequently change the set of introduced RRMs
as well. As another example, consider replacing constraint
Futr

(
riskijk ≤ τ, 1

)
with formula Futr

(
riskijk ≤ τ, 5

)
. It

would result in longer allowed intervals for RRMs to
mitigate the risk, which means RRMs could be defined
very differently to reduce the frequency with which sudden

Fig. 8 (top) Aerial view of the workcell of the experiment. (middle)
Graphical rendering of a detected (mitigated) hazard. (bottom)
Detailed textual description of a state reached by the system (step 4, in
the snapshot)

emergency stops are triggered. This affects the trade-off
between safety and performance as well. Thus, the desired
safety requirement is essential to the definition of the system
behavior, and so are any changes made to it.

5.6 Introducing Risk Mitigation Factors

The introduction of a RRM in the model/target is a decisive
design action, which is ultimately under the responsibility

J Intell Robot Syst (2021) 102:59 Page 15 of 26 59

of an overall safety supervisor. Different types of measures
y (i.e., different RRM

y
ijk) can be chosen for mitigating

riskijk , depending on the capabilities of the robot system
(i.e., controls, sensors, etc.), and also on the possibility
to modify the task itself, if necessary. As a consequence
of the compliance with safety requirements, production
routines may be variously affected by the RRM strategy.
For instance, slower safe modes in robot controls, re-
arranged layouts, or forcing constrained action sequences by
controlling access to locations, all have a substantial impact
on the organization and/or efficiency of tasks.

The criteria for the selection of RRMs are a matter of
performance-based design; also, multiple RRMs are often
available as suitable solutions for attaining the required risk
reduction. Providing guidance in the selection of RRMs is
currently out the of scope of the presented toolchain; still,
the toolchain indirectly supports this step, by allowing users
to analyze the effects of potential solutions on risks [7].
Indeed, although it is possible to let a computational unit
automatically choose the RRMs to be introduced, the final
decisions must be taken by the person who is ultimately
liable for the deployment of the task under analysis. The
verification tool can provide support and valuable insight to
make these choices, but in industrial scenarios an explicit
acknowledgment of executed procedures is necessary.

Introducing an RRM, or altering the task, whatever is the
agent in charge of completing such procedure, corresponds
to updating the model, which needs to be then verified again
before any deployment. Re-verification and deployment are
actually part of the main workflow of our toolchain.

6 Deployment

This section describes the third module of the toolchain,
DEPLOYMENT (see Fig. 2).

Vertical and horizontal integration in factories benefit
from robust middlewares and frameworks, which are able
to interface robots with different automation protocols and
data-representation standards.

In our toolchain, we selected the IEC 61499 standard
to support the access to the physical control layer and
to other automation protocols. This standard provides
specifications for compiling and interfacing data and events
of modular Function Blocks (FBs) for building event-
driven architectures. Its design objective is to support the
integration of distributed and scalable automation systems
[54].

Basic Function Blocks (BFB) defined by the standard
have a simple behavior for handling events, with a stan-
dardized automaton-like Execution Control Chart (ECC).
Since BFBs can be nested, we designed a custom FB, called
Action Function Block (AFB) representing a template for

robot (or human) actions. From typical execution profiles
in robotics, actions are split into a preparation phase (e.g.,
setting control strategies, configuring parameters) and the
actual running phase. The AFB is then able to synchronize
events (requests for configuration) and continuous streams
of data. As such, AFBs represent pure logic components
of program execution, handling dataframes and signals at
runtime. There is a one-to-one functional correspondence
between AFBs and abstract models of actions, so that AFBs
are used to build deployable UML Actions (see Section 6.3).
Another type of standardized FBs—i.e., Service Interface
Function Blocks—is instead used for coding the interfaces
for actual resources. Resource FBs are dedicated to individ-
ual physical units (robots, sensors, drivers, etc.). Examples
of implemented protocols include EtherCAT and POWER-
LINK fieldbuses and ROS publish/subscribe mechanisms
(see Fig. 9, and Iannacci et al. [21] for full implementation
details). Hardware resources can be reused and allocated
by several applications—i.e., several chains of action FBs,
according to the target workflows. Multiple blocks of type
AFB are connected with data and event streams to individual
Resource FBs, which in turn have event/data access policies
for synchronizing and scheduling the actuation of individual
actions from the hardware resource.

The rest of this section first provides some details
on the decision to use modular FBs (Section 6.1), then
introduces some preliminary knowledge required to develop
FBs (Section 6.2), and finally describes the automated
translation of UML models into FBs (Section 6.3).

6.1 Motivation and Advantages of UsingModular
FBs

The design principle facilitated by FBs is the break-
down of applications in logical sub-tasks (actions) entirely
separated from the resources executing them. This approach
is compatible with the abstractions used in the DESIGN and
VERIFICATION modules.

With the assigned granularity of FBs to individual
actions, FB-based applications can be effectively distributed
across different target nodes through any middleware
implementing the specification of the IEC 61499 standard.
Standardized interfaces provided by FBs allow for the
recursive composition of groups of connected AFBs.
From the scalability standpoint, entire clusters of devices
and associated tasks can be nested and relocated in
(i.e., controlled from) different parts of an automation
network. For robotic applications, it is straightforward to
wrap factory-relevant information (e.g., from/to ERPs),
including data and events, in standard interfaces to generate
compatible bridges/gateways.

