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ABSTRACT

This paper proposes a novel method for designing robust nonlinear multivariable predictive control for nonlinear active 
suspension systems via the Takagi-Sugeno fuzzy approach. The controller design is converted to a convex optimization prob-
lem with linear matrix inequality constraints. The stability of the control system is achieved by the use of terminal constraints, 
in particular the Constrained Receding-Horizon Predictive Control algorithm to maintain a robust performance of vehicle 
systems. A quarter-car model with active suspension system is considered in this paper and a numerical example is employed 
to illustrate the effectiveness of the proposed approach. The obtained results are compared with those achieved with model 
predictive control in terms of robustness and stability.
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I. INTRODUCTION

In general, vehicle suspension systems are used to
create ride comfort by isolating the chassis mass from road
disturbances and to improve road holding by preventing the
wheel from losing road contact. Many systems have been
developed to improve the road-holding ability and ride
quality of cars, as indicated in the literature review on
suspension systems.

Generally speaking, suspension systems can be cate-
gorized into passive suspensions, semi-active suspensions,
and active suspension systems [1–3], which have been
developed for achieving the required vehicle performance.
The active suspension system is more elastic and efficient
than other suspension systems, making it more able to offer
road-holding ability and ride quality. Therefore, active
suspension systems control has attracted the attention of nu-
merous researchers interested in ride and holding qualities.
However, active vehicle suspension system models assume
a small displacement about an operating point, and then it
creates a linearized working model [4–6]. On the other
hand, the system states exhibit large deviation from the
equilibrium point when the system is subjected to major
impact owing to rough roads or aggressive driving.

The performance obtained by these conventional
controllers cannot be regarded as satisfactory. Therefore,
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improvement in performance is expected if the nonlinearities
of the system can be included in the control design. While
such a treatment can be complicated when implementing
classical continuous optimal control, stability analysis and
controller synthesis theory for nonlinear systems have
received much attention recently. Different nonlinear active
suspensions based on various control techniques include:
the sliding model controller [7], fuzzy logic and neural
network control [8], adaptive control [9], and nonlinear
control [10], which are based on the idea of minimizing a
single objective function without any constraints.

Nonlinear Predictive Control (NPC) in conjunction with
hybrid modeling can be an attractive and systematic method-
ology to address these challenging control problems. Owing
to its ability to handle the constrained optimization control
problems for multiple-input multiple-output (MIMO) sys-
tems, and with its disturbance rejection properties, model pre-
dictive control (MPC) appears to be an appropriate technique
[11–14]. On the other hand, while the predictive control
approaches take into account the actuator constraints, they
are currently limited since the required measurements do
not cope with the industrial costs and reliability objectives.

This paper describes a new control strategy for the
active car suspension system. A robust nonlinear multivari-
able predictive control (RNMPC) under constraints is
proposed and solved using a linear matrix inequalities
(LMIs) formulation. This new approach is suitable, as both
performance and robustness issues are handled within a
unified framework. Firstly, the Takagi-Sugeno (T-S) fuzzy
model is used to approximate the nonlinear active vehicle
suspension systems [15–18]. Then, an NPC is built, and
reformulated as an optimization problem of robust quadratic
programming. Using LMIs, a design stability condition is
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introduced, which forces all possible changes to the system
state to converge on a finite horizon, or to reach a terminal
area for which a robust control law stabilizes the system.
Based on this approach, the suspension system is optimized
with respect to sprung mass acceleration, suspension deflec-
tion, and tire deflection

This paper is structured as follows. In Section II, the de-
scription of a class of active suspension systems and its repre-
sentation by a T-S fuzzy model are proposed. Section III
presents the formulation of a predictive control problem for
a quarter-car model. In Section IV, a robust predictive control
subject to LMI constraints is given. Simulation results are pre-
sented in Section V. Section VI concludes the paper.
II. MODELING OF NONLINEAR ACTIVE
SUSPENSION SYSTEM

2.1 Active quarter-car suspension

The quarter car model illustrated in Fig. 1 is consid-
ered here for designing active suspension control laws. This
model is a two-DOF (degree of freedom) quarter-car model
and considers both the vehicle sprung mass and the un-
sprung mass associated with the wheel/tire/axle assembly.

