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Abstract: In this paper, we consider optimization problems involving multiple agents. Each agent
introduces its own constraints on the optimization vector, and the constraints of all agents depend on
a common source of uncertainty. We suppose that uncertainty is known locally to each agent through a
private set of data (multi-agent scenarios), and that each agent enforces its scenario-based constraints to
the solution of the multi-agent optimization problem. Our goal is to assess the feasibility properties of the
corresponding multi-agent scenario solution. In particular, we are able to provide a priori certificates that
the solution is feasible for a new occurrence of the global uncertainty with a probability that depends
on the size of the datasets and the desired confidence level. The recently introduced wait-and-judge
approach to scenario optimization and the notion of support rank are used for this purpose. Notably,
decision-coupled and constraint-coupled uncertain optimization programs for multi-agent systems fit our
framework and, hence, any distributed optimization scheme to solve the associated multi-agent scenario
problem can be accompanied with our a priori probabilistic feasibility certificates.
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1. INTRODUCTION

We consider cooperative optimization in multi-agent systems
where the goal is to minimize some global cost function subject
to local constraints. Prominent examples of systems involving
multiple entities interacting with each other can be found in
various application domains, such as power systems, Bolognani
et al. (2015); Zhang and Giannakis (2016), wireless networks,
Mateos and Giannakis (2012); Baingana et al. (2014), and
robotics, Martı́nez et al. (2007). Most of the literature address-
ing cooperative optimization in multi-agent systems focuses on
the design of algorithms that are compatible with the networked
structure of the system, distribute the computations among
agents, and preserve privacy of local information. Typically,
they refer to a deterministic nominal setting and neglect the
uncertainty affecting the system. However, this may result in an
infeasible design when uncertainty takes a value different from
the nominal one, which hampers the actual implementation of
the computed optimal solution.
In this paper, we instead focus on multi-agent optimization
problems affected by uncertainty, which is only known through
data. More specifically, we consider m agents that communi-
cate to cooperatively solve the following optimization problem.

Pδ : min
x∈X

f(x) (1)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where x ∈ Rn represents a vector of n decision variables that
is constrained to take values in a convex set X ⊆ Rn, and δ
� Research was partially supported by EPSRC UK, grant EP/P03277X/1.

is some uncertain parameter taking value in ∆ according to a
probability measure P. Function f(·) : Rn → R is a convex
cost to be minimized and, for any δ ∈ ∆, the convex constraint
set Xi(δ) ⊆ Rn incorporates all the restrictions imposed by
agent i to the decision vector, including constraints expressed
by inequalities of the type hi(x, δ) ≤ 0. In problem Pδ , the
decision vector x is required to belong to

⋂m
i=1 Xi(δ) for all

possible realizations of the uncertain parameter and, as such, it
is a robust convex program. Assuming that only the constraints
depends on δ, while the objective functions f(x) does not, is
without loss of generality: epigraphic reformulations indeed
always allows one to recast problems in the form of Pδ .
In this paper, we assume that ∆ and P are unknown so that
the exact resolution of Pδ is impossible as agents lack the
information to address it. In this case, alternative approaches
to deal with uncertainty must be considered. Motivated by
data driven considerations, we assume that each agent i, i =
1, . . . ,m, is provided with a collection Si ⊂ ∆ of Ni ∈ N+

independent realizations of δ according to P. These realizations
of δ are called scenarios and have to be thought of as data. We
distinguish between two cases:

(a) Si = S̄ and Ni = N̄ , i = 1, . . . ,m, i.e. the scenarios are
common across agents;

(b) the Si, i = 1, . . . ,m, are all different and the scenarios
belonging to distinct sets are independent of each other.

Case (a) models situations where all agents have access to the
same historical data or where agents communicate scenarios;
in (b) instead the information is distributed across agents and
scenarios have to be regarded to as private resources.
According to the available information, constraints in (1) can

A scenario-based approach to multi-agent
optimization with distributed information �

Alessandro Falsone ∗ Kostas Margellos ∗∗ Maria Prandini ∗
Simone Garatti ∗

∗ Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (e-mail:
{alessandro.falsone,maria.prandini,simone.garatti}@polimi.it).

∗∗ Department of Engineering Science, University of Oxford, Parks Road,
OX1 3PJ, Oxford, UK (e-mail: kostas.margellos@eng.ox.ac.uk)

Abstract: In this paper, we consider optimization problems involving multiple agents. Each agent
introduces its own constraints on the optimization vector, and the constraints of all agents depend on
a common source of uncertainty. We suppose that uncertainty is known locally to each agent through a
private set of data (multi-agent scenarios), and that each agent enforces its scenario-based constraints to
the solution of the multi-agent optimization problem. Our goal is to assess the feasibility properties of the
corresponding multi-agent scenario solution. In particular, we are able to provide a priori certificates that
the solution is feasible for a new occurrence of the global uncertainty with a probability that depends
on the size of the datasets and the desired confidence level. The recently introduced wait-and-judge
approach to scenario optimization and the notion of support rank are used for this purpose. Notably,
decision-coupled and constraint-coupled uncertain optimization programs for multi-agent systems fit our
framework and, hence, any distributed optimization scheme to solve the associated multi-agent scenario
problem can be accompanied with our a priori probabilistic feasibility certificates.

Keywords: Uncertain systems, multi-agent systems, data-driven optimization, distributed algorithms.

1. INTRODUCTION

We consider cooperative optimization in multi-agent systems
where the goal is to minimize some global cost function subject
to local constraints. Prominent examples of systems involving
multiple entities interacting with each other can be found in
various application domains, such as power systems, Bolognani
et al. (2015); Zhang and Giannakis (2016), wireless networks,
Mateos and Giannakis (2012); Baingana et al. (2014), and
robotics, Martı́nez et al. (2007). Most of the literature address-
ing cooperative optimization in multi-agent systems focuses on
the design of algorithms that are compatible with the networked
structure of the system, distribute the computations among
agents, and preserve privacy of local information. Typically,
they refer to a deterministic nominal setting and neglect the
uncertainty affecting the system. However, this may result in an
infeasible design when uncertainty takes a value different from
the nominal one, which hampers the actual implementation of
the computed optimal solution.
In this paper, we instead focus on multi-agent optimization
problems affected by uncertainty, which is only known through
data. More specifically, we consider m agents that communi-
cate to cooperatively solve the following optimization problem.

Pδ : min
x∈X

f(x) (1)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where x ∈ Rn represents a vector of n decision variables that
is constrained to take values in a convex set X ⊆ Rn, and δ
� Research was partially supported by EPSRC UK, grant EP/P03277X/1.

is some uncertain parameter taking value in ∆ according to a
probability measure P. Function f(·) : Rn → R is a convex
cost to be minimized and, for any δ ∈ ∆, the convex constraint
set Xi(δ) ⊆ Rn incorporates all the restrictions imposed by
agent i to the decision vector, including constraints expressed
by inequalities of the type hi(x, δ) ≤ 0. In problem Pδ , the
decision vector x is required to belong to

⋂m
i=1 Xi(δ) for all

possible realizations of the uncertain parameter and, as such, it
is a robust convex program. Assuming that only the constraints
depends on δ, while the objective functions f(x) does not, is
without loss of generality: epigraphic reformulations indeed
always allows one to recast problems in the form of Pδ .
In this paper, we assume that ∆ and P are unknown so that
the exact resolution of Pδ is impossible as agents lack the
information to address it. In this case, alternative approaches
to deal with uncertainty must be considered. Motivated by
data driven considerations, we assume that each agent i, i =
1, . . . ,m, is provided with a collection Si ⊂ ∆ of Ni ∈ N+

independent realizations of δ according to P. These realizations
of δ are called scenarios and have to be thought of as data. We
distinguish between two cases:

(a) Si = S̄ and Ni = N̄ , i = 1, . . . ,m, i.e. the scenarios are
common across agents;

(b) the Si, i = 1, . . . ,m, are all different and the scenarios
belonging to distinct sets are independent of each other.