On top of standard interfaces that offer maintainabil-
ity, FBs and connection rules encompass a low variability

 59 Page 16 of 26 J Intell Robot Syst (2021) 102:59

Fig. 9 Architecture of the
deployment framework, based
on IEC 61499. Tasks correspond
to flowcharts of logic-FBs FB n.
The example sequence of actions
is A-B-‖(A-D,C). Multiple
applications can be allocated to
available resources. Other tasks
(Task n) and a scheduling node
(SCH) depict the potential
concurrent executing tasks. In
resources, each FB (RES n) is
dedicated to a single device
interface, and could be shared
by multiple logic-FBs, from
multiple applications. In
hardware, controllers or
protocols are interfaced through
bridges implemented in the
RES n blocks, to parse
protocol-specific dataframes

language (LVL) which is effective for verification, self-
composing and self-diagnostics. In particular, the prop-
erties of FB interfaces are exploited for developing a
self-generating application able to assemble AFBs and
resources.

6.2 Modes and Tools for FB Development

The IEC 61499 standard is implemented in tool suites that
include an Integrated Development Environment (IDE) and
a runtime component. These suites enable the definition,
composition and building of FBs into runtime components
deployed at corresponding hardware targets (e.g., I/O
devices, actuator drives, PCs). We use in particular the
open-source 4DIAC-FORTE project5 for supporting our
deployment module.

When designing and building applications according to
the IEC 61499 standard using stand-alone IDEs, developers

54DIAC-FORTE (www.eclipse.org/4diac) is the foremost IEC 61499-
compliant IDE and runtime environment suite.

can take advantage of features such as visual editing
of FBs to create application workflows, the availability
of FB libraries for components or functions, and an
extensive compatibility with PLC development through IEC
61131 languages. Graphical programming supports a clear
identification of workflows and their deployed (expected)
behavior in executable applications.

This desirable property is however shadowed by the
integration of the IEC 61499 modelling standard and
language inside our toolchain, where the design of
applications is supported by an even cleaner layer of
abstraction (see the UML models in Section 4). FB
executables are built automatically from higher-abstraction
specifications, without manual intervention.

Inside our toolchain, 4DIAC IDE is used only at
configuration or maintenance time for the building of
resource-FBs and basic logic-FBs—i.e., for generating
or maintaining a library of general-purpose components.
4DIAC IDE is of course used for developing the stand-
alone utility application that automatically generates all
subsequent actual applications from the verified abstract
model.

https://www.eclipse.org/4diac/

J Intell Robot Syst (2021) 102:59 Page 17 of 26 59

Table 3 Connectors function block counterparts

Logic connector

Function block

6.3 From Verified UMLModels to the Shopfloor

The transformation of verified abstract models into tar-
get builds is based on the ability of FBs to self-generate
executable applications, thanks to the so-called reconfigura-
bility property of the IEC 61499 standard [54].

The procedure is based on two elements. First, abstract
UML models built using the profile presented in Section 4
are explored and parsed into a set of configuration files that
encode the number of resources, names of agents, names
of activities, etc. For example, logic connectors introduced
in the Customized Activity Diagram are translated into
existing blocks shown in Table 3. Edges and control

flows of diagrams also are converted to configuration
files. Second, taskGen, which is a stand-alone IEC
61499 utility application depicted in Fig. 10, generates
and connects ordered networks of FBs according to such
configuration files. A managing GENERATE TASK FB
carries the whole application label TaskGenFB, initiates
the reading of the configuration files, and issues the
following events: CREATE, which triggers the CREATE FB
and START FB blocks for creating and starting other FBs
according to their FB NAME listed in the configuration files;
SET, which triggers the SET PARAMETER FB needed to set
the value of a custom block’s input parameter; CONNECT,
which triggers the CREATE CONNECTION FB that is in

Fig. 10 Screenshot of the
FB-App generating network

 59 Page 18 of 26 J Intell Robot Syst (2021) 102:59

charge of actually building the topology; CNF, an output
event that keeps the process alive, issuing a command to be
processed in response to a REQ input event. REQ elaborates
the currently required command and issues one of the events
listed above. TRIGGER INIT CHAIN and EXECUTE TASK
are utility blocks for initializing and enabling the execution
of the application. The parsing tool is available as an
extension of the Papyrus modeler and includes a procedure
for the launching of the taskGen FB application (refer
to Lestingi and Longoni [27] for full details). The pre-
requisite for running taskGen is the availability in a local
4DIAC library (hence also in the runtime environment) of
individual action FBs templates that are compiled off-line
and capture basic abilities of robot systems (e.g., move,
grasp, set). The main advantage of this approach is the
possibility of maintaining and updating the library templates
independently from any single code generation process and
across different implementations.

At build time, taskGen maps UML Action elements
featuring the same ID, agent and parameters into corre-
sponding action FBs, as represented in Fig. 11.

Additionally, taskGen maps every connection between
activities—i.e., every Control Flow in the Customized
Activity Diagram—into FB connectors (event and data
wires). Then, the stereotypes of Actions are mapped into
groups of AFBs, depending on the rules described in the
configuration files (e.g., the state of the source action
and the command for the target action). Stereotypes, in
fact, codify the way in which AFBs must be ordered
and triggered. Indeed, setting the topology and the policy
for triggering events is the most critical step in creating
consistent FB applications. Notably, connections are usually
the major source of bugs and deadlocks in the manual
development of FB applications.