The dynamic equations that govern the motions of the
sprung and unsprung masses are represented as follows

ms€zs tð Þ þ cs _zs tð Þ � _zus tð Þð Þ þ ks zs tð Þ � zus tð Þð Þ ¼ �u tð Þ
mus€zus tð Þ þ cs _zus tð Þ � _zs tð Þð Þ þ ks zus tð Þ � zs tð Þð Þ

þcus _zus tð Þ � _zo tð Þð Þ þ kus zus tð Þ � zo tð Þð Þ ¼ u tð Þ
(1)
Fig. 1. The active quarter-car suspension system.
where zs(t) and zus(t) represent the vertical displacements of
the sprung mass and unsprung mass, respectively; zo(t) is
the road displacement input; u(t) represents the active con-
trol force of the suspension system; ms denotes the sprung
mass, which represents the car chassis; mus is the unsprung
mass, which represents the mass of the wheel assembly; ks
and cs are spring coefficient of suspension system and
damping coefficient of suspension system, respectively;
kus and cus stand for compressibility and damping of the
pneumatic tire, respectively.

The equations of motion in standard-state variable
form are as follows

d
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which can be further expressed by

_x tð Þ ¼ Ax tð Þ þ Bw tð Þ (3)

where the state variable are the tire deflection x1(t) =
zus(t)� z0(t), the unsprung-mass velocity x2 tð Þ ¼ _zus tð Þ, the
suspension stroke x3(t) = zs(t)� zus(t), and the sprung-mass
velocity x4 tð Þ ¼ _zs tð Þ. The coefficients of the state equation
also can be presented in the following form
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In (1) the springs and dampers of suspension systems
are usually modeled as linear elements. To show the effect
of dropping the nonlinear terms, assume a nonlinear model



where only primary spring nonlinearities appear. Therefore,
the following nonlinear differential equations are obtained
for the active car suspension system

ms€zs tð Þ þ cs _zs tð Þ � _zus tð Þð Þ þ ks zs tð Þ � zus tð Þð Þ
þNs zs tð Þ � zus tð Þð Þ3 ¼ �u tð Þ

mus€zus tð Þ þ cs _zus tð Þ � _zs tð Þð Þ þ ks zus tð Þ � zs tð Þð Þ
þNs zs tð Þ � zus tð Þð Þ3 þ cus _zus tð Þ � _zo tð Þð Þ
þkus zus tð Þ � zo tð Þð Þ ¼ u tð Þ

(4)

where Ns is the nonlinear stiffness property of the primary
suspension.

The design procedure begins with representing a given
nonlinear plant by T-S fuzzy model [19–21].

In the next section, the T-S fuzzy system is used to de-
scribe the original nonlinear system for the control-design
aim via the sector nonlinearity approach.
2.2 T-S fuzzy representation of suspension system

T-S fuzzy systems provide an effective representation
of uncertain nonlinear systems described by a set of linear
models. To obtain a T-S fuzzy model it is just enough that
the decision variables are assumed varying in the operating
range � β� x3(t)� β. Then the T-S fuzzy model of vehicle
suspension control system can be described by the follow-
ing two IF-THEN rules [22]

If x2 is F1
1 Then

_x tð Þ ¼ A1 þ δA1ð Þx tð Þ þ B1 þ δB1ð Þw tð Þ
y tð Þ ¼ C þ δCð Þx tð Þ

�

If x2 is F2
1 Then

_x tð Þ ¼ A2 þ δA2ð Þx tð Þ þ B2 þ δB2ð Þw tð Þ
y tð Þ ¼ C þ δCð Þx tð Þ

�

The active vehicle suspension can be represented by
the following T-S fuzzy model

