
IFAC PapersOnLine 53-2 (2020) 13656–13661

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2020.12.866

10.1016/j.ifacol.2020.12.866 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

  

 

A Machine Learning approach to fault detection in transformers 

by using vibration data 
 

A. Tavakoli*, L. De Maria**,  

B. Valecillos***, D. Bartalesi**, S. Garatti*, S. Bittanti* 
* Dipartimento di Elettronica, Informazione e Bioingegneria - Politecnico di Milano, piazza L. da Vinci 32, 20133, 

Milan, Italy (amirhossein.tavakoli@mail.polimi.it, {simone.garatti,sergio.bittanti}@polimi.it)  
**RSE S.p.A, via Rubattino, 20134, Milan,  Italy (Letizia.demaria@rse-web.it, Daniele.bartalesi@rse-web.it) 

***Trafoexpert GmbH, Switzerland (b.valecillos@trafoexperts.com) 

Abstract: Transformer Vibration Technique is considered an effective method to monitor 
structural elements of transformers, in particular, to detect loose or deformed windings. As it is 
well known, vibrations vary with the sensor location on the transformer tank, which makes the 
number and the placement of sensors critical aspects for fault detection. In this paper, we 
investigate this issue by analyzing vibration spectra collected from various sensors installed on the 
tank of a typical oil filled power transformer operating under two limit cases, namely absence or 
presence of clamping looseness on windings. Support Vector Machines (SVM) are employed and 
an extensive analysis is performed to understand the informativeness of data corresponding to 
various sensors so as to figure out the appropriate number of sensors and their best location. This 
way fault detection is eventually achieved with a reduced and optimized number of sensors, 
resulting in a significant saving of time and costs. 
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1. INTRODUCTION 

A proper clamping pressure in transformers’ windings is 

essential to withstand high internal electromagnetic forces 
that arise during external short-circuit events. A transformer 
with loose or deformed windings is heavily exposed to 
permanent damage in presence of external short [1]. 
Recently, there has been a growing interest toward the 
application of monitoring techniques and devices for early 
warning on transformers’ faults, in view of a more targeted 
and efficient asset management. Moreover, significant 
benefits on predictive maintenance of transformers have been 
obtained by the Industry 4.0 paradigm, where embedded 
sensors and devices play a key role as effective data sources 
for predictive analysis. In this framework, techniques based 
on the vibration of the transformer tank in steady-state have 
proved to be a promising tool to diagnose windings faults, 
[1,2]. Specifically, these approaches are based on the 
acquisitions of vibration fingerprints of the transformer tank 
before and during its service. These fingerprints are collected 
by means of sensors, like accelerometers, mounted in 
different positions of the tank. Various data analysis 
methodologies can be then exploited to perform fault 
diagnosis based on these collected vibration data. In [1] a 
model with electrical current, voltage, and temperature as 
inputs is reported to identify winding deformation. The 
malfunctioning is detected by comparing the measured 
100Hz vibration signal with the vibration magnitude 
estimated by the model. To construct a model, the geometry 
of the transformer and its parameters are required though. 
When the parameters of the transformer are uncertain or 
unknown one must resort to different routes, akin to the 
black-box paradigm. For example, in [3], various indicators, 
like total harmonic distortions, the sum of harmonic 
amplitudes and ratio of main harmonics, are used to classify 
transformers into new, used, and anomalous. 