7 Testing and Evaluation of the Toolchain

In this section, we provide a step-by-step walkthrough
of our toolchain, and then apply it to two test-case
scenarios—described in Section 7.1 and Section 7.2,
respectively—to evaluate its effectiveness. The second test
case, in particular, is larger and more complex than the
first one in terms of layout and combinations of tasks, to
evaluate the scalability of our toolchain. Finally, Section 7.3
provides a comparison between the results (in terms of
hazards identified) obtained through the application of our
toolchain to the test case of Section 7.2 with those obtained
through a manual safety assessment carried out by experts
in the field.

Figure 12 shows the process through which users apply
the toolchain in practice. (Steps 1-2) The users (safety
assessors and application designers) use the GUI to create
a model of the application through the approach described
in Section 4, and to launch the translation into the formal
model. (Step 3) The formal representation of the UML
model is automatically created. (Step 4) The produced
formal model is checked with Zot. (Step 5) The results
of verification are reported via screenshots/textual reports.
(Step 6) The user can choose to modify the UML model
and iteratively repeat steps 2-5, until the desired model is
achieved. (Step 7) Once the formal model is verified, the
user can choose the FB translator via the GUI. (Step 8)
The configuration files are automatically created. (Step 9)
The user can use and external simulator (e.g., ROS nodes)
to validate the correctness of the model. If the simulation
highlights a problem in the application, the process can be
repeated from step 1 by modifying the UML model. The
next section explains how the process works in practice by
applying it to a prototype assembly task.

Fig. 11 Example of
transformation of a UML Action
(left, from Papyrus) into an
action FB (right, from 4DIAC
IDE). Class GLOBAL T
mentioned on top of the FB
defines a general-purpose action
in our toolchain

J Intell Robot Syst (2021) 102:59 Page 19 of 26 59

4 5 1 2

Creating UML
model

Launching the
UML model
translation

Generating
Formal Model
from UML
model

Starting a
Formal
Verification

Reporting the
results

Updating the
model
according
to the results

6

7

Generating configuration
files from UML model to

9

Simulating FBs (e.g.,
with ROS nodes)

SAT

UNSAT

Generating function
blocks

8

3

The user
(Safety Assessor)

Automated
step Zot Model-checker 4DIAC-Forte IDE

Fig. 12 Flowchart showing a walkthrough usage of the toolchain. Fully automated steps alternate with steps that require interaction of the user
with the tool (depicted with dual symbols). The last deployment step is in a ready-to-play state, potentially re-entering the flowchart for model
upgrade/modification

7.1 Experiments on a Prototype Assembly Task

The scenario of Section 3 has been tested during a
demonstration run. The main sequence of the intended use is
modeled as a Customized Activity Diagram with three main
variants, of which one is depicted in Fig. 13. The safety
verification procedure in this experiment had three main
steps (verify, improve, update).

Formal Verification First, we prepared the initial model of
the task and formally verified it through the Zot tool against
the property captured by Formula Eq. 7 of Section 5.5.
By analyzing the output as shown, e.g., in Fig. 8, we

found several false positive hazards due to the unrealistic
positioning of the operator/robot allowed by the model.
During this first iteration, it was possible to analyze the
degree of approximation introduced by the discretization
of the layout and model dynamics (physical interactions,
kinematics, etc.). The issue of granularity of the model
representation is fully discussed in Vicentini et al. [49].

Second, we updated the model by constraining some
pre-/post-conditions to avoid certain situations, and we
introduced new risk mitigation factors (RRMs) in the model,
or combined existing ones. In the deployment stage, such
changes corresponded to either updates in robot programs,
or signal-event conditions, or safety configurations (e.g.,

Fig. 13 The customized activity diagram of one possible executional variation of the first experimental case

 59 Page 20 of 26 J Intell Robot Syst (2021) 102:59

speed or force limits). Once the verification did not
highlight unmitigated hazards, the system entered the
execution stage (see Section 6).

Finally, during the regular execution of the task (deploy-
ment of the nominal workflow), a test operator decided to
insert an inline inspection of the parts, amidst the assembly
sequence. Expecting a major effect on layout occupancy and
physical interaction by the operator, the model was updated
and verified before actually enabling the deployment of the
newly requested feature. Again, after a run of Zot verification
had highlighted potential hazards, some robot force lim-
its and position zoning were added to the robot controller,
corresponding to constraints in the formal model about
robot properties and accessible layout sections, respec-
tively. These modeling actions corresponded to the introduc-
tion/selection of RRMs. After a new run of verification, the
routines were added to the deployment flow and executed.

Different runs (model versions) had different execution
times and different exploration depths. Each run explored
at least 40 steps in the task (enough to analyze the task to
its completion) and it did not take more than 480 seconds6

of real time to perform a complete exploration of every
possible execution trace within the search depth.