Case (a) models situations where all agents have access to the
same historical data or where agents communicate scenarios;
in (b) instead the information is distributed across agents and
scenarios have to be regarded to as private resources.
According to the available information, constraints in (1) can

A scenario-based approach to multi-agent
optimization with distributed information �

Alessandro Falsone ∗ Kostas Margellos ∗∗ Maria Prandini ∗
Simone Garatti ∗

∗ Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (e-mail:
{alessandro.falsone,maria.prandini,simone.garatti}@polimi.it).

∗∗ Department of Engineering Science, University of Oxford, Parks Road,
OX1 3PJ, Oxford, UK (e-mail: kostas.margellos@eng.ox.ac.uk)

Abstract: In this paper, we consider optimization problems involving multiple agents. Each agent
introduces its own constraints on the optimization vector, and the constraints of all agents depend on
a common source of uncertainty. We suppose that uncertainty is known locally to each agent through a
private set of data (multi-agent scenarios), and that each agent enforces its scenario-based constraints to
the solution of the multi-agent optimization problem. Our goal is to assess the feasibility properties of the
corresponding multi-agent scenario solution. In particular, we are able to provide a priori certificates that
the solution is feasible for a new occurrence of the global uncertainty with a probability that depends
on the size of the datasets and the desired confidence level. The recently introduced wait-and-judge
approach to scenario optimization and the notion of support rank are used for this purpose. Notably,
decision-coupled and constraint-coupled uncertain optimization programs for multi-agent systems fit our
framework and, hence, any distributed optimization scheme to solve the associated multi-agent scenario
problem can be accompanied with our a priori probabilistic feasibility certificates.

Keywords: Uncertain systems, multi-agent systems, data-driven optimization, distributed algorithms.

1. INTRODUCTION

We consider cooperative optimization in multi-agent systems
where the goal is to minimize some global cost function subject
to local constraints. Prominent examples of systems involving
multiple entities interacting with each other can be found in
various application domains, such as power systems, Bolognani
et al. (2015); Zhang and Giannakis (2016), wireless networks,
Mateos and Giannakis (2012); Baingana et al. (2014), and
robotics, Martı́nez et al. (2007). Most of the literature address-
ing cooperative optimization in multi-agent systems focuses on
the design of algorithms that are compatible with the networked
structure of the system, distribute the computations among
agents, and preserve privacy of local information. Typically,
they refer to a deterministic nominal setting and neglect the
uncertainty affecting the system. However, this may result in an
infeasible design when uncertainty takes a value different from
the nominal one, which hampers the actual implementation of
the computed optimal solution.
In this paper, we instead focus on multi-agent optimization
problems affected by uncertainty, which is only known through
data. More specifically, we consider m agents that communi-
cate to cooperatively solve the following optimization problem.

Pδ : min
x∈X

f(x) (1)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where x ∈ Rn represents a vector of n decision variables that
is constrained to take values in a convex set X ⊆ Rn, and δ
� Research was partially supported by EPSRC UK, grant EP/P03277X/1.

is some uncertain parameter taking value in ∆ according to a
probability measure P. Function f(·) : Rn → R is a convex
cost to be minimized and, for any δ ∈ ∆, the convex constraint
set Xi(δ) ⊆ Rn incorporates all the restrictions imposed by
agent i to the decision vector, including constraints expressed
by inequalities of the type hi(x, δ) ≤ 0. In problem Pδ , the
decision vector x is required to belong to

⋂m
i=1 Xi(δ) for all

possible realizations of the uncertain parameter and, as such, it
is a robust convex program. Assuming that only the constraints
depends on δ, while the objective functions f(x) does not, is
without loss of generality: epigraphic reformulations indeed
always allows one to recast problems in the form of Pδ .
In this paper, we assume that ∆ and P are unknown so that
the exact resolution of Pδ is impossible as agents lack the
information to address it. In this case, alternative approaches
to deal with uncertainty must be considered. Motivated by
data driven considerations, we assume that each agent i, i =
1, . . . ,m, is provided with a collection Si ⊂ ∆ of Ni ∈ N+

independent realizations of δ according to P. These realizations
of δ are called scenarios and have to be thought of as data. We
distinguish between two cases:

(a) Si = S̄ and Ni = N̄ , i = 1, . . . ,m, i.e. the scenarios are
common across agents;

(b) the Si, i = 1, . . . ,m, are all different and the scenarios
belonging to distinct sets are independent of each other.

Case (a) models situations where all agents have access to the
same historical data or where agents communicate scenarios;
in (b) instead the information is distributed across agents and
scenarios have to be regarded to as private resources.
According to the available information, constraints in (1) can

10.1016/j.ifacol.2020.12.034 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

A scenario-based approach to multi-agent
optimization with distributed information �

Alessandro Falsone ∗ Kostas Margellos ∗∗ Maria Prandini ∗
Simone Garatti ∗

∗ Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (e-mail:
{alessandro.falsone,maria.prandini,simone.garatti}@polimi.it).

∗∗ Department of Engineering Science, University of Oxford, Parks Road,
OX1 3PJ, Oxford, UK (e-mail: kostas.margellos@eng.ox.ac.uk)

Abstract: In this paper, we consider optimization problems involving multiple agents. Each agent
introduces its own constraints on the optimization vector, and the constraints of all agents depend on
a common source of uncertainty. We suppose that uncertainty is known locally to each agent through a
private set of data (multi-agent scenarios), and that each agent enforces its scenario-based constraints to
the solution of the multi-agent optimization problem. Our goal is to assess the feasibility properties of the
corresponding multi-agent scenario solution. In particular, we are able to provide a priori certificates that
the solution is feasible for a new occurrence of the global uncertainty with a probability that depends
on the size of the datasets and the desired confidence level. The recently introduced wait-and-judge
approach to scenario optimization and the notion of support rank are used for this purpose. Notably,
decision-coupled and constraint-coupled uncertain optimization programs for multi-agent systems fit our
framework and, hence, any distributed optimization scheme to solve the associated multi-agent scenario
problem can be accompanied with our a priori probabilistic feasibility certificates.

Keywords: Uncertain systems, multi-agent systems, data-driven optimization, distributed algorithms.

1. INTRODUCTION

We consider cooperative optimization in multi-agent systems
where the goal is to minimize some global cost function subject
to local constraints. Prominent examples of systems involving
multiple entities interacting with each other can be found in
various application domains, such as power systems, Bolognani
et al. (2015); Zhang and Giannakis (2016), wireless networks,
Mateos and Giannakis (2012); Baingana et al. (2014), and
robotics, Martı́nez et al. (2007). Most of the literature address-
ing cooperative optimization in multi-agent systems focuses on
the design of algorithms that are compatible with the networked
structure of the system, distribute the computations among
agents, and preserve privacy of local information. Typically,
they refer to a deterministic nominal setting and neglect the
uncertainty affecting the system. However, this may result in an
infeasible design when uncertainty takes a value different from
the nominal one, which hampers the actual implementation of
the computed optimal solution.
In this paper, we instead focus on multi-agent optimization
problems affected by uncertainty, which is only known through
data. More specifically, we consider m agents that communi-
cate to cooperatively solve the following optimization problem.

Pδ : min
x∈X

f(x) (1)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where x ∈ Rn represents a vector of n decision variables that
is constrained to take values in a convex set X ⊆ Rn, and δ
� Research was partially supported by EPSRC UK, grant EP/P03277X/1.

is some uncertain parameter taking value in ∆ according to a
probability measure P. Function f(·) : Rn → R is a convex
cost to be minimized and, for any δ ∈ ∆, the convex constraint
set Xi(δ) ⊆ Rn incorporates all the restrictions imposed by
agent i to the decision vector, including constraints expressed
by inequalities of the type hi(x, δ) ≤ 0. In problem Pδ , the
decision vector x is required to belong to

⋂m
i=1 Xi(δ) for all

possible realizations of the uncertain parameter and, as such, it
is a robust convex program. Assuming that only the constraints
depends on δ, while the objective functions f(x) does not, is
without loss of generality: epigraphic reformulations indeed
always allows one to recast problems in the form of Pδ .
In this paper, we assume that ∆ and P are unknown so that
the exact resolution of Pδ is impossible as agents lack the
information to address it. In this case, alternative approaches
to deal with uncertainty must be considered. Motivated by
data driven considerations, we assume that each agent i, i =
1, . . . ,m, is provided with a collection Si ⊂ ∆ of Ni ∈ N+

independent realizations of δ according to P. These realizations
of δ are called scenarios and have to be thought of as data. We
distinguish between two cases:

(a) Si = S̄ and Ni = N̄ , i = 1, . . . ,m, i.e. the scenarios are
common across agents;

(b) the Si, i = 1, . . . ,m, are all different and the scenarios
belonging to distinct sets are independent of each other.