The aim of this paper is to investigate the feasibility of a 
machine learning classification technique to predict the 
looseness of windings by vibration spectra. Surprisingly, the 
usage of machine learning for condition monitoring of power 
transformers seems to be a quite unexplored research 
direction. To the best of our knowledge, the only contribution 
in the same vein is [4], where artificial neural networks are 
considered.  
In this paper, we investigate the usage of Support Vector 
Machines (SVM), [5,6,7], on vibration spectra experimentally 
recorded from the tank of a typical distribution transformer, 
subject to tightening or loosening clamping of its windings 
pack. As it is well known, vibrations vary with the sensor 
location on the transformer tank, which makes the number and 
the placement of sensors critical aspects for fault detection. In 
particular, the goal is to eventually obtain a classifier for the 
tight vs. loose condition that requires the final user to use the 
smallest possible number of sensors and that is resilient to 
misplacement of sensors as it often happens in real 
application. The main contribution of this paper is to propose 
an analysis of the informativeness of the data corresponding to 
the various sensors locations so as to figure out which is the 
minimal number of sensors and their best location for the 
training of the robust SVM classifier. This way fault detection 
is eventually achieved with a reduced and optimized number 
of sensors, resulting in a significant saving of time and costs. 
The effectiveness of the proposed approach is carried out by 
means of numerous tests. All the results reported in the 
present paper have been obtained by using a set of real data 
obtained from laboratory experiments. 
The paper is organized as follows. In Section 2, after a 
preliminary description of the experimental layout to collect 
vibration data and to reproduce the fault on transformer’s 

windings, the fault detection problem is introduced. The 
proposed SVM model and analysis is explained in Section 3, 
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while the experimental results obtained by applying SVM to 
vibration spectra are discussed in Section 4. Some conclusions 
are drawn in Section 5. 

 
2. DATA ACQUISITION FRAMEWORK 

 
2.1 Test transformer 

 
A new oil filled three-phase transformer (42kV/580V, 
750kVA, cooling with circulation of both oil and air natural 
(ONAN) cooling) was used as a test transformer (Figure 1) for 
collecting vibrations. It was tested under two tight 
(corresponding to no fault) and loose (fault) clamping. The 
last one has been simulated by loosening the winding 
clamping rods, which compress the windings at the top of the 
structure (see the inset of Figure 1). Therefore, the fault 
condition is represented by the transformer with the three 
phases simultaneously loosened at the same time. 
Vibration measurements were carried out on the load 
transformer either under fault and no-fault conditions.  
Actually, unlike no load operation, where tank vibrations are 
driven by magnetostrictive forces in core sheets, during load 
operation, the vibrations of the transformer are mainly 
generated by the windings, due to the presence of high 
electro-dynamic forces [1]. Therefore, any looseness on 
windings will be more likely exalted during load tests with 
respect to no-load conditions. 
 

 
 

Fig. 1. The 750kVA test transformer. Insets: a detail of the looseness of 
winding clamping structure (left) and of measurement points (right).  

 
During load tests, the transformer was energized from the 
High Voltage (HV) side to nominal current (10A) with 
secondary shorted. A grid of 22 measurement points was 
defined on the  Low Voltage (LV)  sidewall of the tank 
(Figure 1). Tank’s Vibrations were measured in each point of 
the mesh, at the top and at the bottom of the tank, either under 
tight and loose clamping. 
 

2.2 Vibration Sensing System 

 
The vibration sensing system used for the tight and loose 
tests is based on an optical accelerometer, the Electro Optical 
conversion Unit and a conditioning and recording Unit, as 
previously described in [8]. Due to the dielectric nature of its 
elements this optical accelerometer can be safely installed on 
serviced transformers. The accelerometer’s sensitivity is 

100mV/g and the frequency bandwidth (flat up to 1000Hz) 
has been chosen to detect main frequencies of mechanical 
oscillations of the transformer’s windings and core. The 
Electro-optic Unit (EOU) output signals are recorded as a 
.wav file by means of a digital audio recorder (ZOOM 
Corp.H5-Handy Recorder) with a 24-bit resolution and a 96 
kHz maximum sampling frequency. 
A proprietary software developed under LabView (National 
Instrument) environment, was exploited for the off-line 
processing of the recorded time signals.  
 