Deployment Here we discuss how the Steps 7-9 shown in
Fig. 12 apply to this case study. We have launched the tool
to generate the related configuration files. Then, the so-
generated files are fed to the fixed application-generating
FB network pictured in Fig. 10, and the generation process
is initiated by manually triggering TaskGen-FB INIT
event. This operation is performed through the 4DIAC-
IDE 1.81 interface, with FORTE 1.8 M1 running on a
Linux virtual machine. The generation process is perceived
as almost instantaneous with timing parameter (PACE())
set to 500ms. When FORTE does not report any error
during the creation and connection phases, the application
is ready to be either deployed or simulated. We have used
ROS nodes with looped messages from/to the hardware
layer, to avoid the actual reading of command topics by
the hardware interface nodes. Despite its limitations, the
rendered simulation still allowed us to conclude that the
generated application contains the correct actions, and
it properly replicates the logic connections among them
described in the original Customized Activity Diagram.

7.2 Experiments on a Larger Task

Scalability has always been a critical issue in formal verifi-
cation. As the model grows, the verification time naturally
increases; oftentimes the increase is considerable, showing

6On commodity hardware, a Linux desktop machine with a 3.4 GHz
Intel® Core™ i7-4770 CPU and 16 GB RAM.

the so-called state-space explosion problem. To verify the
scalability of our toolchain, we have analyzed a larger case
study, in which the original manipulator is set on top of a
mobile unit able to autonomously relocate in a layout shown
in Fig. 14. The robot unit can travel and access the whole
workspace (the blue area) and moves between load/unload
areas for raw materials and finished parts, and three assem-
bly stations—1, 2 and 3—and a sensor-based inspection
station 4, as shown in Fig. 14a. Two human operators (OP1

and OP2) are employed in the application. OP1 is mostly
present in stations 1 and 2, while OP2 works mainly in
3, or executes auxiliary manual tasks on the workbench in
4. Both operators can freely hold and resume their tasks,
swap posts, or join one another in some area. The main
robot-assisted tasks are: pallet assembly at stations 1 and
2, including bin-picking from a local storage carried by the
mobile unit; pallet disassembly (reversal of assembly) at 1
and 2, including bin-dumping; pallet inspection at station
3; lead-through programming of assembly, disassembly, and
inspection tasks (trajectories, parameters, etc.) at stations
1, 2 and 3; material handling on load/unload areas. Other
manual tasks by OP1 and OP2 include manual loading of
parts/boxes; visual inspection of pallet at stations 1, 2 and
3; manual assembly/disassembly of pallet at stations 1 and
2; manual measurements of parts at station 4; cleaning pal-
lets at stations 1 and 2; kitting of tools and parts at stations
1, 2 and 3; general supervision (programming other tasks
at HMI during operations, consulting production data at
HMI, etc.) at stations 1, 2 and 3. Note that all combinations
of robot/manual task assignments are admitted (e.g., robot
holds and OP1 screw-drives jigs and vice versa, switching
tasks on the fly, quitting a manual task and assigning the
robot to proceed autonomously). Frequently, robot base and
operators move side-to-side across the central aisle, or other
operators may transit along the aisle because the target area
is part of a larger plant and access to it is not restricted
(Fig. 14(middle)).

Figure 14(middle) shows that the workspace is dis-
cretized in 23 sections with different characteristics. Each
section is captured by a component of the diagram that—in
the formal model—is given a two-level layered representa-
tion: more precisely, we have upper and lower layers, with
boundary set at human hip height, rendering a realistic par-
titioning of a 2.5D volume where torso/arms and legs are
correctly located. The mobile base of the robot is always
allowed in the lower layer, while the manipulator arm can
move in both layers. In this case study, not all areas have
static aspects. The robot is constantly moving around, and
some areas—mostly those situated on the aisle—can have
different characteristics from time to time, depending on the
presence of the robot unit.

First, after describing the layout (Fig. 14) and the
workflow (Fig. 15) through UML diagrams, we used the

J Intell Robot Syst (2021) 102:59 Page 21 of 26 59

aisle

1 2

3

4

Loading area (raw materials,...)

shu�le

shu�le

storage

10
00

40
00

70
00

35
00

10000

4000

800
1050

1200
900

30020
0

Fig. 14 Second case study: (top) precise workcell depiction; (middle)
component diagram describing the layout in the UMLmodel; (bottom)
tool exemplary output

tool to generate the formal model. In every iteration, we
learned new issues about the correct definition of pre-
/post-conditions of actions in order to make the flow of
actions realistic. The tool provides warnings and messages
to acknowledge any error or impractical definition in the
model.

Second, we analyzed the outputs of the tool produced
in the previous step (see Fig. 14(bottom) as an example),
introduced RRMs accordingly in the model, and iteratively
updated and analyzed the model until the verification
highlighted no unmitigated hazards.

Each run explored at least 45 steps (finishing at least
the job for one pallet) in the task and did not take more
than 1200 seconds7 of real time to perform a complete
exploration of every possible trace within the search
depth. More details on this test case with and without
human erroneous phenotypes is provided, respectively, in
Askarpour et al. [6] and Vicentini et al. [49].

7.3 Validation of the Approach Compared toManual
Assessment

We argue that our approach produces stronger results than
manual or simulation techniques while requiring less time
and effort. We have asked a different team, expert in
machinery safety, to apply their regular safety analysis
(which is done manually) on the example of Section 7.2.
Table 4 summarizes the results of a comparison between
our results and those of the manual analysis and shows that
the formal verification approach finds various instances of
hazards more comprehensively (60 >> 31). Note that the
20 man-hours reported as the required time for our approach
includes multiple runs of the experiment plus the amount of
the time that Zot took to produce an output, while 40 hours
are for manually performing the safety analysis only once.
However, we do not claim that every safety requirement has
been tackled. Moreover, it seems that our approach finds
a different balance of Tr and Qs hazards (73% − 23% as
opposed to 55%− 45%), which could be an indicator to the
fact that abstraction and discretization of the system model
could have caused loss of precision in detecting contacts.
Hence, we suggest our technique to be complemented with
3D simulators as well to increase the level of confidence of
the final results.