Case (a) models situations where all agents have access to the
same historical data or where agents communicate scenarios;
in (b) instead the information is distributed across agents and
scenarios have to be regarded to as private resources.
According to the available information, constraints in (1) can

A scenario-based approach to multi-agent
optimization with distributed information �

Alessandro Falsone ∗ Kostas Margellos ∗∗ Maria Prandini ∗
Simone Garatti ∗

∗ Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (e-mail:
{alessandro.falsone,maria.prandini,simone.garatti}@polimi.it).

∗∗ Department of Engineering Science, University of Oxford, Parks Road,
OX1 3PJ, Oxford, UK (e-mail: kostas.margellos@eng.ox.ac.uk)

Abstract: In this paper, we consider optimization problems involving multiple agents. Each agent
introduces its own constraints on the optimization vector, and the constraints of all agents depend on
a common source of uncertainty. We suppose that uncertainty is known locally to each agent through a
private set of data (multi-agent scenarios), and that each agent enforces its scenario-based constraints to
the solution of the multi-agent optimization problem. Our goal is to assess the feasibility properties of the
corresponding multi-agent scenario solution. In particular, we are able to provide a priori certificates that
the solution is feasible for a new occurrence of the global uncertainty with a probability that depends
on the size of the datasets and the desired confidence level. The recently introduced wait-and-judge
approach to scenario optimization and the notion of support rank are used for this purpose. Notably,
decision-coupled and constraint-coupled uncertain optimization programs for multi-agent systems fit our
framework and, hence, any distributed optimization scheme to solve the associated multi-agent scenario
problem can be accompanied with our a priori probabilistic feasibility certificates.

Keywords: Uncertain systems, multi-agent systems, data-driven optimization, distributed algorithms.

1. INTRODUCTION

We consider cooperative optimization in multi-agent systems
where the goal is to minimize some global cost function subject
to local constraints. Prominent examples of systems involving
multiple entities interacting with each other can be found in
various application domains, such as power systems, Bolognani
et al. (2015); Zhang and Giannakis (2016), wireless networks,
Mateos and Giannakis (2012); Baingana et al. (2014), and
robotics, Martı́nez et al. (2007). Most of the literature address-
ing cooperative optimization in multi-agent systems focuses on
the design of algorithms that are compatible with the networked
structure of the system, distribute the computations among
agents, and preserve privacy of local information. Typically,
they refer to a deterministic nominal setting and neglect the
uncertainty affecting the system. However, this may result in an
infeasible design when uncertainty takes a value different from
the nominal one, which hampers the actual implementation of
the computed optimal solution.
In this paper, we instead focus on multi-agent optimization
problems affected by uncertainty, which is only known through
data. More specifically, we consider m agents that communi-
cate to cooperatively solve the following optimization problem.

Pδ : min
x∈X

f(x) (1)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where x ∈ Rn represents a vector of n decision variables that
is constrained to take values in a convex set X ⊆ Rn, and δ
� Research was partially supported by EPSRC UK, grant EP/P03277X/1.

is some uncertain parameter taking value in ∆ according to a
probability measure P. Function f(·) : Rn → R is a convex
cost to be minimized and, for any δ ∈ ∆, the convex constraint
set Xi(δ) ⊆ Rn incorporates all the restrictions imposed by
agent i to the decision vector, including constraints expressed
by inequalities of the type hi(x, δ) ≤ 0. In problem Pδ , the
decision vector x is required to belong to

⋂m
i=1 Xi(δ) for all

possible realizations of the uncertain parameter and, as such, it
is a robust convex program. Assuming that only the constraints
depends on δ, while the objective functions f(x) does not, is
without loss of generality: epigraphic reformulations indeed
always allows one to recast problems in the form of Pδ .
In this paper, we assume that ∆ and P are unknown so that
the exact resolution of Pδ is impossible as agents lack the
information to address it. In this case, alternative approaches
to deal with uncertainty must be considered. Motivated by
data driven considerations, we assume that each agent i, i =
1, . . . ,m, is provided with a collection Si ⊂ ∆ of Ni ∈ N+

independent realizations of δ according to P. These realizations
of δ are called scenarios and have to be thought of as data. We
distinguish between two cases:

(a) Si = S̄ and Ni = N̄ , i = 1, . . . ,m, i.e. the scenarios are
common across agents;

(b) the Si, i = 1, . . . ,m, are all different and the scenarios
belonging to distinct sets are independent of each other.

Case (a) models situations where all agents have access to the
same historical data or where agents communicate scenarios;
in (b) instead the information is distributed across agents and
scenarios have to be regarded to as private resources.
According to the available information, constraints in (1) can

A scenario-based approach to multi-agent
optimization with distributed information �

Alessandro Falsone ∗ Kostas Margellos ∗∗ Maria Prandini ∗
Simone Garatti ∗

∗ Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (e-mail:
{alessandro.falsone,maria.prandini,simone.garatti}@polimi.it).

∗∗ Department of Engineering Science, University of Oxford, Parks Road,
OX1 3PJ, Oxford, UK (e-mail: kostas.margellos@eng.ox.ac.uk)

Abstract: In this paper, we consider optimization problems involving multiple agents. Each agent
introduces its own constraints on the optimization vector, and the constraints of all agents depend on
a common source of uncertainty. We suppose that uncertainty is known locally to each agent through a
private set of data (multi-agent scenarios), and that each agent enforces its scenario-based constraints to
the solution of the multi-agent optimization problem. Our goal is to assess the feasibility properties of the
corresponding multi-agent scenario solution. In particular, we are able to provide a priori certificates that
the solution is feasible for a new occurrence of the global uncertainty with a probability that depends
on the size of the datasets and the desired confidence level. The recently introduced wait-and-judge
approach to scenario optimization and the notion of support rank are used for this purpose. Notably,
decision-coupled and constraint-coupled uncertain optimization programs for multi-agent systems fit our
framework and, hence, any distributed optimization scheme to solve the associated multi-agent scenario
problem can be accompanied with our a priori probabilistic feasibility certificates.

Keywords: Uncertain systems, multi-agent systems, data-driven optimization, distributed algorithms.

1. INTRODUCTION

We consider cooperative optimization in multi-agent systems
where the goal is to minimize some global cost function subject
to local constraints. Prominent examples of systems involving
multiple entities interacting with each other can be found in
various application domains, such as power systems, Bolognani
et al. (2015); Zhang and Giannakis (2016), wireless networks,
Mateos and Giannakis (2012); Baingana et al. (2014), and
robotics, Martı́nez et al. (2007). Most of the literature address-
ing cooperative optimization in multi-agent systems focuses on
the design of algorithms that are compatible with the networked
structure of the system, distribute the computations among
agents, and preserve privacy of local information. Typically,
they refer to a deterministic nominal setting and neglect the
uncertainty affecting the system. However, this may result in an
infeasible design when uncertainty takes a value different from
the nominal one, which hampers the actual implementation of
the computed optimal solution.
In this paper, we instead focus on multi-agent optimization
problems affected by uncertainty, which is only known through
data. More specifically, we consider m agents that communi-
cate to cooperatively solve the following optimization problem.