2.3 Vibrations data 
 
During the experiment, 22 vibration time-series, one time-
series for each position on the transformer tank, were 
recorded both for tight and loose windings. 
Two minutes acquisition and 44 kHz frequency sampling 
were set as acquisition parameters. Each recorded time 
signals were subdivided in 100 time-subseries, each of which 
was averaged, filtered and Fast Fourier Transformed into the 
frequency domain (which seems to be better suited to reveal 
the information content of vibrations). Only magnitudes were 
considered. A data normalization was then applied by 
enforcing the value corresponding to each harmonic to be in 
the [0,1] range. Apart from fostering numerical stability, 
normalization has also motivations related to the structure of 
vibration in transformers. The vibration inside transformer can 
be transmitted through the liquid (insulating oil) inside the 
tank and also through some metal joints inside the 
transformer. Therefore, the possible similar patterns inside the 
tank can have different magnitudes in the outer body of the 
tank due to the different passed route. The aim of 
normalization is achieving meaningful information from 
patterns rather than relying on the magnitude of just one 
specific harmonic, [8]. Eventually, to better focus on the real 
information content of data, we eliminated frequencies which, 
provably from physical considerations, carry very little 
information (i.e. harmonics having very small magnitude or 
showing no significant differences for tight and loose 
conditions). Accordingly, our spectra were defined over the 
frequencies 50Hz, 100Hz, 150Hz, …, 500Hz, see also [8]. 
Thus, altogether, our dataset consists of approximately 22 ∙
2 ∙ 100 = 4400 pairs (x, y) where x is a normalized spectrum 
(which can be represented as a vector of real numbers as we 
consider magnitudes only) and 𝑦𝑦 is a label which can be 
either “tight” or “loose”. 𝑥𝑥 is called the feature vector. The 
dataset is balanced since half of the pairs are labelled “tight” 

and half are “loose”. Moreover, the dataset can be 

decomposed in 22 balanced sub-datasets, one for each sensor 
position in the considered grid. 
Figure 2 shows two examples of averaged vibration spectra 
recorded in the same point of the tank. These two spectra 
(Fig. 2) were recorded at different times, after repositioning 
the sensor approximately in the same point of the tank, that 
is, with a tolerance less than 5cm. Though similar spectra 
should be expected, their comparison evidenced relevant 
harmonic differences (i.e. at 200Hz, 300Hz, and 400Hz). 
Figure 3 shows load vibration spectra measured in the upper 
part of tank for different sensor positions: left (Fig. 3a) middle 
(Fig. 3b), right (Fig. 3c), respectively. Each figure shows the 
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vibration harmonics recorded under tight (solid) and loose 
(striped) windings, respectively. 
 

 
 

 
Fig. 2. Magnitude of load vibration spectra measured in the same position at 
the top of the tank at two different times: (a) t_1 and b) t_1b, respectively. 
Tight windings (blue solid) vs. loose ones (blue striped). 
 

A comparative analysis of tight and loose spectra among these 
three positions (Figure 3) evidenced a different harmonics 
contents with a different magnitude of the fundamental 
harmonic (100Hz) depending on the sensor position.  
 
 

 
 

 
 

 

Fig. 3. Magnitude of load vibration spectra measured at the top of the tank: 
left side (a) middle (b) and right side (c), respectively. Tight windings (blue 
solid) vs. loose ones (blue striped). 
 
Moreover, spectra corresponding to the top of the tank (Fig.3) 
and the bottom (Fig. 4) present an opposite mutual ratio 

between the 100 Hz harmonic magnitude in tight and loose 
conditions. 
This visual inspection reveals that detection of the tight vs. 
loose condition based on the assessment of 100 Hz harmonic 
magnitude as suggested by physical considerations is not 
possible without any further knowledge on the transformer. 
Moreover, due to the complexity of the vibration data 
obtained from all tank positions, extracting quantitative 
information on the fault of the transformer from simple 
classification rules based on vibration spectra seems 
challenging. This motivates the usage of more sophisticated 
black-box tools like the SVM discussed in the next section. 
 