8 About Task Reconfiguration

After deployment, many practical situations contribute to
deviate from the designed nominal task. Examples include,

7On commodity hardware, with a 2,6 GHz Intel® Core™ i5 CPU and
8 GB RAM.

 59 Page 22 of 26 J Intell Robot Syst (2021) 102:59

Fig. 15 Snippet of Customized Activity Diagram of the workflow
for the second case study, showing one of the possible sequences
of actions. This snippet corresponds to a sequence of “bin-picking”,
“inspection at pallet 3 by operator 1 (op1)” and “unloading at pallet 2

by op2” activities executed iteratively (as many times as defined by the
value assigned to the loop node). The complete Customized Activity
Diagram allows more alternations between the two operators

but are not limited to: modification of robot poses, replace-
ment of robot tools, replacement of fixtures, re-arrangement
of portions of layouts, (purposeful) modification of manual
sequences. Some changes are major, and trigger the neces-
sity of performing a new risk assessment. Some changes are
minor—e.g., the limited variation of the geometry of a robot
tool—and likely have a negligible effect on production (task
execution) and safety conditions. Nonetheless, it is usually
very hard to predict the long-term effects of discrepancies in
execution, when these accumulate. For instance, cascading
effects on altered procedures may increase the rate of error
or unintended use of machinery. Also, in model-based plan-
ning of tasks at factory level, excessive drifts of the actual

execution with respect to the plan can have disruptive effects
on global optimization.

On the other hand, task alteration is a core feature of
lean and adaptable solutions: reconfiguration of layouts
and re-sequencing of schedules are examples of purposeful
operations regularly present in hybrid human-robot environ-
ments. Such alterations need of course to be tracked and
propagated in the abstract model of tasks to ensure the con-
sistency of available information and the validity of possible
updates [45]. For instance, in the experiment of the pallet
assembly task (Figs. 1 and 8) the addition of a single inspec-
tion action in the middle of the regular flow had disruptive
effects on the whole sequence because of the resulting major

Table 4 Validation of our approach by comparing it to the results of manual safety assessment

#Hazards #Tr Hazards #Qs Hazards Required Time

Manual Assessment 31 17(55%) 14(45%) 40 man-hours

Formal Verification 60 44(73%) 16(23%) 20 man-hours

J Intell Robot Syst (2021) 102:59 Page 23 of 26 59

timing alterations, new transient situations that arise when
resuming the regular execution, and much closer direct
physical interaction between robot and operator.

Task reconfiguration has significant effects on devel-
opment and—especially—on safety verification. Indeed,
reconfiguration cannot be underestimated since it has a
non-negligible rate of occurrence in practice. The main
advantage of a development toolchain, like the one pro-
posed in this work, is the ability to support the automatic
(re)generation of verification models and deployable com-
ponents from any model update. The design module, in
fact, has the ability to automatically translate the high-level
UML model into both the formal verification model (see
the actions-to-formal-predicates transformation of Fig. 7)
and the controller to be reloaded (see the actions-to-IEC-
61499-AFBs transformation in Fig. 11). Fully- or highly-
automated procedures for reconfiguring and maintaining
developed tasks offer greater chances of obtaining high
availability, which in terms of production contributes to
limit the system downtime. Efficient toolchains, in fact, can
be seen as major contributors to the overall dependability
of robotic applications, which in case of collaborative solu-
tions is of utmost relevance. Finally, semi-automated safety
verification procedures decrease the costs of safety assess-
ments, which can be substantial with respect to the overall
development costs.

9 Conclusion

In this paper we have introduced a tool-supported model-
driven approach to (i) create (formal) models of HRC appli-
cations, (ii) automatically perform formal verification on
them, and (iii) deploy corresponding function blocks. The
effectiveness of the presented toolchain has been validated
by carrying out some experiments on a few realistic case
studies, two of which have been described in this paper.

The prototype tool generates temporal logic models
from UML diagrams annotated with suitable stereotypes to
facilitate the creation of formal models. The UML-based
approach facilitates the development of HRC applications
by allowing users to quickly modify existing designs, to
easily build new task models as variations of previous
ones, and to continuously and automatically verify the
safety of the design with each new iteration. The tool also
allows users to deploy corresponding function blocks via the
4DIAC IDE framework.

Future work will focus on improving the tool by
including, for example, functions to automatically suggest
RRMs and modifications to the design depending on the
detected hazards.

Author Contributions Mehrnoosh Askarpour: Methodology, Con-
ceptualization, Software, Writing - original draft. Livia Lestingi: Soft-
ware, Investigation, Writing - original draft. Samuele Longoni: Soft-
ware, Investigation, Writing - original draft. Niccolò Iannacci: Con-
ceptualization, Resources. Matteo Rossi: Conceptualization, Super-
vision, Writing - review & editing, Funding acquisition. Federico
Vicentini: Conceptualization, Resources, Writing - review & editing.