Pδ : min
x∈X

f(x) (1)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where x ∈ Rn represents a vector of n decision variables that
is constrained to take values in a convex set X ⊆ Rn, and δ
� Research was partially supported by EPSRC UK, grant EP/P03277X/1.

is some uncertain parameter taking value in ∆ according to a
probability measure P. Function f(·) : Rn → R is a convex
cost to be minimized and, for any δ ∈ ∆, the convex constraint
set Xi(δ) ⊆ Rn incorporates all the restrictions imposed by
agent i to the decision vector, including constraints expressed
by inequalities of the type hi(x, δ) ≤ 0. In problem Pδ , the
decision vector x is required to belong to

⋂m
i=1 Xi(δ) for all

possible realizations of the uncertain parameter and, as such, it
is a robust convex program. Assuming that only the constraints
depends on δ, while the objective functions f(x) does not, is
without loss of generality: epigraphic reformulations indeed
always allows one to recast problems in the form of Pδ .
In this paper, we assume that ∆ and P are unknown so that
the exact resolution of Pδ is impossible as agents lack the
information to address it. In this case, alternative approaches
to deal with uncertainty must be considered. Motivated by
data driven considerations, we assume that each agent i, i =
1, . . . ,m, is provided with a collection Si ⊂ ∆ of Ni ∈ N+

independent realizations of δ according to P. These realizations
of δ are called scenarios and have to be thought of as data. We
distinguish between two cases:

(a) Si = S̄ and Ni = N̄ , i = 1, . . . ,m, i.e. the scenarios are
common across agents;

(b) the Si, i = 1, . . . ,m, are all different and the scenarios
belonging to distinct sets are independent of each other.

Case (a) models situations where all agents have access to the
same historical data or where agents communicate scenarios;
in (b) instead the information is distributed across agents and
scenarios have to be regarded to as private resources.
According to the available information, constraints in (1) can



 Alessandro Falsone  et al. / IFAC PapersOnLine 53-2 (2020) 20–25 21

A scenario-based approach to multi-agent
optimization with distributed information �

Alessandro Falsone ∗ Kostas Margellos ∗∗ Maria Prandini ∗
Simone Garatti ∗

∗ Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di
Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy (e-mail:
{alessandro.falsone,maria.prandini,simone.garatti}@polimi.it).

∗∗ Department of Engineering Science, University of Oxford, Parks Road,
OX1 3PJ, Oxford, UK (e-mail: kostas.margellos@eng.ox.ac.uk)

Abstract: In this paper, we consider optimization problems involving multiple agents. Each agent
introduces its own constraints on the optimization vector, and the constraints of all agents depend on
a common source of uncertainty. We suppose that uncertainty is known locally to each agent through a
private set of data (multi-agent scenarios), and that each agent enforces its scenario-based constraints to
the solution of the multi-agent optimization problem. Our goal is to assess the feasibility properties of the
corresponding multi-agent scenario solution. In particular, we are able to provide a priori certificates that
the solution is feasible for a new occurrence of the global uncertainty with a probability that depends
on the size of the datasets and the desired confidence level. The recently introduced wait-and-judge
approach to scenario optimization and the notion of support rank are used for this purpose. Notably,
decision-coupled and constraint-coupled uncertain optimization programs for multi-agent systems fit our
framework and, hence, any distributed optimization scheme to solve the associated multi-agent scenario
problem can be accompanied with our a priori probabilistic feasibility certificates.
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1. INTRODUCTION

We consider cooperative optimization in multi-agent systems
where the goal is to minimize some global cost function subject
to local constraints. Prominent examples of systems involving
multiple entities interacting with each other can be found in
various application domains, such as power systems, Bolognani
et al. (2015); Zhang and Giannakis (2016), wireless networks,
Mateos and Giannakis (2012); Baingana et al. (2014), and
robotics, Martı́nez et al. (2007). Most of the literature address-
ing cooperative optimization in multi-agent systems focuses on
the design of algorithms that are compatible with the networked
structure of the system, distribute the computations among
agents, and preserve privacy of local information. Typically,
they refer to a deterministic nominal setting and neglect the
uncertainty affecting the system. However, this may result in an
infeasible design when uncertainty takes a value different from
the nominal one, which hampers the actual implementation of
the computed optimal solution.
In this paper, we instead focus on multi-agent optimization
problems affected by uncertainty, which is only known through
data. More specifically, we consider m agents that communi-
cate to cooperatively solve the following optimization problem.

Pδ : min
x∈X

f(x) (1)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ),

where x ∈ Rn represents a vector of n decision variables that
is constrained to take values in a convex set X ⊆ Rn, and δ
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is some uncertain parameter taking value in ∆ according to a
probability measure P. Function f(·) : Rn → R is a convex
cost to be minimized and, for any δ ∈ ∆, the convex constraint
set Xi(δ) ⊆ Rn incorporates all the restrictions imposed by
agent i to the decision vector, including constraints expressed
by inequalities of the type hi(x, δ) ≤ 0. In problem Pδ , the
decision vector x is required to belong to

⋂m
i=1 Xi(δ) for all

possible realizations of the uncertain parameter and, as such, it
is a robust convex program. Assuming that only the constraints
depends on δ, while the objective functions f(x) does not, is
without loss of generality: epigraphic reformulations indeed
always allows one to recast problems in the form of Pδ .
In this paper, we assume that ∆ and P are unknown so that
the exact resolution of Pδ is impossible as agents lack the
information to address it. In this case, alternative approaches
to deal with uncertainty must be considered. Motivated by
data driven considerations, we assume that each agent i, i =
1, . . . ,m, is provided with a collection Si ⊂ ∆ of Ni ∈ N+

independent realizations of δ according to P. These realizations
of δ are called scenarios and have to be thought of as data. We
distinguish between two cases:

(a) Si = S̄ and Ni = N̄ , i = 1, . . . ,m, i.e. the scenarios are
common across agents;

(b) the Si, i = 1, . . . ,m, are all different and the scenarios
belonging to distinct sets are independent of each other.

Case (a) models situations where all agents have access to the
same historical data or where agents communicate scenarios;
in (b) instead the information is distributed across agents and
scenarios have to be regarded to as private resources.
According to the available information, constraints in (1) can
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be evaluated for the sets of scenarios Si, i = 1, . . . ,m, thus
obtaining the following multi-agent scenario program

PN : min
x∈X

f(x) (2)

subject to x ∈
m⋂
i=1

⋂
δ∈Si

Xi(δ),

where N denotes the total number of independent scenarios,
i.e., N = N̄ if the scenarios are common, and N =

∑m
i=1 Ni

if the scenarios are private.
PN is a data-driven approximation of Pδ , which can be solved
by the agents, each contributing with its own piece of informa-
tion. The main objective of this paper is that of assessing the
robustness level of the solution to program PN with respect
to the original problem Pδ . This amounts to evaluating the
probabilistic feasibility level of the solution to program PN

for the constraint x ∈
⋂m

i=1 Xi(δ) with δ taking values in
∆ according to P. Since the incurred probabilistic feasibility
level will depend on the extracted multi-sample of scenarios
S = ∪m

i=1Si, evaluations that hold with a certain confidence,
measured according to the product probability PN on the multi-
scenario space ∆N will be given.
If the scenarios are common across agents – case (a) – then,
standard results of the scenario approach (Calafiore and Campi
(2006); Campi and Garatti (2008); Campi et al. (2009); Campi
and Garatti (2011); Garatti and Campi (2013); Margellos et al.
(2015)) can be applied to provide the sought a priori probabilis-
tic certificates on the feasibility of the solution. However, when
scenarios constitute private information of each agent – case
(b) – then, standard scenario theory does not apply anymore
and has to be extended. Here, we study the general problem
leveraging the recent results of Campi et al. (2015, 2018). We
also provide a tighter result for the particular case where the
agents impose their constraints on separate decision variables
by exploiting the concept of support rank as in Schildbach et al.
(2013). This is the main contribution of our paper.
In the final part of the paper, we also show that our frame-
work accommodates two problem classes, namely, decision-
coupled and constraint-coupled optimization programs, exten-
sively treated in the literature on distributed optimization. Since
the multi-agent problem PN can be treated as a deterministic
program once the scenarios have been observed, any distributed
algorithm that provides an optimal solution to PN without
sharing private information can be accompanied with our a
priori probabilistic certificates. The introduced multi-agent sce-
nario approach is thus applicable to a large class of distributed
algorithms, those that are adopted for decision-coupled pro-
grams (see e.g. Nedı́c and Ozdaglar (2009); Nedı́c et al. (2010);
Margellos et al. (2018)) and for constraint-coupled programs
(see e.g. Zhu and Martı́nez (2012); Chang et al. (2014); Boyd
et al. (2010); Notarnicola and Notarstefano (2017); Falsone
et al. (2017)). This is a further contribution of our work.
It is worth mentioning that distributed techniques taking into ac-
count uncertainty have recently appeared in Towfic and Sayed
(2014); Carlone et al. (2014); Chamanbaz et al. (2017); Lee and
Nedic (2013, 2016); Margellos et al. (2018); Sayin et al. (2017).
However, the techniques proposed in the literature are tailored
to the considered algorithm and not of general applicability as
the multi-agent scenario approach presented in this paper. 1 Fi-