_x tð Þ ¼
X4
i¼1

hi Ai þ δAið Þxþ Bi þ δBið Þw tð Þð Þ

y ¼ C þ δCð Þx

8><
>: (5)

In this work we consider the model of active quarter-
car suspension with nonlinearity effect of suspension given
by (4), and let the variable of premise is defined as

z tð Þ ¼ x3 tð Þð Þ2

when, x3(t) = [�β, β], and z(t) = [0, β2], z tð Þ ¼ βF1
1 x3 tð Þð Þ �

βF2
1 x3 tð Þð Þ, with
h1 zð Þ ¼ F1
1 x3 tð Þð Þ; h2 zð Þ ¼ F2

1 x3 tð Þð Þ

F1
1 x3 tð Þð Þ ¼ x3 tð Þ þ β

2β
;F2

1 x2ð Þ ¼ 1� F1
1 x3 tð Þð Þ

The nonlinear system (4) can be exactly represented in
the compact set [�β, β] of the variable x3(t) by the following
state-space matrices of the two rules in the T-S fuzzy
model
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A2 ¼
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Therefore the entire T-S car suspension model corre-
sponds to

x k þ 1ð Þ ¼ A kð Þ þ δA kð Þð Þx kð Þ þ B kð Þ þ δB kð Þð Þw kð Þ
y kð Þ ¼ C kð Þ þ δC kð Þð Þx kð Þ

�
(6)

where A kð Þ ¼ ∑
r

i¼1
hi z kð Þð ÞAi, B kð Þ ¼ ∑

r

i¼1
hi z kð Þð ÞBi, C kð Þ ¼

∑
r

i¼1
hi z kð Þð ÞCi

δA kð Þ ¼ ∑
r

i¼1
hi z kð Þð ÞδAi; δB kð Þ ¼ ∑

r

i¼1
hi z kð Þð ÞδBi;

In the next section, the control strategy, which takes
into account constraints such as control effort and state
variables, is presented.
III. MODEL PREDICTIVE CONTROLLER
DESIGN

The main advantages of MPC include the ability to
handle constraints and the capability for controlling multi-
variable plants. This section presents details of the applica-
tion of MPC based on the mixed control approach for active



suspension vehicle control. The MPC approach utilizes (6)
as the internal model of the actuator dynamics to predict
y(t) at a future discrete time instants [ŷ(k+H1/k), …,
ŷ(k+Hp/k)]. In this representation ŷ(k+ j/k) denotes the op-
timal j-step ahead prediction of the system output, based
on data up to time k, while H1 and Hp are respectively the
lower and upper limits of the receding horizon; the predic-
tive controller computes an optimal control sequence with
respect to the following cost function [23–25]

minJ
u

¼
XHp

j¼H1

r k þ jð Þ � ŷ k þ j=kð Þð ÞTQ r k þ jð Þ � ŷ k þ j=kð Þð Þ

þ
XHu

j¼1

�
u k þ j� 1ð ÞTRu k þ j� 1ð Þ

þΔu k þ j� 1ð ÞTSΔu k þ j� 1ð Þ�
(7)

where Hu is the control horizon, Q is the weighting matrix
of the tracking error, R and S are weighting matrices of
the control effort, r(k) is the reference trajectory vector,
u(k) is the control command and δu(k) is the incremental
control command representing the energy needed to actuate
the control effector. The control objective u(k), u(k+1)… is
used to achieve good ride quality while maintaining ade-
quate suspension clearance, i.e. minimizing the acceleration
of the vehicle body experienced by passengers without caus-
ing large suspension deflections.