Funding Open access funding provided by Politecnico di Milano
within the CRUI-CARE Agreement. The Italian Ministry of Edu-
cation, University and Research is acknowledged for the support
provided through the Project “Department of Excellence LIS4.0 -
Lightweight and Smart Structures for Industry 4.0”.

Availability of data and materials The datasets generated and/or
analysed during the current study are available from the corresponding
author on reasonable request.

Declarations

Ethics approval Not applicable (this article does not contain any
studies with human participants or animals performed by any of the
authors).

Consent to participate Not applicable (this article does not contain
any studies with human participants or animals performed by any of
the authors).

Consent for Publication All authors have approved the manuscript and
agree with its publication on Journal of Intelligent & Robotic Systems.

Competing interests The authors have no financial or proprietary
interests in any material discussed in this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Zot: a bounded satisfiability checker. available from http://github.
com/fm-polimi/zot (2012)

2. van der Aalst, W.M.: Three good reasons for using a petri-net-
based workflow management system. In: Proc. of the Int. Working
conf. on Info. and Process Integration in Enterprises, pp. 179–201.
Citeseer (1996)

3. van der Aalst, W.M., ter Hofstede, A., Kiepuszewski, B., Barros,
A.: Workflow patterns. Distrib Parallel Databases 14(1), 5–51
(2003)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://github.com/fm-polimi/zot
http://github.com/fm-polimi/zot

 59 Page 24 of 26 J Intell Robot Syst (2021) 102:59

4. Alonso, D., Vicente-chicote, C., Ortiz, F., Pastor, J., Alvarez,
B.: V3CMM: a 3-view component meta-model for model-driven
robotic software development. JOSER 1(January), 3–17 (2010)

5. Askarpour, M.: Safer-HRC: a methodology for safety assessment
through formal verification in HRC. Doctoral dissertation,
Politecnico di Milano (2018)

6. Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: Formal
model of human erroneous behavior for safety analysis in collabora-
tive robotics. Robot Comput. Integr. Manuf. 57, 465–476 (2019)

7. Askarpour, M., Lestingi, L., Buran, F., Rossi, M., Vicentini, F.:
Model-driven risk analysis for the design of safe collaborative
robotic applications. In: 2020 IEEE International Conference
on Human-Machine Systems (ICHMS), pp. 1–6 https://doi.org/
10.1109/ICHMS49158.2020.9209450 (2020)

8. Backhaus, J., Reinhart, G.: Digital description of products,
processes and resources for task-oriented programming of
assembly systems. J Intell Manuf 28(8), 1787–1800 (2017)

9. Banziger, T., Kunz, A., Wegener, K.: Optimizing human–robot
task allocation using a simulation tool based on standardized work
descriptions. J Intell Manuf (2018)

10. Baresi, L., Morzenti, A., Motta, A., Pourhashem Kallehbasti,
M.M., Rossi, M.: A logic-based approach for the verification of
uml timed models. ACM Trans. Softw. Eng. Methodol. 26(2),
7:1–7:47 (2017)

11. Bischoff, R., Guhl, T., Prassler, E., Nowak, W., Kraetzschmar, G.,
Bruyninckx, H., Soetens, P., Haegele, M., Pott, A., Breedveld, P.,
Broenink, J., Brugali, D., Tomatis, N.: BRICS - best practice in
robotics. In: Proc. of ISR and ROBOTIK, pp. 968–975 (2010)

12. Blanc, X., Delatour J, Ziadi T: Benefits of the MDE approach for
the development of embedded and robotic systems application to
aibo. Proc of the Workshop on Control Architecture of Robots
(2007)

13. Brugali, D., Scandurra, P.: Component-based robotic engineering
(part i)[tutorial]. IEEE Robot. Autom. Mag. 16(4), 84–96 (2009)

14. Brugali, D., Shakhimardanov, A.: Component-based robotic
engineering (part ii). IEEE Robot. Autom. Mag. 17(1), 100–112
(2010)

15. Bruning, J., Gogolla, M.: Uml metamodel-based workflow
modeling and execution. In: IEEE 15th Int. Enterprise Distr.
Object Computing conf., pp. 97–106 (2011)

16. Castelli, L., Nicola, A., Pesenti, R., Ukovich, W.: Autonomous
agent system using dispatching rules in the negotiation protocol.
In: Kulianic, E. (ed.) AMST’02 AdvancedManufacturing Systems
and Technology, pp. 577–584. Springer, Vienna (2002)

17. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.:
Robotml, a domain-specific language to design, simulate and
deploy robotic applications. In: International Conference on
Simulation, Modeling, and Programming for Autonomous Robots,
pp. 149–160. Springer (2012)

18. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling
time in computing: A taxonomy and a comparative survey. ACM
Comput Surv 42(2), 6:1–6:59 (2010)

19. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling
time in computing. Monographs in Theoretical Comp. Sci. An
EATCS Series, Springer (2012)

20. Gogolla, M., Henderson-sellers, B.: Analysis of uml stereotypes
within the uml metamodel. In: Proceedings of UML, pp. 84–99.
Springer (2002)

21. Iannacci, N., Giussani, M., Vicentini, F., Molinari Tosatti, L.:
Robotic cell work-flow management through an IEC 61499-ROS
architecture. In: ETFA, pp. 1–7. IEEE (2016)