 
 

 
 

 
 

Fig. 4. Magnitude of load vibration spectra measured at the bottom of the  
tank: left side (a) middle (b) and right side (c), respectively. Tight windings 
(blue solid) vs. loose ones (blue striped). 
 

3. FAULT DETECTION VIA SVM 
 
The Support Vector Machines (SVM, [5,6,7]) is a supervised 
learning method whose goal is to learn a mapping (called 
classifier) from the feature vector 𝑥𝑥 to the label 𝑦𝑦. The 
classifier thus is a natural tool to predict the value of the label 
given the feature vector for a new observation. The classifier 
is learnt based on a training dataset {(x1, y1), (x2, y2), …, 
 (x𝑁𝑁, y𝑁𝑁)}, where 𝑁𝑁 is the number of  so-called training 
examples. SVM is based on separating hyperplanes (linear 
classifiers) that are selected so as to increase the margin 
between points corresponding to distinct labels as much as 
possible (possibly by tolerating that few data examples are 
misclassified as indicated by a user-chosen misclassification 
regret parameter 𝜌𝜌). This way, the classifier capability of 
separating (aka correctly classifying) other, unseen, 
observations is fostered, [9]. Before finding the separation 
hyperplane, however, SVM maps data to a higher dimensional 
feature space so as to augment the separation of the data 
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vibration harmonics recorded under tight (solid) and loose 
(striped) windings, respectively. 
 

 
 

 
Fig. 2. Magnitude of load vibration spectra measured in the same position at 
the top of the tank at two different times: (a) t_1 and b) t_1b, respectively. 
Tight windings (blue solid) vs. loose ones (blue striped). 
 

A comparative analysis of tight and loose spectra among these 
three positions (Figure 3) evidenced a different harmonics 
contents with a different magnitude of the fundamental 
harmonic (100Hz) depending on the sensor position.  
 
 

 
 

 
 

 

Fig. 3. Magnitude of load vibration spectra measured at the top of the tank: 
left side (a) middle (b) and right side (c), respectively. Tight windings (blue 
solid) vs. loose ones (blue striped). 
 
Moreover, spectra corresponding to the top of the tank (Fig.3) 
and the bottom (Fig. 4) present an opposite mutual ratio 

between the 100 Hz harmonic magnitude in tight and loose 
conditions. 
This visual inspection reveals that detection of the tight vs. 
loose condition based on the assessment of 100 Hz harmonic 
magnitude as suggested by physical considerations is not 
possible without any further knowledge on the transformer. 
Moreover, due to the complexity of the vibration data 
obtained from all tank positions, extracting quantitative 
information on the fault of the transformer from simple 
classification rules based on vibration spectra seems 
challenging. This motivates the usage of more sophisticated 
black-box tools like the SVM discussed in the next section. 
 

 
 

 
 

 
 

Fig. 4. Magnitude of load vibration spectra measured at the bottom of the  
tank: left side (a) middle (b) and right side (c), respectively. Tight windings 
(blue solid) vs. loose ones (blue striped). 
 