Actuator displacement and the actuator displacement
rate are mechanically limited and these constraints are in-
corporated. Mathematically (7) can be expressed in a matrix
form as [26]

J Unð Þ ¼ Jmin þ 2 Γ� Yn
ref

� �T
QΛ� U

T
k�1SΔ

� �
Un

þUT
n ΛTQΛþ Rþ ΔTSΔ
	 


Un

(8)

where

Jmin ¼ YT
ref QYref þ ΓTQΓ� 2YT

ref QΓþ U
T
k�1SU

T
k�1

Subject to

LHuþ1

�LHuþ1

IHuþ1

�IHuþ1

Λ

�Λ

2
6666666664

3
7777777775
Un �

Umax þ Uk�1

�Umin � Uk�1

Umax

�Umin

Ymax � Γ

�Ymax þ Γ

2
6666666664

3
7777777775

(9)

Where the predicted output is given by (see Appendix VII)

Ŷ ¼ Γþ ΛUn (10)

and Ŷ ∈ RHpn0, Γ ∈ RHpn0 , Λ ∈ RHpn0�Huni and ΔUn ∈ RHuni, n0
and ni are the number of system outputs and system inputs,
respectively. Γ is called the free output response as it does
not depend on the control sequence and it is obtained by
simulation of the free response in the nonlinear model;
and ΛΔUn is called the force output response as it depends
on the selected control sequence where Λ is result of a
linearization.
3.1 CRHPC

The simplest method of enforcing stability with a
finite prediction horizon is to add a so-called terminal equal-
ity constraint at the end of the prediction horizon [27,28],
i.e. to add the equality constraint to the optimization prob-
lem (8) and (9). To guarantee the stability of the system,
the following set of terminal equality constraints is included
in the optimization problem

y t þ Hp þ j
� � ¼ Yref t þ Hp

� �
; j ¼ 1;⋯;m (11)

where m is instants beyond the prediction horizon,
representing the terminal constraint.

The prediction that is extended for m instants beyond
the prediction horizon results in (c index signify the termi-
nal constraint) (see Appendix VIII)

Ŷ c ¼ Γc þ ΛcUn; (12)

where Γc is the free response prediction extended for m in-
stants beyond the prediction horizon and ΛcUn is the forced
response prediction, based on future control actions.

Substituting (12) into (11), the terminal constraints (11)
can be reformulated in terms of optimization an upper
bound, then writing in a consistent form with the LMI struc-
ture: (see Appendix VIII)

ΛcUn � Yref � Γc

� �� αγIm < 0

�ΛcUn þ Yref � Γc

� �� αγIm < 0
(13)

In practice, α<< 1 proves to be sufficient to ensure the
equivalence between (13) and (11).
3.2 Robust Fuzzy Predictive Control

Owing to the disturbances caused by road bumpiness,
firm, uninterrupted contact of wheels with road (good road
holding) is important for vehicle handling and is essentially re-
lated to driving safety. Hence, it is also important to introduce
disturbances for solving the optimization problem. In this work
we modify the minimization of the nominal objective function
(8) to a minimization of the worst-case objective function.

By introducing uncertainty in the parameters of the
system (6), the predicted output will be restricted to the
forced response term (Λ+ δΛ)U, and the output prediction
with the terminal constraint is as follows



Ŷ ¼ Γþ ΛUn (14)

Ŷ c ¼ Γc þ ΛcUn (15)

Replacing (10) and (12) with (14) and (15), the cost func-
tion (8), constraints (9), and CRHPC (12) can be converted as

J Unð Þ ¼ Jmin þ 2
h

Γ� Yn
ref

� �T
QΛ� U

T
k�1SΔ

þ Γ� Yn
ref

� �T
QδΛ

i
Un þ UT

n

h
ΛTQΛþ R

þΔTSΔþ δΛTQδΛþ ΛTQδΛþ δΛTQΛ
i
Un

(16)

Subject to

LHuþ1

�LHuþ1

IHuþ1

�IHuþ1

Λþ δΛð Þ
� Λþ δΛð Þ
Λc þ δΛcð Þ
� Λc þ δΛcð Þ

2
666666666666664

3
777777777777775

Un <

Umax þ Uk�1

�Umin � Uk�1

Umax

�Umin

Ymax � Γ

�Ymin þ Γ

Yref � Γc þ αIm
�Yref þ Γc þ αIm

2
666666666666664

3
777777777777775

(17)

Observe that no uncertainty is considered in the free re-
sponses Γ and Γc.