1 Specifically, the approaches in Towfic and Sayed (2014); Lee and Nedic
(2016) require some regularity conditions on the agents’ cost function; Sayin
et al. (2017) and Lee and Nedic (2013) require to extract an infinite number
of scenarios; the randomized algorithm of Carlone et al. (2014) requires to

nally, our multi-agent scenario approach generalizes the method
in Margellos et al. (2018) for decision-coupled optimization to
a more general framework that includes also constraint-coupled
problems.
The remainder of the paper is structured as follows. Section
2 provides the probabilistic certificates of feasibility for the
various cases. We start by considering in Section 2.1 the case
where scenarios are common across agents and address it based
on standard results of the scenario approach. This is to set-
up notations and create a benchmark to compare against the
methodologies in Section 2.2 that address the more challenging
case where scenarios are a private local information, including
also structured problems where each agent has its own local
decision variables. In Section 3 we extend the multi-agent sce-
nario approach to a distributed optimization setting. Section 4
concludes the paper and provides directions for future research.

2. MULTI-AGENT SCENARIO APPROACH

The derivations of the probabilistic certificates of feasibility for
the various cases (common vs. private scenarios) are based on
the following assumption.
Assumption 1. (convexity and well-posedness).

(1) function f(·) and set X are convex;
(2) for every i = 1, . . . ,m and δ ∈ ∆, Xi(δ) is convex;
(3) for every i = 1, . . . ,m and any finite set Si of

δ values, (∩δ∈SiXi(δ)) ∩ X is compact; moreover,
(
⋂m

i=1 ∩δ∈SXi(δ)) ∩X is non-empty.

2.1 Common scenarios

Consider the case where scenarios are common across all
agents, that is, for all i = 1, . . . ,m Si = S̄ where S̄ ⊂ ∆
is a set of N̄ ∈ N+ scenarios independently extracted from
∆ according to P and available to all agents. The optimization
program PN in (2) then takes the form

PN̄ : min
x∈X

f(x) (3)

subject to x ∈
m⋂
i=1

⋂
δ∈S̄

Xi(δ),

where we changed the subscript from N to N̄ to emphasize the
fact that there are N̄ common scenarios. Let us denote by x∗

N̄
a solution of PN̄ (which is well-defined based on Assumption
1), possibly adopting a convex tie-break rule to get a unique
minimizer.
The problem we address here is the evaluation of the robustness
level of x∗

N̄
. In the present context, the theory of the scenario

approach developed in Calafiore and Campi (2006); Campi and
Garatti (2008) provides a full-fledged characterization, showing
that x∗

N̄
is feasible for Pδ up to an explicitly quantified proba-

bilistic level ε̄. To illustrate the result we need first to introduce
the notion of support set of Campi et al. (2015). 2 That is,
for a given optimization program, a support set is a minimal
cardinality subset of constraints that alone suffices to retrieve
the solution to the original program where all constraints are in

exchange constraints over a time-invariant communication network, whereas
Chamanbaz et al. (2017) allows for time-varying communications but is con-
fined to linear programs.
2 The support set was called compression scheme in Margellos et al. (2015)
and in typical cases (referred to as non-degenerate) coincides with the set of
support constraints (see Campi and Garatti (2008), Definition 2).
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place. In a sense, the constraints that are not in the support set
are inessential since removing all of them leaves the solution
unchanged. It is well known that for convex optimization pro-
grams the cardinality of the support set is always no bigger than
the number n of decision variables, see (Calafiore and Campi,
2006, Theorem 3). In some cases 3 the maximal support set
cardinality can be strictly smaller than n and improved bounds
can be obtained, see e.g. Schildbach et al. (2013).
Referring back to PN̄ , which is convex by Assumption 1, we
denote by d ∈ N+ any available upper-bound to the cardinality
of the support set of PN̄ . The following theorem is a direct
consequence of the results of Calafiore and Campi (2006).
Theorem 1. Fix β ∈ (0, 1) and let

ε̄ = 1− N̄−d

√
β(
N̄
d

) . (4)

We then have that

PN̄
{
S̄ ∈ ∆N̄ : P

{
δ ∈ ∆ : x∗

N̄ /∈
m⋂
i=1

Xi(δ)
}
≤ ε̄

}

≥ 1− β. (5)

Theorem 1 says that with confidence no smaller than 1−β, x∗
N̄

is feasible for Pδ except for a portion of uncertainty instances
that has probability ε̄ at most. Though ε̄ depends on N̄ , β and
d, this dependency is suppressed throughout to avoid notational
cluttering.
Remark 1. (improved bound). Following Campi and Garatti
(2008), an improved result could be given by replacing ε̄ in (4)
with the solution of the equation

∑d−1
k=0

(
N̄
k

)
ε̄k
(
1− ε̄

)N̄−k
= β.

For simplicity, we use (4) which gives an explicit – although
conservative – expression for ε̄.

If N̄ is too small, it may be that ε̄ is larger than 1 and the
theorem is not of practical interest. In this case, one may want
to fix ε̄, β ∈ (0, 1) and use Theorem 1 the other way around to
determine how many scenarios are needed for (5) to hold. This
amounts to solving (4) with respect to N̄ . See (Calafiore and
Campi, 2006, Theorem 1).

2.2 Private scenarios

Suppose now that scenarios are private resources collected in-
dependently by the agents. This means that, for i = 1, . . . ,m,
agent i is supplied with its own set Si ⊂ ∆ of Ni ∈ N+ inde-
pendent scenarios extracted according to P and that scenarios
belonging to different sets Si are also independent.
The resulting multi-agent scenario problem is given by the
optimization program PN in (2) where the total number of
independent scenarios is N =

∑m
i=1 Ni.

As in Section 2.1, we want to show that the minimizer x∗
N of

PN (again, well-defined thanks to Assumption 1) is feasible
for Pδ in a probabilistic sense. This means that we have to
assess the probability with which x∗

N satisfies the “global”
constraint

⋂m
i=1 Xi(δ), where δ is the same for all the Xi(δ),

i = 1, . . . ,m. On the other hand, in the computation of x∗
N

through PN , Xi(δ), i = 1, . . . ,m is evaluated for the scenarios
in Si, which are different from the scenarios for which the other
Xj(δ), j �= i, are evaluated. This poses a major challenge in this
private scenarios set-up.
3 E.g., because of the structure of constraints or the presence of some regular-
ization term, as e.g. in Campi and Caré (2013).

Agent 1Agent 2

optimization
direction

Agent 1Agent 2
optimization
direction

Fig. 1. Support sets for a problem with two agents.

Let S = ∪m
i=1Si be the collection of the scenarios of all agents

and, likewise before, let d ∈ N+ be a known upper-bound to the
cardinality of the support set for PN . For i = 1, . . . ,m suppose
to count how many scenarios in the support set arrives from
Si, the set of constraints of agent i, and denote this number by
di,N (S). di,N (S) can possibly be also zero and it depends on S
because the way the constraints in the support set split among
agents varies according to the extracted S. Still, irrespective of
S ∈ ∆N , it clearly holds that

∑m
i=1 di,N (S) ≤ d. A pictorial

illustration of this fact is given in Fig. 1 for a problem with two
agents. The problem involves two decision variables, x1, x2 and
we seek to minimize x2. Scenarios give rise to different type of
constraints: the solution must stay above solid lines for agent 1,
above dashed lines for agent 2. In Fig. 1, two different scenario
extractions are represented, corresponding to d1,N = 1 and
d2,N = 1 (left) and to d1,N = 2 and d2,N = 0 (right).
For short we will write in the sequel di,N in place of di,N (S)
and make the dependency on S explicit only when necessary.