3. FAULT DETECTION VIA SVM 
 
The Support Vector Machines (SVM, [5,6,7]) is a supervised 
learning method whose goal is to learn a mapping (called 
classifier) from the feature vector 𝑥𝑥 to the label 𝑦𝑦. The 
classifier thus is a natural tool to predict the value of the label 
given the feature vector for a new observation. The classifier 
is learnt based on a training dataset {(x1, y1), (x2, y2), …, 
 (x𝑁𝑁, y𝑁𝑁)}, where 𝑁𝑁 is the number of  so-called training 
examples. SVM is based on separating hyperplanes (linear 
classifiers) that are selected so as to increase the margin 
between points corresponding to distinct labels as much as 
possible (possibly by tolerating that few data examples are 
misclassified as indicated by a user-chosen misclassification 
regret parameter 𝜌𝜌). This way, the classifier capability of 
separating (aka correctly classifying) other, unseen, 
observations is fostered, [9]. Before finding the separation 
hyperplane, however, SVM maps data to a higher dimensional 
feature space so as to augment the separation of the data 
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points belonging to distinct classes. This is done by specifying 
a kernel k(x, x′) , which automatically defines a (possibly 
infinite-dimensional) transformation through the Mercer 
relation k(x, x′) = 〈ϕ(x), ϕ(x′)〉. Typically, Gaussian kernels 
are used, k(x, x′) = exp(− ‖x − x′‖2 2σ2⁄ ), which enhance 
the separation of classes. See [9,10,11,12]  for further details. 
The training of the classifier involves also the selection of the 
so called hyperparameters (𝜌𝜌 and the kernel k(x, x′)) so as to 
improve the classifier as much as possible, [9,11]. To avoid 
overfitting, [13,14], k-fold Cross  Validation is used, [15]. 
That is the training dataset is randomly split  into k subsets 
and repeatedly k-1 subsets are used for training while the 
remaining dataset is used to validate a given choice of the 
hyperparameters (in our problem, k is selected equal to 10). 
Once the hyperparameters are chosen, the final classifier can 
be learnt over the whole training dataset by re-running SVM 
for the last time. The final classifier can be used to predict the 
labels from new measured features and hence to predict 
whether we are in a tight winding (no fault) or loose winding 
(fault) condition. 
The goal of this paper is to check the potentiality of SVM to 
produce a tool for the diagnosis of transformers to be sold 
along with the transformer itself to the final user. In this 
respect, the following observations arise: 
1. The producer cannot in general perform an extensive data 
acquisition campaign as the one that we performed for the 
analysis presented in this paper. The reason is that acquiring 
data from many different sensor positions is time-consuming 
and expensive. It is thus safe to assume that the classifier is 
trained based on measurements obtained from a limited 
number of sensor positions and the less the number of 
positions the better; 
2. Also the final user, who aims at detecting whether the 
transformer is faulty or not, will use a limited number of 
sensor positions (for the same reasons as in point 1) and 
moreover it must be considered that he/she could place the 
sensors in positions other than those that are used when the 
classifier is trained. Indeed, keeping memory of the exact 
position seems unreasonable (loose winding detection 
becomes relevant when dealing with aged transformers that 
have operated for years) and errors may always happen. 
In order to account for 1 and 2 above, the analysis cannot be 
limited to the training of an SVM classifier from the available 
dataset. We instead proceed as follows. 
The dataset is partitioned in many different ways according to 
the sensor positions corresponding to the available data, and 
repeated experiments are performed where the classifier is 
trained based on data corresponding to certain sensor positions 
and then its fault prediction capabilities are tested against new 
data referring to other positions. In this way, provided that 
enough combinations are considered, it is possible then to 
obtain an indication of the safer positions for performing 
testing for various classifiers and, more ambitiously, to 
determine which is the least number of sensors and which are 
the best sensor positions to be used in the training phase so as 
to obtain a classifier whose prediction capabilities are robust 
enough with respect to the sensor positions used during 
testing. In other words, we obtain useful indication of how to 
use SVM so as to obtain a procedure that is simultaneously 
feasible and reliable in practice according to the points 1 and 2 

above. The results of the analysis here proposed over the data 
described in Section 2 are presented in the next section. 

