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This study presents a stochastic model of near-periodic walking force signals featuring
variable walking speed on the step-by-step basis as the key input modelling parameter.
This is a notable departure from traditional deterministic and periodic Fourier series mod-
els where the key modelling parameter is the average pacing rate in a walking trial.
Walking speed instead of pacing rate is a more natural choice since human nervous system
adopts speed of successive steps to the surrounding environment, including vibrations of
the supporting structure. Starting from the previously developed models of variable walk-
ing speed and spatiotemporal parameters in a walking trial, this study derived a comple-
mentary model of variable dynamic loading factors (DLFs) corresponding to the first five
dominant harmonics and subharmonics of the walking force. Both the mean and coefficient
of variation of DLFs are described as the products of two factors. The first represents the
deterministic dependence on the step speed and is modelled as a second-order polynomial.
The second factor reproduces the random inter-pedestrian variability of the DLFs which is
defined by a Beta distribution. Extensive vibration simulations of virtual footbridges due to
measured and simulated walking forces showed a reliable performance of the model.
Moreover, the results provided a strong evidence that the step-by-step variability of gait
in a single-pedestrian walking trial yields up to 22% relative error in the simulated vibra-
tion response.
� 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Vibration serviceability assessment governs design of contemporary pedestrian structures, such as footbridges and floors.
Yet there is a total lack of quality models of pedestrian-induced loading that can be used to reliably predict vibrations at the
design stage. The fact is reflected in dozens of vibration serviceability failures of newly built structures reported all around
the world in the last two decades [1,2].

The leading guidelines for design of pedestrian structures portray individual pedestrian loading as deterministic and peri-
odic time histories, thus described via Fourier series [2]. The relevant modelling parameters are pacing rate f s and amplitudes
of the first few dominant Fourier harmonics (typically up to four) that are functions of f s. After scaling by the corresponding
body weight, the Fourier amplitudes are commonly known as ‘‘dynamic loading factors” (DLFs). The corresponding phases
are very little studied and usually neglected. DLF values adopted in the key design guidelines were derived from Kerr’s exper-
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iments featuring single footfalls recorded by a force plate mounted on a rigid laboratory floor [3]. More recent studies aimed
to record continuously measured forces due to many successive steps. They measured the forces: (1) directly using instru-
mented treadmills [4–6], instrumented walkways [7] and foot-pressure insoles [8], and (2) indirectly using motion tracking
technology, such as motion tracking markers [9,10], inertial sensors [11,12] and video cameras [13]. The continuously mea-
sured forces revealed the presence of subharmonics centred in-between the main harmonics. These are due to inborn asym-
metry of gait, i.e. differences between the right and the left footfalls [14]. Although DLFs of subharmonics have smaller
amplitudes than DLFs of the neighbouring harmonics, their energy is still high enough to create vibration serviceability
issues [7]. This means that a reliable model of walking forces should not neglect them, as it is currently the case. The relevant
guidelines favour walking frequency (also called pacing/footfall rate/frequency) rather than walking speed as the key force
modelling parameter because the most severe load case scenario of pedestrian structures is a force harmonic matching a
natural frequency of the structure yielding the resonance. While this sounds reasonable for a light pedestrian traffic, speed
of walking rather than pacing rate is imposed to individuals in dense pedestrian crowds and is restrained by the crowd flow.

Human gait is characterised by great inter- and intra-pedestrian variability [2]. The former refers to differences between
different individuals (usually called ‘‘test subjects” in experiments), while the latter means that a single person cannot make
two identical successive footfalls, or it would be only by chance. Therefore, a stochastic rather than the deterministic mod-
elling approach is more suitable to describe walking forces. However, stochastic models are still very rare and limited [5,15–
17]. Even in deterministic characterisations inter-pedestrian variability is often recognised [18,19]. Intra-pedestrian variabil-
ity is usually neglected as its influence on vibration response is traditionally labelled insignificant. However, more recent
research showed that variability of pacing rate has a profound impact on the accuracy of predicted vibration levels
[11,12,20,21]. Although models that include variability of pacing rate do exist [5,6], they commonly assume constant speed
of walking. Extensive research in neurology and biomechanics of human gait proved that this is not how people actually
walk [22]. Human nervous system controls speed rather than pacing rate during walking. People speed-up and slow-
down while walking and interacting with their surrounding. Also, variations in other spatiotemporal gait parameters (in-
cluding pacing rate) are adapted to the speed in such a manner to minimise the energy expenditure of walking [14].

In the previous studies, the authors derived statistical models of intra- and inter-pedestrian variability of walking speed
for unrestricted walking [23] and other spatiotemporal parameters such as step length and step interval [24], both as func-
tions of walking speed. Necessary details of these past studies needed in the present research are presented in Section 2. The
aim of the present study is to provide a statistical model of variable DLFs as a function of walking speed, so it can be used in
conjunction with these previously developed models to provide a comprehensive and reliable model of individual pedestrian
loading.