A subadditivity based bound. We first provide a direct, albeit
conservative, evaluation of the feasibility properties of the
solution x∗

N , which is however key for all the subsequent
developments. Since it always holds that di,N ≤ d for all
i = 1, . . . ,m, one can apply Theorem 1 conditionally to the
scenarios of all other agents and then, integrating with respect
to the realizations of these scenarios of the other agents, we
obtain the following feasibility result that holds locally, i.e. for
the constraints of agent i only: let βi ∈ (0, 1) and

ε̃i = 1− Ni−d

√
βi(
Ni

d

) ; (6)

then, it holds that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ ε̃i

}

≥ 1− βi. (7)

This results along with the subadditivity of PN and P can be
used to establish the following proposition on the probabilistic
feasibility of x∗

N for the global constraint
⋂m

i=1 Xi(δ).
Proposition 1. Given β ∈ (0, 1), let βi, i = 1, . . . ,m, be such
that

∑m
i=1 βi = β. For each i = 1, . . . ,m, let ε̃i be as in (6)

and ε̃ =
∑m

i=1 ε̃i. Then, it holds that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈
m⋂
i=1

Xi(δ)
}
≤ ε̃

}

≥ 1− β. (8)
Proof 1. Letting Nm

1 be {1, . . . ,m}, we have the following
chain of inequalities: 4

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈
m⋂
i=1

Xi(δ)
}
≤

m∑
i=1

ε̃i

}

4 A similar argument was also used in Kariotoglou et al. (2016).
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the number n of decision variables, see (Calafiore and Campi,
2006, Theorem 3). In some cases 3 the maximal support set
cardinality can be strictly smaller than n and improved bounds
can be obtained, see e.g. Schildbach et al. (2013).
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denote by d ∈ N+ any available upper-bound to the cardinality
of the support set of PN̄ . The following theorem is a direct
consequence of the results of Calafiore and Campi (2006).
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is feasible for Pδ except for a portion of uncertainty instances
that has probability ε̄ at most. Though ε̄ depends on N̄ , β and
d, this dependency is suppressed throughout to avoid notational
cluttering.
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(2008), an improved result could be given by replacing ε̄ in (4)
with the solution of the equation
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For simplicity, we use (4) which gives an explicit – although
conservative – expression for ε̄.

If N̄ is too small, it may be that ε̄ is larger than 1 and the
theorem is not of practical interest. In this case, one may want
to fix ε̄, β ∈ (0, 1) and use Theorem 1 the other way around to
determine how many scenarios are needed for (5) to hold. This
amounts to solving (4) with respect to N̄ . See (Calafiore and
Campi, 2006, Theorem 1).

2.2 Private scenarios

Suppose now that scenarios are private resources collected in-
dependently by the agents. This means that, for i = 1, . . . ,m,
agent i is supplied with its own set Si ⊂ ∆ of Ni ∈ N+ inde-
pendent scenarios extracted according to P and that scenarios
belonging to different sets Si are also independent.
The resulting multi-agent scenario problem is given by the
optimization program PN in (2) where the total number of
independent scenarios is N =

∑m
i=1 Ni.

As in Section 2.1, we want to show that the minimizer x∗
N of

PN (again, well-defined thanks to Assumption 1) is feasible
for Pδ in a probabilistic sense. This means that we have to
assess the probability with which x∗

N satisfies the “global”
constraint

⋂m
i=1 Xi(δ), where δ is the same for all the Xi(δ),

i = 1, . . . ,m. On the other hand, in the computation of x∗
N

through PN , Xi(δ), i = 1, . . . ,m is evaluated for the scenarios
in Si, which are different from the scenarios for which the other
Xj(δ), j �= i, are evaluated. This poses a major challenge in this
private scenarios set-up.
3 E.g., because of the structure of constraints or the presence of some regular-
ization term, as e.g. in Campi and Caré (2013).
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Let S = ∪m
i=1Si be the collection of the scenarios of all agents

and, likewise before, let d ∈ N+ be a known upper-bound to the
cardinality of the support set for PN . For i = 1, . . . ,m suppose
to count how many scenarios in the support set arrives from
Si, the set of constraints of agent i, and denote this number by
di,N (S). di,N (S) can possibly be also zero and it depends on S
because the way the constraints in the support set split among
agents varies according to the extracted S. Still, irrespective of
S ∈ ∆N , it clearly holds that

∑m
i=1 di,N (S) ≤ d. A pictorial

illustration of this fact is given in Fig. 1 for a problem with two
agents. The problem involves two decision variables, x1, x2 and
we seek to minimize x2. Scenarios give rise to different type of
constraints: the solution must stay above solid lines for agent 1,
above dashed lines for agent 2. In Fig. 1, two different scenario
extractions are represented, corresponding to d1,N = 1 and
d2,N = 1 (left) and to d1,N = 2 and d2,N = 0 (right).
For short we will write in the sequel di,N in place of di,N (S)
and make the dependency on S explicit only when necessary.

A subadditivity based bound. We first provide a direct, albeit
conservative, evaluation of the feasibility properties of the
solution x∗

N , which is however key for all the subsequent
developments. Since it always holds that di,N ≤ d for all
i = 1, . . . ,m, one can apply Theorem 1 conditionally to the
scenarios of all other agents and then, integrating with respect
to the realizations of these scenarios of the other agents, we
obtain the following feasibility result that holds locally, i.e. for
the constraints of agent i only: let βi ∈ (0, 1) and

ε̃i = 1− Ni−d

√
βi(
Ni

d

) ; (6)

then, it holds that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ ε̃i

}

≥ 1− βi. (7)

This results along with the subadditivity of PN and P can be
used to establish the following proposition on the probabilistic
feasibility of x∗

N for the global constraint
⋂m

i=1 Xi(δ).
Proposition 1. Given β ∈ (0, 1), let βi, i = 1, . . . ,m, be such
that

∑m
i=1 βi = β. For each i = 1, . . . ,m, let ε̃i be as in (6)

and ε̃ =
∑m

i=1 ε̃i. Then, it holds that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈
m⋂
i=1

Xi(δ)
}
≤ ε̃

}

≥ 1− β. (8)
Proof 1. Letting Nm

1 be {1, . . . ,m}, we have the following
chain of inequalities: 4

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈
m⋂
i=1

Xi(δ)
}
≤

m∑
i=1

ε̃i

}

4 A similar argument was also used in Kariotoglou et al. (2016).

= PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : ∃i ∈ Nm

1 , x∗
N /∈ Xi(δ)

}
≤

m∑
i=1

ε̃i

}

= PN
{
S ∈ ∆N : P

{ m⋃
i=1

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)

}}
≤

m∑
i=1

ε̃i

}

≥ PN
{
S ∈ ∆N :

m∑
i=1

P
{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤

m∑
i=1

ε̃i

}

≥ PN
{ m⋂

i=1

{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ ε̃i

}}

≥ 1−
m∑
i=1

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
> ε̃i

}

≥ 1−
m∑
i=1

βi, (9)

where the last step follows from (7). This concludes the proof.

In words, Proposition 1 says that with confidence no smaller
than 1 − β, x∗

N is feasible for Pδ except for a portion of un-
certainty instances that has probability ε̃ at most. Proposition 1
has an issue though, because ε̃ is very conservative when the
number of agents is large and this limits the applicability of the
results. To see this, we perform a comparison between ε̃ and
ε̄, the bound to the probability of violation we have when the
scenarios are common across the agents. Suppose that Ni = N̄
and βi = β/m, for all i = 1, . . . ,m. Using (4) and (6), we then
have that ε̃ = mε̃i ≈ mε̄. 5 This simple calculation shows that
ε̃ approximately grows linearly with the number of agents m, a
fact that is also apparent from a numerical simulation that will
be presented next (see Fig. 2).