4. EXPERIMENTAL RESULTS 

The experimental result has been divided into 4 main 
sections. In Section 4.1, the reliability and limiting aspects of 
the trained classifier on each sensor position will be discussed 
in details and it will be clarified why this type of classifier is 
not practical. In Section 4.2, the capability of SVM for more 
comprehensive classifier will be assessed. In this step the 
classifier will be extended for all upper and bottom part of 
transformer. In Section 4.3, by using the classifier proposed 
in Section 4.2, the robustness of the model will be analysed 
for different positions. Finally, by exploiting information 
obtained in previous sections, the least number of sensors for 
fault detection will be discussed in section 4.4. It will be 
shown that this set of sensors is sufficient for diagnosis of 
transformer. 
The reliability of the method in each step is expressed by the 
following parameters: accuracy, sensitivity and specificity, 
[16]. The accuracy is the ratio of truly detected data (that is 
true positive, i.e. loose, and true negative, i.e. tight, correctly 
identified data) to all data; sensitivity is the ratio of the truly 
positive detected to all positive data; specificity is the ratio of 
the correctly negative data identified to all negative data. 
4.1. Training and testing classifier for each position 

Initially, data referring to each position are split into training 
and test data (respectively, 75% and 25% of the data). The 
capability of the SVM classifier trained from data referring to 
one single position is first assessed via test data referring to 
the same sensor position. This procedure has been 
implemented for each sensor position and the accuracy of the 
SVM classifiers for corresponding test data is always 100%. 
Figure 5 shows an example of the separation of the two 
classes for sensor position 41. 

However, the model built from one sensor position is not in 
general capable to predict data coming from different sensor 
positions. Consequently, by repeating this experiment, there 
is no guarantee that the proposed models are able to predict 
the fault of the system due to possible misplacements of the 
exact location of the sensor.  

4.2. Extension of classifier to all positions on the top and 

bottom 

To solve this problem, it is needed to have a more 
comprehensive model, which will be able to detect possible 
faults while positions of the sensors have not been restricted 
to very small specific areas. Therefore, the next step is to 
build the classifier by collecting training data coming from all 
sensor positions of the upper part of transformer and 
subsequently assessing its reliability for the remaining 25% 
of test data, again randomly chosen from all upper part sensor 
positions (Figure. 6). 

The accuracy, specificity, and sensitivity of this classification 
for the model trained from all sensors in the upper part of the 
tank are all 100%.   The same approach has been followed for 
data referring to bottom part taken from 11 sensors (Fig. 7). 
The accuracy, sensitivity and specificity of classification for 
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test data referring to sensors at the bottom part are 
respectively: 99.8%, 99.6% and 100%. 

The accuracy achieved by the obtained classifiers indicate 
that the selection of the 10-dimensional input feature space 
and the usage of SVM with Gaussian kernels was 
appropriate. Moreover, since the two classifiers obtained in 
this Section 4.2 exploit data coming from sensors in different 
positions, it is expected that they show a better robustness 
with respect to a misplacement of sensors in the test phase 
than classifiers trained over data collected from a single 
sensor (Section 4.1). The next section aims at assessing this 
robustness property. 

3  

Fig. 5. Scatter Plot projected on two features (100Hz and 300Hz) derived 
from position 41, test and training data referring to same position, 41. 

4.3. Testing classifier against new data from excluded 

positions 

At each step all data referring to one specific sensor will be 
kept as test data. Then, remaining data referring to other 
sensors referring to upper part or bottom part positions will 
be considered as training ones. For instance, all data sets 
referring to position 41 will be kept as test data while the 
remaining data related to other sensor positions located in the 
upper part of transformer (i.e. data referring to the other 10 
sensors) are used to train the SVM classifier. In this situation, 
position 41 can be interpreted as totally unobserved 
vibrations for the classifier and the reliability of the trained 
classifier indicates its robustness against this unobserved 
position (Fig. 8). This procedure has been implemented for 
every position and Table 1 illustrates the validity of the 
model for totally unseen data coming from the excluded 
sensor in the upper part of transformer. 