22. ISO 12100: Safety of machinery – General principles for
design – Risk assessment and risk reduction. Int. Organ. for
Standardization (2010)

23. ISO/TR 14121-2: Safety of machinery – Risk assessment – Part
2: Practical guidance and examples of methods. Int. Organ. for
Standardization (2012)

24. ISO/TS 15066: Robots and robotic devices – Collaborative robots.
Int. Organ. for Standardization (2016)

25. Jiménez, P.: Survey on assembly sequencing: a combinatorial and
geometrical perspective. J Intell Manuf 24(2), 235–250 (2013)

26. Klotzbucher, M., Soetens, P., Bruyninckx, H.: Bcm: A minimal
robotic component model for multitarget system and component
generation. Tech. rep., Technical report, Best Practice in Robotics,
EU FP7 (2010)

27. Lestingi, L., Longoni, S.: HRC-TEAM: A model-driven approach
to formal verification and deployment of collaborative robotic
applications. Master’s thesis, Politecnico di Milano (2017)

28. Lewis, R.: Modelling distributed control systems using iec 61499:
Applying function blocks to distributed systems. 59, Iet (2001)

29. Plasch, M., Rooker, M., Pichler, A.: Simplified programming
of modular robotic systems based on workflow modeling. In:
Austrian Robotics Workshop (2012)

30. Maoudj, A., Bouzouia, B., Hentout, A., Kouider, A., Toumi, R.:
Distributed multi-agent scheduling and control system for robotic
flexible assembly cells. J Intell Manuf (2017)

31. Nielsen, I., Dang, Q.V., Bocewicz, G., Banaszak, Z.: A
methodology for implementation of mobile robot in adaptive manufac-
turing environments. J Intell Manuf 28(5), 1171–1188
(2017)

32. OMG: OMG unified modeling language™(OMG UML). Tech.
Rep. March, Object Management Group. http://www.omg.org/
spec/UML/2.5 (2015)

33. Pacaux-Lemoine, M.P., Trentesaux, D., Rey, G.Z., Millot, P.:
Designing intelligent manufacturing systems through human-
machine cooperation principles: A human-centered approach.
Comput Ind Eng 111, 581–595 (2017)

34. Panjaitan, S., Frey, G.: Functional design for IEC 61499
distributed control systems using uml activity diagrams. In:
Int. Conf, Instrumentation, Communication and Information
Technology, pp. 64–70 (2005)

35. Plasch, M., Pichler, A., Bauer, H., Rooker, M., Ebenhofer, G.:
A plug & produce approach to design robot assistants in a
sustainable manufacturing environment. In: 22nd Int. Conf. on
Flexible Automation and Intelligent Manufacturing (2012)

36. Pourhashem Kallehbasti, M.M., Rossi, M., Baresi, L.: On how bit-
vector logic can help verify ltl-based specifications. IEEE Trans.
Softw. Eng: 1–15 (2020)

37. Pradella, M., Morzenti, A., San Pietro, P.: Bounded satisfiability
checking of metric temporal logic specifications. ACM TOSEM
22(3), 20:1–20:54 (2013)

38. Ritala, T., Kuikka, S.: UML automation profile: Enhancing the
efficiency of sw development in the automation industry. In:
Proceedings of INDIN, pp. 885–890 (2007)

39. Sadeghpour, F., Andayesh, M.: The constructs of site layout
modeling: an overview. Canadian J. Civil Eng. 42(August 2014),
199–212 (2015)

40. Salimifard, K., Wright, M.: Petri net-based modelling of workflow
systems: An overview. European J. Oper. Res. 134, 664–676
(2001)

41. Sousa, P., Ramos, C.: A distributed architecture and negotiation
protocol for scheduling in manufacturing systems. Computers in
Industry 38(2), 103–113 (1999)

42. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: 3 metamod-
elling. In: Dagstuhl Workshop on Model-Based Engineering of
Embedded Real-Time Systems, pp. 57–76. Springer (2007)

43. Staron, M.: Improving modeling with UML by stereotype-based
language customization. Doctoral dissertation, Blekinge Institute
of Technology (2005)

https://doi.org/10.1109/ICHMS49158.2020.9209450
https://doi.org/10.1109/ICHMS49158.2020.9209450
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5

J Intell Robot Syst (2021) 102:59 Page 25 of 26 59

44. Strasser, T., Zoitl, A., Auinger, F., Sunder, C.: Towards
engineering methods for reconfiguration of distributed real-time
control systems based on the reference model of IEC 61499.
Springer (2005)

45. Strasser, T., Zoitl, A., Auinger, F., Sunder, C.: Towards
engineering methods for reconfiguration of distributed real-time
control systems based on the reference model of IEC 61499.
Springer (2005)

46. UML O: 2.4. 1 superstructure specification. Tech. rep., document
formal/2011-08-06. OMG (2011)

47. Valente, A., Carpanzano, E.: Development of multi-level adaptive
control and scheduling solutions for shop-floor automation
in reconfigurable manufacturing systems. CIRP Annals-Manuf
Technol 60(1), 449–452 (2011)