An a priori bound using a posteriori results. The conser-
vatism of Proposition 1 is due to the fact that it considers a
fictitious situation where di,N = d for all i = 1, . . . ,m, while
the fact

∑m
i=1 di,N ≤ d reveals us that when di,N = d for some

i, then dj,N must be 0 for all other j �= i. In this subsection, we
want to exploit the inequality

∑m
i=1 di,N ≤ d to reduce the

conservatism of Proposition 1 and, to this purpose, we use the
results of Campi et al. (2015, 2018) that are based on a wait-
and-judge, a posteriori, perspective. Following Theorem 1 and
Remark 4 in Campi et al. (2018), for each i = 1, . . . ,m, fix
βi ∈ (0, 1) and consider function εi(·) defined as follows:

εi(k) = 1− Ni−k

√
βi

(d+ 1)
(
Ni

k

) , for all k = 0, . . . , d. (10)

Besides k, εi(·) depends on Ni, βi and d as well, but this
dependency is not explicitly indicated to ease the notation. By
focusing on a given agent i, i = 1, . . . ,m, an application of
Theorem 1 of Campi et al. (2018) conditional to the scenarios
of all other agents S \ Si yields

PN
{
S ∈ ∆N : P{δ ∈ ∆ : x∗

N /∈ Xi(δ)} ≤ εi(di,N )
∣∣∣ {S \ Si ∈ ∆N−Ni

}}
≥ 1− βi. (11)

Integrating (11) with respect to the probability of realizing the
scenarios S \ Si, we then have that

5 The ≈ in the last step is because in (6) we have βi = β/m in place of β in
(4); yet, this dependence on m via βi has a negligible effect.
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Fig. 2. Dashed green line: ε̄ in Theorem 1; dotted-dashed red
line: ε̃ in Proposition 1; solid blue line: ε in Theorem 2.

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ εi(di,N )

}

≥ 1− βi. (12)
That is, for each agent i = 1, . . . ,m, with confidence no
smaller than 1 − βi, we have that x∗

N violates the constraint
set Xi(δ) of agent i with probability no bigger than εi(di,N ).
Though (12) may resemble (7), note that there is a big differ-
ence in that di,N in (12) depends on the seen scenarios and
hence is not a-priori known. The inequality (12) can be used in
place of (7) in the subadditivity-based proof of Proposition 1
(see (9)) to obtain the following characterization of the feasibil-
ity of x∗

N for Pδ:

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈
m⋂
i=1

Xi(δ)
}

≤
m∑
i=1

εi(di,N )
}
≥ 1−

m∑
i=1

βi. (13)

Differently from (5) and (8), the assessment of the violation
probability level in (13) is a-posteriori because εi(di,N ) is a
function of the seen scenarios. An a-priori assessment can be
easily derived by simply computing a worst-case value for∑m

i=1 εi(di,N ) over the possible values of di,N , i = 1, . . . ,m,
that satisfies

∑m
i=1 di,N ≤ d. This amounts to solving

ε = max
{di∈N+}m

i=1

m∑
i=1

εi(di), subject to
m∑
i=1

di ≤ d, (14)

which is an integer maximization program that can be solved
via numerical solver. Notice that {di}mi=1 in (14) are integer
optimization variables, which should not be confused with
{di,N}mi=1. In conclusion, the following theorem holds true.
Theorem 2. Fix β ∈ (0, 1) and choose βi, i = 1, . . . ,m, such
that

∑m
i=1 βi = β. Set ε according to (14). We then have that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈
m⋂
i=1

Xi(δ)
}
≤ ε

}

≥ 1− β. (15)

Proof 2. For any set S of scenarios it holds that
∑m

i=1 di,N (S) ≤
d, which means that {di,N (S)}mi=1 is feasible for (14). Thus∑m

i=1 εi(di,N (S)) ≤ ε, being ε maximal for (14). Using∑m
i=1 εi(di,N (S)) ≤ ε in (13) gives (15).

Enforcing the condition
∑m

i=1 di,N ≤ d when determining ε
in (14), provide a tighter estimate for the violation probability
in Theorem 2 with respect to that in Proposition 1. This is also
shown pictorially in Fig. 2, where we plot ε̄ in Theorem 1, ε̃ in
Proposition 1, and ε in Theorem 2 as functions of the number
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m of agents, when β = 10−5, Ni = N̄ = 4500, βi = β/m,
i = 1, . . . ,m, and d = 50. As it appears, ε̃ grows as m · ε̄, while
ε is only moderately increasing with m.
When the number of agents is very large and/or there are few
scenarios available, ε may still exceed 1, making the result of
Theorem 2 trivial. Similarly to the discussion at the end of
Section 2.1, note that Theorem 2 can be reversed to compute the
number of scenarios Ni that need to be extracted by agent i, i =
1, . . . ,m, for given values of ε, β ∈ (0, 1). This can be achieved
by numerically seeking for values of Ni, i = 1, . . . ,m, that lead
to a solution of (14) that attains the desired ε.

Private scenarios with local decision vectors. We consider
the case where the decision vector x can be partitioned into m
parts, each one associated to an agent and each agent imposes
constraints only on its own set of decision variables. More
precisely, we have x =

[
x�
1 . . . x�

m

]�
where xi ∈ Rni is

associated with agent i, i = 1, . . . ,m, and
∑m

i=1 ni = n, and
the constraint set of agent i takes the form

Xi(δ) = Rn1 × · · · × X̃i(δ)× · · · × Rnm ,

δ ∈ ∆, i = 1, . . . ,m.
The structure of the problem is such that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ εi

}

= PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

i,N /∈ X̃i(δ)
}
≤ εi

}
.

Hence, by following the same line of reasoning for (7) but
using the results of Schildbach et al. (2013) instead of the
standard result in Theorem 1, the following local feasibility
characterization is obtained: fix βi ∈ (0, 1) and let

εi = 1− Ni−ni

√
βi(
Ni

ni

) , (16)

where ni is an upper bound on the support rank (the number of
dimensions of the decision space that are actually constrained)
and represents, in turn, an upper bound on the cardinality of
the quantity referred to as support set in Section 2.1 for the
constraint set ∩δ∈SiXi(δ); we then have that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ εi

}

≥ 1− βi. (17)
Using (17) in place of (7) in the derivation (9) gives the
following theorem.
Theorem 3. Fix β ∈ (0, 1) and choose βi, i = 1, . . . ,m, such
that

∑m
i=1 βi = β. For each i = 1, . . . ,m, let εi be as in (16)

and set ε =
∑m

i=1 εi. We then have that
PN

{
S ∈ ∆N: P

{
δ ∈ ∆: ∃i : x∗

i,N /∈ Xi(δ)
}
≤ ε

}
≥ 1− β.

In Fig. 3, we compare ε̄ in Theorem 1, ε in Theorem 2 and ε
in Theorem 3 as functions of the number of agents m, when
β = 10−5, ni = 5, Ni = N̄ = 4500, βi = β/m, i = 1, . . . ,m,
and d = n = nim = 5m. As it appears, both ε̄ and the
two ε increase with the number of agents. This is expected
as the overall number of decision variables increase with m
(n = 5m). All bounds grows approximately linearly with m,
with the two ε having an inferior performance compared to ε̄.
The gap can be interpreted as the price to pay for letting the
agents have their own private datasets even if the uncertainty
vector affecting their constraints is common across all agents.
The ε in Theorem 2 results in a slightly more conservative
estimate of the probability of constraint violation than the ε in
Theorem 3.
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Fig. 3. Dashed green line: ε̄ in Theorem 1; blue solid line: ε in
Theorem 2; dotted magenta line: ε in Theorem 3.

3. APPLICATION TO DISTRIBUTED OPTIMIZATION

In order to deal with the multi-agent nature of the problem,
to avoid the presence of a central regulatory authority and
to accommodate the need of not disclosing possibly private
information of agents, distributed optimization methods could
be adopted to solve the multi-agent scenario program PN .
We shall introduce next two specific instances of PN for which
distributed algorithms are readily available in the literature.
Appropriate assumptions, e.g, on the communication network
connectivity, are typically required for the convergence of the
adopted distributed algorithm to the optimal solution.

Decision-coupled optimization program

min
x∈Rn

m∑
i=1

fi(x)

subject to x ∈
m⋂
i=1

⋂
δ∈Si

Xi(δ)

is identical to problem PN if we set X = Rn and f(·) =∑m
i=1 fi(·). For each i = 1, . . . ,m, fi(·) : Rn → R is the

cost function of agent i, whereas, for any δ ∈ ∆, Xi(δ) ⊆ Rn

represents all constraints to the decision vector imposed by
agent i. Algorithms like the one in Margellos et al. (2018)
allow to compute a solution according to a distributed scheme
where local information (set of scenarios Si, cost function
fi, constraint Xi) is not disclosed to the other agents. The
optimal solution returned by the chosen distributed algorithm
can be accompanied by the probabilistic feasibility certificate
of Theorem 2.