 
Fig. 6. Scatter Plot projected on two features (100Hz and 300Hz) derived 
from all upper part positions 

 
Fig. 7. Scatter Plot projected on two features (100Hz and 300Hz) derived 
from all bottom part positions 
 

 
Fig. 8. Scatter Plot projected on two features (100Hz and 300Hz) for 
classification of data referring to excluded sensor position 41 

 
From Table 1, indications about the safer sensor positions 
(i.e. enhancing more robustness) for the training of the 
classifier emerge. While the reliability of classifiers for 
unseen sensor positions is high for most positions on the 
upper part of transformer, there are few positions (e.g. 55 and 
63) which are not predictable by the classifiers obtained from 
data collected from the other positions. This indicates that 
sensor positions 55 and 63 must be used to enforce 
robustness with respect to the sensor position used during the 
test. 
 
Table 1. Reliability of classifiers on test data referring to 

excluded positions in upper part of transformer, expressed via 

Accuracy, Specificity and Sensitivity 
 

Position Accuracy (%)  Specificity (%) Sensitivity (%)  

41 99 100 98 
43 95.5 91 100 
45 89.9 100 85 
49 100 100 100 
51 100 100 100 
53 100 100 100 
55 68.5 37 100 
57 96.5 100 93 
59 99.5 99 100 
61 88.9 100 77.8 
63 50 0 100 

 

A similar experiment with the dataset referring to the bottom 
part of the transformer reveals that in the bottom only two 
positions (60 and 64) can be correctly predicted by the 
classifiers trained based on data referring to sensors in the 
other positions in the bottom part. This fact indicates that 
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A similar experiment with the dataset referring to the bottom 
part of the transformer reveals that in the bottom only two 
positions (60 and 64) can be correctly predicted by the 
classifiers trained based on data referring to sensors in the 
other positions in the bottom part. This fact indicates that 

 
 

 

models obtained from data collected from the bottom of the 
transformer are more sensitive to the sensor position used in 
the test phase. In other words, the SVM classifier trained at 
the upper part of transformer is more robust with respect to 
sensor misplacements rather than models trained at the 
bottom part. Hence, data referring to upper part of 
transformer is respectively safer to be used. It is perhaps 
worth mentioning that another experiment reveals also that 
merging training data from upper and bottom parts do not 
increase the accuracy of the prediction for neither bottom nor 
upper part. 

4.4. Least number of required sensors 

The experimental results in Table 1 on the robustness of the 
trained SVM by vibration data belonging to upper part can be 
used to reduce the number of sensors used for training. 
Specifically, one can progressively add sensor positions, 
starting from those leading to highest decreases of accuracy 
when removed from the data set. The procedure is halted 
when the classifier trained from data coming from the 
selected set of sensors achieves a high level of reliability also 
for data referring to the other sensor positions on the upper 
part of transformer not used for training. 
 
Table 2. Reliability of classifiers trained by least number of 

sensors on test data referring to excluded positions in upper part 

of transformer, expressed via Accuracy, Specificity and 

Sensitivity. 
Position Accuracy (%) Specificity (%) Sensitivity (%) 

41 100 100 100 
45 90.6 86 100 
51 100 100 100 
53 100 100 100 
57 90.5 100 81 
59 100 100 100 
61 87.9 100 75.8 

 

 
 

In our experiment, the least number of sensors which has this 
capability of classifying with high reliability unseen data 
from any position in the upper part of transformer is 4 and 
consists of positions 43, 49, 55, and 63. The reliability of the 
classifier trained from data referring to these positions against 
test data referring to all the other positions are reported in 
Table 2. Based on Table 2, it is possible to claim that the 
selected sensor positions are enough to obtain a classifier that 
is robust with respect to any possible misplacement in the 
positioning of the sensor at the upper part of transformer 
during the test phase. 
 
 

5. CONCLUSIONS 

In this paper, we have considered the problem of detecting 
malfunctioning in electrical transformers. To this purpose, we 
have resorted to the Support Vector Machine classification 
technique by using vibration data measured with sensors 
located in various positions on the transformer tank. The 
obtained result shows the high reliability of SVM when 
applied to consistent dataset (i.e. taken always from the same 
position on the tank) and moreover we also devised robust 
classifiers that allows one to detect the fault even though the 
test data are collected from a position on the tank different 

from that corresponding to the data used to train the classifier. 
This robustness property is significant in two respects. First, it 
shows that misplacements of sensors location, which is quite 
likely, have a limited impact on the detection of fault. Second, 
it reveals that fault detection can be achieved with a reduced 
number of sensors, resulting in a significant saving of time 
and costs. 