The following section illustrates the problem formula-
tions, i.e. model for uncertain systems, modification of the
cost function by deriving an upper bound, and the motiva-
tion of the LMI approach. Note that all the constraints
should be transferred in terms of LMI constraints.
3.3 Formulation of the predictive control problem as a
quadratic program

Optimization problems associated with predictive con-
trol belong to the class of convex optimization problems since
the cost function (16) and feasible set (17) are convex [29]. So
our problem consists of minimizing a convex function (16) on
a convex domain (17). This convex minimization has a global
minimum only (if any) if the Hessian of the function objective
is positive definite [30,31]. In this sense, the MPC objective
function, (16), can be transformed into the form

min Un kð ÞTHUn kð Þ � PTUn kð Þ þ E (18)

Subject to the inequality constraints (15),
where the Hessien matrix H is positive definite if the matrix
Λ satisfies

rank Λð Þ ¼ Hu (19)

we see from (14) that the constraints may be structured as a
single formalism easily exploitable later by the optimization
algorithms
AUn kð Þ � B (20)

Criterion (18) is nonlinear in terms of quadratic terms,
and for its transformation into LMI form, we will use the
Schur complement lemma. This formalism can minimize
linear cost function with LMI constraints [32]

mincTx

Subject to F xð Þ < 0 (21)

whereF is a symmetricmatrix that depends affinely on the op-
timization variable x, and c is a real vector of appropriate size.
The solution is then to minimize the linear term « cTx ». This
is the observation about LMI-based optimization that is most
relevant to us. The next section uses the LMI formalism as an
optimization tool.
IV. LMI APPROACH FOR ROBUST
QUADRATIC PROGRAM

The main advantage of the LMI formulations is the
ability to combine various design constraints so that the
robust fuzzy control design based on LMIs can be readily
solved. In summary, the principle of this approach is to
minimize an upper bound of the objective function with re-
strictions on the input and output. It transfers the uncer-
tainties from the cost function to the constraints in order
to simplify the online computational complexity.

In general, the minimization of a convex quadratic
function J(Un) can result in an equivalent manner by the
strategy of minimizing.

Minimize γ and find an admissible Un satisfying

J Unð Þ < γ (22)

Convex quadratic inequality (23) is converted to LMI
form using the Schur complements [32]. Let L(x) =L(x)T,
M(x) =M(x)T and W(x) depend affinely on x. Then the fol-
lowing LMIs are equivalent

i) L xð Þ W xð Þ
W xð ÞT M xð Þ

� �
< 0 (23)

ii) M xð Þ < 0

L xð Þ �W xð ÞM xð Þ�1W xð ÞT < 0

�
(24)

Inequality (22) is strict but nonlinear. From the Schur
complement, the original optimization problem can be
formulated as

Min γ ∈ Rþ (25)

Subject to



2 Γ� Yn
ref

� �T
QΛ� U

T
k�1SΔþ Γ� Yn

ref

� �T
QδΛ

� �
Un þ Jmin � γ

Un

2
64
UT

n

� ΛTQΛþ Rþ ΔTSΔþ δΛTQδΛþ ΛTQδΛþ δΛTQΛ
	 
�1

3
5 < 0

� ΛTQΛþ Rþ ΔTSΔ
	 
�1

< 0

(26)
L Unð Þ ¼ 2 Γ� Yn
ref

� �T
QΛ� U

T
k�1SΔþ Γ� Yn

ref

� �T
QδΛ

� �
Un þ Jmin � γ

M Unð Þ ¼ � ΛTQΛþ Rþ ΔTSΔþ δΛTQδΛþ ΛTQδΛþ δΛTQΛ
	 
�1

W Unð Þ ¼ UT
n

8>>><
>>>:
L(Un),M(Un) and W(Un) are the Schur matrices.
Finally, the second inequality of (26) is always verified

by the Hessian structure in the MPC case. The previous
constraints (17) must be presented in a diagonal form thus
defining a convex and symmetric matrix space. At the end
of the three previous steps, the original problem can be for-
mulated as an LMI-based optimization problem