The present study addresses DLFs of the first five dominant harmonics and subharmonics, thus covers the frequency
range approximately between 0 and 12 Hz for the highest pacing rate 2.5 Hz [2]. It is assumed that the energy of the higher
harmonics is not strong enough to induce significant resonant vibrations of footbridges and low-frequency floors [18,25].
Also, the study focusses on vibration response dominated by only one force harmonic or subharmonic. Under this condition,
the relative phase of the (sub) harmonics has a negligible effect on the response. Hence, the phases are set to zero for all (sub)
harmonics in each footfall.

The study is limited to walking on relatively rigid surfaces, i.e. when the vibration levels of the supporting structure are
still not perceptible enough to change the usual gait pattern of healthy individuals. Variability of the gait parameters due to
interaction with the neighbouring pedestrians [12,17] is out of the scope of this study. Interaction between the structure and
a pedestrian is perceived only through the contact forces between the feet and the walking surface, generally known as
ground reaction forces or GRFs [2]. Moreover, it is assumed that presence of a human body on the structure does not alter
the dynamic properties of an empty structure. Hence, a phenomenon of human-structure dynamic interaction [26,27] is
neglected in the present study. These limitations of the present research are due to the lack of adequate experimental data
that would enable studying the selected gait parameters under the above mentioned circumstances. However, this research
provides a universal analytical framework that can be used to study the modelling parameters based on any kind of the rel-
evant gait data recorded for healthy individuals under various walking conditions, i.e. with or without perceptible structural
motion or interaction with the surrounding people and environment.
2. Past models of key spatiotemporal gait parameters

The current study builds on the previously derived models of variable walking speed, step length, footfall interval and
walking frequency [21,23,24]. These are all revised briefly in this section to enable a reader to follow developments pre-
sented in the rest of the paper. More detailed descriptions of the models and an instrumented treadmill designed and used
to collect continuously measured vertical walking GRF signals, as well as experiments with a motion tracking system
designed to study overground gait parameters can be found elsewhere [22,24]. Based on the force records from fifty test sub-
jects (25 males and 25 females), 300 tests and more than 30 km of treadmill walking, the so established database of the ver-
tical GRF measurements was also used in the present study (Section 3) to derive a model of variable DLFs needed to provide a
comprehensive model of variable walking GRFs verified in Section 4.
2
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2.1. Walking speed

Based on in situ measurements carried out at different geographical locations (Table 1), the average self-selected walking
speed v among a population of healthy adults was found to fit well the Gaussian distribution. While this model accounts
reliably for inter-pedestrian variability of the speed, it neglects intra-pedestrian variations for successive footfalls.

For unrestricted continuous healthy walking, speed v i in each step i i ¼ 1;2; . . . ;Nð Þ can be broken down into two com-

ponents v i ¼ v þ v
�
i. Here, v is a constant (average) speed sampled from a Gaussian distribution of a kind given in Table 1 and

v
�
i is a random deviation described by the autoregressive model v

�
i ¼ c1v

�
i�1 þ c2v

�
i�2 þwi. The autoregressive parameters c1

and c2 are independent of the average speed v and can be statistically described by a binormal distribution with the follow-
ing mean l and covariances R matrices:
Table 1
Summa

Stud

Ziva
Pach
Kasp
Chan
Garc
l ¼ 1:45
�0:55

� �
; R ¼ 0:0210 �0:0180

�0:0180 0:0180

� �
: ð1Þ
The disturbances wi are modelled as Gaussian white noise wi � N 0;rwð Þ. The standard deviation rw is independent from
v and can be sampled from the Beta distribution B 17;2103ð Þ. In summary, the following steps determine a procedure to gen-
erate a sequence of speeds v i in a single overground walking trial:

1. Define input data: mean, lv , and standard deviation, rv , of the average walking speed, v , and the total number of steps, N,
in the trial.

2. Sample a random value of the average speed, v , from the distribution N lv ;rv
� �

.
3. Generate c1 and c2 by sampling from the binormal distribution defined in Eq. (1).
4. Check the stability of the autoregressive model. If �1 > c2 > 1 or c1 þ c2 > 1 or c2 � c1 > 1 go to Step 3; otherwise con-

tinue to Step 5.
5. Obtain the standard deviation of the disturbances, rw, by sampling from B 17;2103ð Þ.
6. Obtain the disturbances, wi, by sampling from the distribution N 0;rwð Þ.
7. Calculate the step speed deviations by ~v i ¼ c1 ~v i�1 þ c2 ~v i�2 þwi, where ~v�1 ¼ ~v�2 ¼ 0.
8. Generate the step speed sequence adding the average speed to the previous deviations, v i ¼ v þ ~v i.