48. Van Der Aalst, W.M., Ter Hofstede, A.H.: Yawl: yet another
workflow language. Info Sys 30(4), 245–275 (2005)

49. Vicentini, F., Askarpour, M., Rossi, M.G., Mandrioli, D.: Safety
assessment of collaborative robotics through automated formal
verification. IEEE TRO 36(1), 42–61 (2020)

50. Vicentini, F., Pedrocchi, N., Beschi, M., Giussani, M., Iannacci,
N., Magnoni, P., Pellegrinelli, S., Roveda, L., Villagrossi, E.,
Askarpour, M., Maurtua, I., Tellaeche, A., Becchi, F., Stellin,
G., Fogliazza, G.: PIROS: Cooperative, safe and reconfigurable
robotic companion for CNC pallets load/unload stations, pp. 57–
96. Springer International Publishing, Cham (2020)

51. Vyatkin, V.: IEC 61499 function blocks for embedded and
distributed control systems design. ISA-Instrumentation, Systems,
and Automation Society (2007)

52. Wang, L., Keshavarzmanesh, S., Feng, H.Y.: A function block
based approach for increasing adaptability of assembly planning
and control. Int J Prod 49(16), 4903–4924 (2011)

53. Zhang, J., Ding, G., Zou, Y., Qin, S., Fu, J.: Review of job shop
scheduling research and its new perspectives under industry 4.0. J
Intell Manuf (2017)

54. Zoitl, A., Strasser, T.: Distributed Control Applications: Guide-
lines, Design Patterns, and Application Examples with the IEC
61499. Industrial Information Technology. CRC Press, Boca
Raton (2016)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Mehrnoosh Askarpour is an adjunct assistant professor at McMaster
University. Her current research interests include verification of safety-
critical system properties and application of formal methods for safe
robotics and autonomous vehicles.

Livia Lestingi earned her M.Sc. degree in Automation Engineering
from Politecnico di Milano in 2017. She is currently a Ph.D. student
in Information Technology at Politecnico di Milano. Her research
interests include the analysis of human-robot interaction through
formal methods and formal modeling techniques of human behavior.

Samuele Longoni has completed his University career at Politecnico
di Milano with a Master Thesis regarding formal validation and
deployment of human-robot applications. Now, he is focusing
on functional-safety requirements for mechatronic systems in the
automotive sector, working in the R&D department of an Italian
company dedicated to braking technology.

Niccolò Iannacci received the M.S. degree in mechanical engineering
from Politecnico di Milano, Milan, Italy, in 2014. His research interests
include optimal control theory and artificial intelligence applied to
humanrobot cooperation.

Matteo Rossi is an associate professor at Politecnico di Milano.
His research interests are in formal methods for safety-critical and
real-time systems, architectures for real-time distributed systems, and
transportation systems both from the point of view of their design, and
of their application in urban mobility scenarios.

Federico Vicentini received the M.Sc. degree in mechanical engi-
neering and the Ph.D. degree in mechanical system engineering from
the Politecnico di Milano, Milano, Italy, in 2003 and 2007, respec-
tively. He was a Researcher with the National Research Council
(CNR), Italy until 2019. His research interests include industrial robot
safety, human-robot interaction, and validation procedures. Mr. Vicen-
tini serves as a member of national and international standardization
committees for robot and machine safety. He is now with Boston
Dynamics, Inc. USA.

 59 Page 26 of 26 J Intell Robot Syst (2021) 102:59

Affiliations

Mehrnoosh Askarpour1 · Livia Lestingi2 · Samuele Longoni2 · Niccolò Iannacci3 · Matteo Rossi3 ·
Federico Vicentini4

Mehrnoosh Askarpour
askarpom@mcmaster.ca

Samuele Longoni
samuele.longoni@mail.polimi.it

Niccolò Iannacci
niccolo.iannacci@polimi.it

Matteo Rossi
Matteo.Rossi@polimi.it

Federico Vicentini
vicentinifederico@gmail.com

1 Computing and Software Department, McMaster University,
Hamilton, Canada

2 DEIB, Politecnico di Milano, Milan, Italy
3 Dipartimento di Meccanica, Politecnico di Milano, Milan, Italy
4 National Research Council (CNR), Rome, Italy

http://orcid.org/0000-0001-6526-2544
mailto: askarpom@mcmaster.ca
mailto: samuele.longoni@mail.polimi.it
mailto: niccolo.iannacci@polimi.it
mailto: Matteo.Rossi@polimi.it
mailto: vicentinifederico@gmail.com

	Formally-based Model-Driven Development of Collaborative Robotic Applications
	Abstract
	Introduction
	Structure of the Paper

	Related Work
	Modeling
	Deployment

	Running Example
	Task Design
	Class Diagrams
	Component Diagrams
	Customized Activity Diagrams

	Task Verification
	Preliminaries on Formal Modeling and Verification
	Formal Model
	From UML to Formal Models
	Exploring Human Errors and Hardware Failures
	Model Verification and Analysis of Outputs
	Introducing Risk Mitigation Factors

	Deployment
	Motivation and Advantages of Using Modular FBs
	Modes and Tools for FB Development
	From Verified UML Models to the Shopfloor

	Testing and Evaluation of the Toolchain
	Experiments on a Prototype Assembly Task
	Formal Verification
	Deployment

	Experiments on a Larger Task
	Validation of the Approach Compared to Manual Assessment

	About Task Reconfiguration
	Conclusion
	Declarations
	References
	Affiliations