Min γ ∈ Rþ (27)

Subject to LMI constraints

2 Γ� Yn
ref

� �T
QΛ� U

T
k�1SΔþ Γ� Yn

ref

� �T
QδΛ

� �
Un þ Jmin � γ

Un

2
64
UT

n

� ΛTQΛþ Rþ ΔTSΔþ δΛTQδΛþ ΛTQδΛþ δΛTQΛ
	 
�1

3
5 < 0

diag LHuþ1Un � Umax þ Uk�1ð Þð Þ � 0

diag �LHuþ1Un þ Umin þ Uk�1ð Þð Þ � 0

diag IHuþ1Un � Umaxð Þ � 0

diag �IHuþ1Un þ Uminð Þ � 0

diag Λþ δΛð ÞUn � Ymax þ Γð Þ � 0

diag � Λþ δΛð ÞUn þ Ymin � Γð Þ � 0

diag Λcþ δΛcð ÞUn � Yref � Γc

� �� αγIm
� � � 0

diag � ΛcþþδΛcð ÞUn þ Yref � Γc

� �� αγIm
� � � 0

(28)

V. SIMULATION RESULTS

In this simulation, we consider the discrete-time
model of an active car suspension as given by (4), with a
sampling time of T=0.5ms. In the simulation the parameters
are set as follows

ms=240[kg], mus=36[kg], ks=16000[N/m],
kus=160000[N/m], cs=980[N*s/m], cus=400[41%of cs] and
Ns=1600[10%of ks].

Using sector nonlinearity, the discrete T-S fuzzy
model of the above system is obtained. The T-S fuzzy
model is
A1 ¼

0 1 0 0

�kus
mus

cs þ cusð Þ
mus

ks
mus

cs
mus

0 �1 0 1

0
cs
ms

�ks
ms

� cs
ms
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;

A2 ¼

0 1 0 0

�kus
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cs þ cusð Þ
mus

ks � Nsβ2

mus

cs
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0 �1 0 1

0
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�ks þ Nsβ2

ms
� cs
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2
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3
777777775

B1 ¼ B2 ¼

0 �1
1
mus

cus
mus

0 0

� 1
ms

0

2
6666664

3
7777775

with β =0.2.

We can easily obtain the discrete-time local models of
fuzzy system (3) for the active suspension system (1) under
the sampling time T=0.5ms. The MPC parameters are
selected as follows. The control horizon is Hu=1, and the
prediction horizon is set only to Hp= 12. The weighting
matrices are Q=I, R=0.4I and S= 0.15I. To limit the power
of the hydraulic actuator, the hard constraint on the active
suspension is imposed |u(k)|�umax; umax=1500; and the
CRHPC are m=2.

The RNPC-based LMI seen in Sections 3.2 and 3.4,
shows that when calculating the objective function, the
variation between the model and the real plant is repre-
sented in the predicted output by the forced response.
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Fig. 3. Step response of sprung mass acceleration.
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This allows the control of the system when it is subject to
an uncertain system.

To evaluate the performance of each controller, we
consider controller characteristic parameters such as maxi-
mum overshoot, delay time, rise time, settling time, and a
steady-state error.