ACKNOWLEDGMENTS 

This work has been financed by the Research Fund for the 
Italian Electrical System in compliance with the Decree of 
Minister of Economic Development; April 16 2018. Authors 
would like to thank Specialtrasfo SpA for allowing the use of 
their facilities, personnel and transformers to conduct the 
investigation. 

 

REFERENCES 
 
[1] García, B., Burgos, J. C., & Alonso, Á. M. (2005). Transformer tank 

vibration modeling as a method of detecting winding deformations-part 
II: experimental verification. IEEE Transactions on Power Delivery, 
21(1): 164-169. 

[2] Hu, Y., Zheng, J., & Huang, H. (2019). Experimental Research on 
Power Transformer Vibration Distribution under Different Winding 
Defect Conditions. Electronics, 8(842): 1-19. 

[3] Bartoletti, C., Desiderio, M., Di Carlo, D., Fazio, G., Muzi, F., 
Sacerdoti, G., & Salvatori, F. (2004). Vibro-acoustic techniques to 
diagnose power transformers. IEEE Transactions on Power Delivery, 
19(1): 221-229. 

[4] Booth, C., & McDonald, J. R. (1998). The use of artificial neural 
networks for condition monitoring of electrical power transformers. 
Neurocomputing, 23(1-3): 97-109. 

[5] Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training 
algorithm for optimal margin classifiers. In Proceedings of the fifth 
annual workshop on Computational learning theory (pp. 144-152). 
ACM.   

[6] Müller, K. R., Smola, A. J., Rätsch, G., Schölkopf, B., Kohlmorgen, J., 
& Vapnik, V. (1997). Predicting time series with support vector 
machines. In: International Conference on Artificial Neural Networks 
(pp. 999-1004). Springer, Berlin, Heidelberg. 

[7] Cristianini, N., & Scholkopf, B. (2002). Support vector machines and 
kernel methods: the new generation of learning machines. Ai 
Magazine, 23(3), 31-31.   

[8] Tavakoli, A., De Maria, L., Bartalesi, D., Garatti, S., Bittanti, S., 
Valecillos, B., & Piovan, U. (2019). Diagnosis of transformers based 
on vibration data. In: 2019 IEEE 20th International Conference on 
Dielectric Liquids (ICDL) (pp. 1-4).  

[9] Vapnik, V., Golowich, S. E., & Smola, A. J. (1997). Support vector 
method for function approximation, regression estimation and signal 
processing. In: Advances in neural information processing systems (pp. 
281-287). 

[10] Vapnik, V. (2013). The nature of statistical learning theory. Springer 
science & business media. 

[11] Smola, A. J., Schölkopf, B., & Müller, K. R. (1998). The connection 
between regularization operators and support vector kernels. Neural 
networks, 11(4): 637-649. 

[12] Scholkopf, B., Sung, K. K., Burges, C. J., Girosi, F., Niyogi, P., 
Poggio, T., & Vapnik, V. (1997). Comparing support vector machines 
with Gaussian kernels to radial basis function classifiers. IEEE 
transactions on Signal Processing, 45(11), 2758-2765. 

[13] Bittanti, S. (2019). Model Identification and Data Analysis. Wiley. 

[14] Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The 
elements of statistical learning: data mining, inference and 
prediction. The Mathematical Intelligencer, 27(2): 83-85. 

[15] Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures 
for model selection. Statistics surveys, 4: 40-79. 

[16] Sammut, C., & Webb, G. I. (Eds.). (2011). Encyclopedia of machine 
learning. Springer Science & Business Media. 