Constraint-coupled optimization program

min
{xi∈Rni}m

i=1

m∑
i=1

fi(xi)

subject to xi ∈
⋂
δ∈Si

X̃i(δ), i = 1, . . . ,m

m∑
i=1

gi(xi) ≤ 0,

which is identical to PN if we set x =
[
x�
1 . . . x�

m

]�
, X =

{x ∈ Rn :
∑m

i=1 gi(xi) ≤ 0}, f(·) =
∑m

i=1 fi(·), and
Xi(δ) = Rn1 × · · · × X̃i(δ)× · · · × Rnm , i = 1, . . . ,m.
In this case, each agent i, i = 1, . . . ,m, has a local decision
vector xi ∈ Rni , its local cost function fi(xi) : Rni → R, and
its local constraint set Xi(δ) ⊆ Rni . Function gi(xi) : Rni →
Rp quantifies the amount of p resources that is required by agent
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m of agents, when β = 10−5, Ni = N̄ = 4500, βi = β/m,
i = 1, . . . ,m, and d = 50. As it appears, ε̃ grows as m · ε̄, while
ε is only moderately increasing with m.
When the number of agents is very large and/or there are few
scenarios available, ε may still exceed 1, making the result of
Theorem 2 trivial. Similarly to the discussion at the end of
Section 2.1, note that Theorem 2 can be reversed to compute the
number of scenarios Ni that need to be extracted by agent i, i =
1, . . . ,m, for given values of ε, β ∈ (0, 1). This can be achieved
by numerically seeking for values of Ni, i = 1, . . . ,m, that lead
to a solution of (14) that attains the desired ε.

Private scenarios with local decision vectors. We consider
the case where the decision vector x can be partitioned into m
parts, each one associated to an agent and each agent imposes
constraints only on its own set of decision variables. More
precisely, we have x =

[
x�
1 . . . x�

m

]�
where xi ∈ Rni is

associated with agent i, i = 1, . . . ,m, and
∑m

i=1 ni = n, and
the constraint set of agent i takes the form

Xi(δ) = Rn1 × · · · × X̃i(δ)× · · · × Rnm ,

δ ∈ ∆, i = 1, . . . ,m.
The structure of the problem is such that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ εi

}

= PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

i,N /∈ X̃i(δ)
}
≤ εi

}
.

Hence, by following the same line of reasoning for (7) but
using the results of Schildbach et al. (2013) instead of the
standard result in Theorem 1, the following local feasibility
characterization is obtained: fix βi ∈ (0, 1) and let

εi = 1− Ni−ni

√
βi(
Ni

ni

) , (16)

where ni is an upper bound on the support rank (the number of
dimensions of the decision space that are actually constrained)
and represents, in turn, an upper bound on the cardinality of
the quantity referred to as support set in Section 2.1 for the
constraint set ∩δ∈SiXi(δ); we then have that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗

N /∈ Xi(δ)
}
≤ εi

}

≥ 1− βi. (17)
Using (17) in place of (7) in the derivation (9) gives the
following theorem.
Theorem 3. Fix β ∈ (0, 1) and choose βi, i = 1, . . . ,m, such
that

∑m
i=1 βi = β. For each i = 1, . . . ,m, let εi be as in (16)

and set ε =
∑m

i=1 εi. We then have that
PN

{
S ∈ ∆N: P

{
δ ∈ ∆: ∃i : x∗

i,N /∈ Xi(δ)
}
≤ ε

}
≥ 1− β.

In Fig. 3, we compare ε̄ in Theorem 1, ε in Theorem 2 and ε
in Theorem 3 as functions of the number of agents m, when
β = 10−5, ni = 5, Ni = N̄ = 4500, βi = β/m, i = 1, . . . ,m,
and d = n = nim = 5m. As it appears, both ε̄ and the
two ε increase with the number of agents. This is expected
as the overall number of decision variables increase with m
(n = 5m). All bounds grows approximately linearly with m,
with the two ε having an inferior performance compared to ε̄.
The gap can be interpreted as the price to pay for letting the
agents have their own private datasets even if the uncertainty
vector affecting their constraints is common across all agents.
The ε in Theorem 2 results in a slightly more conservative
estimate of the probability of constraint violation than the ε in
Theorem 3.
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Fig. 3. Dashed green line: ε̄ in Theorem 1; blue solid line: ε in
Theorem 2; dotted magenta line: ε in Theorem 3.

3. APPLICATION TO DISTRIBUTED OPTIMIZATION

In order to deal with the multi-agent nature of the problem,
to avoid the presence of a central regulatory authority and
to accommodate the need of not disclosing possibly private
information of agents, distributed optimization methods could
be adopted to solve the multi-agent scenario program PN .
We shall introduce next two specific instances of PN for which
distributed algorithms are readily available in the literature.
Appropriate assumptions, e.g, on the communication network
connectivity, are typically required for the convergence of the
adopted distributed algorithm to the optimal solution.

Decision-coupled optimization program

min
x∈Rn

m∑
i=1

fi(x)

subject to x ∈
m⋂
i=1

⋂
δ∈Si

Xi(δ)

is identical to problem PN if we set X = Rn and f(·) =∑m
i=1 fi(·). For each i = 1, . . . ,m, fi(·) : Rn → R is the

cost function of agent i, whereas, for any δ ∈ ∆, Xi(δ) ⊆ Rn

represents all constraints to the decision vector imposed by
agent i. Algorithms like the one in Margellos et al. (2018)
allow to compute a solution according to a distributed scheme
where local information (set of scenarios Si, cost function
fi, constraint Xi) is not disclosed to the other agents. The
optimal solution returned by the chosen distributed algorithm
can be accompanied by the probabilistic feasibility certificate
of Theorem 2.

Constraint-coupled optimization program

min
{xi∈Rni}m

i=1

m∑
i=1

fi(xi)

subject to xi ∈
⋂
δ∈Si

X̃i(δ), i = 1, . . . ,m

m∑
i=1

gi(xi) ≤ 0,

which is identical to PN if we set x =
[
x�
1 . . . x�

m

]�
, X =

{x ∈ Rn :
∑m

i=1 gi(xi) ≤ 0}, f(·) =
∑m

i=1 fi(·), and
Xi(δ) = Rn1 × · · · × X̃i(δ)× · · · × Rnm , i = 1, . . . ,m.
In this case, each agent i, i = 1, . . . ,m, has a local decision
vector xi ∈ Rni , its local cost function fi(xi) : Rni → R, and
its local constraint set Xi(δ) ⊆ Rni . Function gi(xi) : Rni →
Rp quantifies the amount of p resources that is required by agent

i to implement its decision xi. The coupling among the agents’
decision is due to the constraint

∑m
i=1 gi(xi) ≤ 0.

The algorithm based on proximal minimization and dual de-
composition in Falsone et al. (2017) can be used to compute
an optimal solution to the above constraint-coupled program
according to a distributed scheme where local information (set
of scenarios Si, functions fi and gi and constraint Xi) is not
disclosed to the other agents. It should be noted that in the case
of the constraint-coupled problem, the probabilistic feasibility
certificate derived in Theorem 3 can be used in place of the
general one in Theorem 2.

4. CONCLUDING REMARKS

We extended the scenario approach to deal with multi-agent
optimization problems affected by uncertainty. Specifically, we
showed how to extend the probabilistic feasibility guarantee of
the classical scenario theory to the case where scenarios are a
private local information of each agent. Since our probabilistic
feasibility guarantees are independent of the algorithm adopted
to solve the multi-agent scenario problem, then, they apply also
to the case of distributed optimization schemes. This allows to
extend distributed solutions originally developed for determin-
istic set-ups to the uncertain case, accompanying them with an
a priori probabilistic certificate of feasibility.
Current work concentrates towards applying the developed the-
oretical framework to energy management problems in building
networks Belluschi et al. (2020), as well as to non-cooperative
multi-agent programs Deori et al. (2018). From a theoretical
point of view, we aim at improving the bounds using the recent
a posteriori developments of the scenario theory in Campi and
Garatti (2018), and at investigating non-convex variants of the
multi-agent settings under study.
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