Fig. 2 shows the step response of the suspension deflec-
tion, and we see that the overshoot percentage and settling
time requirements are satisfied. The output has a settling time
less than 1.2 seconds and an overshoot of less than 5%.More-
over, the steady-state error approaches zero as well. There-
fore, we determine that the response is satisfactory. It can be
seen from Fig. 2 that better performance from the point of
view of robustness and stability are obtained with RNPC.
The RNPC can still stabilize the closed-loop system with no
obvious degradation on performance. Using the proposed
control approach, the fluctuations of suspension deflection
is about 65% less than that of the open-loop and 45% less
than that of the MPC control. We can also see that suspension
deflection of the MPC controller presents more fluctuation.
This impact produces a significant jerk on the car chassis
and introduces undesired accelerations into the system and
degrades the ride characteristics of the vehicle. But this situa-
tion does not happen in the RMPC.

In Fig. 3, we observe that the sprung mass acceleration
of the RNPC controller yields the least value of the maxi-
mum sprung mass acceleration, compared with the MPC
controller. In addition, we can see in Fig. 4 that the active
control force constraint is respected by the RNPC control,
while it is not respected by the MPC controller owing to
its ignorance of the hard constraints in the controller design
process. Consequently, the ride quality of the vehicle sus-
pension system can be significantly improved, as compared
with the standard MPC controller.

It can also be seen in Fig. 5 that the tire deflection of
the RNPC is less than that of the MPC controller. This
means that RNPC can produce better road holding, and it
can be seen that the MPC improves ride and handling
performance greatly.
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VI. CONCLUSION

In this paper, the problem of robust fuzzy predictive
control has been presented to design a controller for an ac-
tive car suspension system under road disturbances. First,
the sector nonlinearity method was used to construct the
nonlinear active suspension system by T-S fuzzy system.



An optimization method based on LMIs was intro-
duced to reformulate the problem of non-linear quadratic
programming to solve a robust model predictive control
with constraints on both active suspension system and
measured output, in such a way that road disturbances
were considered as the output of the system. The termi-
nal equality constraints were imposed and formulated in
terms of LMIs to guarantee closed-loop stability. The
control law provides the freedom to minimize vertical
passenger acceleration, suspension travel, and tire deflec-
tions under road disturbances on the wheel. Future work
will be focused on extending the RNPC for active fault-
tolerant control of vehicle active suspension systems.
VII. APPENDIX

The design of a predictive controller demands
the construction of a predictor. Then the construction
of the predictor in the state-space representation can
be conducted by iterating model (3) for more detail
see [6]. In matrix representation the prediction can
be seen as

Ŷ ¼ Γþ Λþ δΛð ÞUn (29)

After a mathematical manipulation of prediction,
the matrices Λ,Γ are given by

Λ ¼ Cn�H 0½ �; δΛ ¼ δCn�δH 0½ � (30)

and

Γ ¼ CnΦx kð Þ (31)

H ¼

B 0 … 0

AB B … 0

⋮

AHp�2B AHp�3B …
XHp�Hu�1

i¼0
AiB

AHp�1B AHp�2B …
XHp�Hu

i¼0
AiB

2
66666666664

3
77777777775
;

δH ¼

δB 0 … 0

δA δB B … 0

⋮

δAHp�2δB δAHp�3δB …
XHp�Hu�1

i¼0
δAiδB

δAHp�1δB δAHp�2δB …
XHp�Hu

i¼0
δAiδB

2
66666666664

3
77777777775
Φ ¼

A

A2

⋮

AHp

2
666664

3
777775; Cn ¼

C 0 … 0

0 C … 0

⋮ ⋮ ⋱ ⋮

0 0 … C

2
666664

3
777775; ∈ R

Hpno�Hpns;

δCn ¼

δC 0 … 0

0 δC … 0

⋮ ⋮ ⋱ ⋮

0 0 … δC

2
666664

3
777775; ∈ R

Hpno�Hpns

i. Saturation of the control signal

umin k þ j� 1ð Þ < u k þ j� 1ð Þ < umax k þ j� 1ð Þ
; j ¼ 1;…;Hu þ 1

(32)

This constraint can be grouped under the following
matrix form

Umin < I Un < Umax (33)

where

IHuþ1 ¼

1 0 … 0

0 1 … 0

⋮ ⋮ ⋱ ⋮
0 0 … 1

2
6664

3
7775; ∈ RHuþ1�Huþ1;

(33) can be written in the matrix form as

IHuþ1

�IHuþ1

� �
Un <

Umax

�Umin

� �
(34)

ii. Saturation of the increment control

Δumin k þ j� 1ð Þ <
Xj

i¼1

u k þ j� 1ð Þ � u k � 1ð Þ

< Δumax k þ j� 1ð Þ ; j ¼ 1;…;Hu þ 1

(35)

This gives in matrix form

Umin þ Uk�1 < LHuþ1Un < Umax þ Uk�1 (36)



LHuþ1 ¼

1 0 … 0

1 1 … 0

⋮ ⋮ ⋱ ⋮

1 1 … 1

2
666664

3
777775; ∈ R

Huþ1�Huþ1;

Uk�1 ¼

u k � 1ð Þ
u k � 1ð Þ
⋮

u k � 1ð Þ

2
666664

3
777775; ∈ R

Huþ1ð Þni

(36) can be written in the matrix form as

LHuþ1

�LHuþ1

� �
Un <

Umax þ Uk�1

�Umin � Uk�1

� �
(37)

iii. Saturation of the output signal

ymin < ŷ k þ jð Þ < ymax ; j ¼ 1;…;Hp (38)

Then inserting (29) into (38) yields

Ymin < Γþ Λþ δΛð ÞUn < Ymax (39)

That can be transformed in the matrix inequalities

Λþ δΛð Þ
� Λþ δΛð Þ

� �
Un <

Ymax � Γ

�Ymin þ Γ

� �
(40)

VIII. APPENDIX

Similarly we calculate the predicted output of the ho-
rizon that represents the additional terminal constraints;
here we assume that the system is still uncertain

Ŷ c ¼ Γc þ Λc þ δΛcð ÞUn (41)

After a mathematical manipulation of prediction, the
matrices Λc, δΛc, Γc are given by

Λc ¼ Cnc�Hc 0½ �; δΛc ¼ δCnc�δHc 0½ � (42)

and

Γc ¼ CncΦcx kð Þ (43)
Hc ¼

AHpB AHp�1B …
XHp�Huþ1

i¼0
AiB

AHpþ1B AHpB …
XHp�Huþ2

i¼0
AiB

⋮ ⋮ ⋱ ⋮

AHpþm�1B AHpþm�2B …
XHp�Huþm

i¼0
AiB

2
66666664

3
77777775
;

Hc ¼

δAHpδB δAHp�1δB …
XHp�Huþ1

i¼0
δAiδB

δAHpþ1δB δAHpδB …
XHp�Huþ2

i¼0
δAiδB

⋮ ⋮ ⋱ ⋮

AHpþm�1B AHpþm�2B …
XHp�Huþm

i¼0
δAiδB

2
66666664

3
77777775

Φ ¼

AHpþ1

AHpþ2

⋮
AHpþm

2
66664

3
77775;Cn ¼

C 0 … 0

0 C … 0

⋮ ⋮ ⋱ ⋮
0 0 … C

2
6664

3
7775; ∈ Rmno�mns

where no, ni, and ns are the number of system outputs,
system input, and system order, respectively.

This constraint leads to the following condition

y t þ Hp þ j
� � ¼ yref t þ Hp

� �
; j ¼ 1;⋯;m (44)

Substituting (41) into (44) we obtain the following
matrix form

Λc þ δΛcð ÞUn ¼ Yrefc � Γc (45)

(45) can be reformulated in terms of optimizing an upper
bound, written in the following form

min α ∈ Rþ

Subject to

Λc þ δΛcð Þ
� Λc þ δΛcð Þ

� �
Un <

Yref � Γc þ αIm
�Yref þ Γc þ αIm

� �
(46)

where Im is the identity matrix of dimension m.
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