2.2. Step length

Step length is correlated with walking speed via the empirical power law [24]:
‘s ¼ c3vc4 : ð2Þ

Here, c3 and c4 are parameters whose inter-pedestrian variability is described by a binormal distribution:
l ¼ 0:586
0:463

� �
; R ¼ 0:0022 �0:0015

�0:0015 0:0062

� �
: ð3Þ
2.3. Footfall interval and frequency

2.3.1. Relationship with walking speed
Footfall (i.e. step) interval T and footfall (i.e. walking) frequency f s ¼ 1=T are correlated with walking speed v via the well

known relationship v ¼ ‘sf s ¼ ‘s
T [2]. Substituting it into the power law (2) yields the formulations T ¼ c3vc4�1 and

f s ¼ 1
c3
v1�c4 .

Based on the statistical models of v ; c3 and c4 from the previous sections and extensive numerical simulations, it was
demonstrated in [21] that the inter-pedestrian variability of the average footfall frequency is represented best by a log-
normal distribution.
ry of inter-pedestrian variability of walking speeds after different authors.

y lv [m/s] rv [m/s] Country No. Samples

novic [28] 1.39 0.20 Montenegro 2019
i and Ji [29] 1.23–1.43 0.09–0.14 UK 800
erski and Sahnaci [7] 1.38–1.51 – Germany 6000
dra and Bharti [30] 0.97–1.36 0.19–0.22 India 1523
ía and Zapico [24] 1.41 0.14 Spain 50
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2.3.2. Inter and intra-pedestrian variability
Footfall intervals Ti of successive steps i ¼ 1; . . . ;N in a walking trial comprise an adaptive component Ti and a deviation

T
�
i, i.e. Ti ¼ Ti þ T

�
i. The adaptive component is correlated to the speed of walking made in each step v i as Ti ¼ c3vc4�1

i . The

deviation can be broken down into a deterministic part T
�
a
i due to inherent asymmetry of human gait and a random part

T
�
r
i , i.e. T

�
i ¼ T

�
a
i þ T

�
r
i . The deterministic part is formulated as follows: T

�
a
i ¼ c5i �1ð Þi, where c5i stands for the asymmetry of each

step and is expressed as a function of the adaptive component of that step c5i ¼ Ticn5
2 . Parameter cn5 is the normalized asym-

metry parameter and is constant in a trial. The inter-pedestrian variability of this parameter follows a Beta distribution

cn5 � B 2:67;149:10ð Þ. The random part is described by a second-order autoregressive model T
�
r
i ¼ c6iT

�
i�1 þ c7iT

�
i�2 þ zi, where

c6i and c7i are autoregressive parameters and zi is a random disturbance. Each autoregressive parameter consists of a deter-
ministic part described by a second-order polynomial and a random part:
c6i ¼ 0:0469v2

i � 0:0291v i � 0:3448þ cn6; c7i ¼ �0:0370v2
i � 0:0122v i � 0:1545þ cn7. Random parts, cn6 and cn7, are inde-

pendent from the walking speed and follow symmetric Beta distributions: cn6 � B 6:60;6:60ð Þ; cn7 � B 9:42;9:42ð Þ. The ran-

dom disturbance of T
�
r
i is modelled as a Gaussian white noise zi � N 0;rzi

� �
. The standard deviation

rzi ¼ c8 v2
i � 3:30v i þ 3:00

� �
is a second-order polynomial, where c8 is a random coefficient that follows Beta distribution

c8 � B 14:15;561:19ð Þ.

2.3.3. Synthetic footfall intervals
For a given sequence of speeds, v i, generated following the instructions given in Section 2.1, the corresponding sequence

of footfall intervals, Ti, can be generated as:

1. Sample c3 and c4 from the binormal distribution defined by Eq. (3).
2. Compute the adaptive component, for each footfall, Ti ¼ c3vc4�1

i .
3. Sample normalised asymmetry parameter cn5 from the distribution B(2.67, 149.10).

4. Calculate the asymmetry parameter c5i ¼ Ticn5
2 .

5. Sample parameters cn6 and cn7 from distributions B(6.60, 6.60) and B(9.42, 9.42), respectively.
6. Compute the autoregressive parameters through equations c6i ¼ 0:0469v2

i � 0:0291v i � 0:3448þ cn6 and
c7i ¼ �0:0370v2

i � 0:0122v i � 0:1545þ cn7.
7. Check stability of the autoregressive parameters: if max c7ið Þ > 1 or �1 > min c7ið Þ or max c6ið Þ þmax c7ið Þ > 1 or

max c7i � c6ið Þ > 1 go to Step 6; otherwise continue to Step 8.
8. Sample a random value of parameter c8 from the distribution B(14.15, 561.19).
9. Compute the standard deviation of disturbances, rzi ¼ c8 v2

i � 3:30v i þ 3:00
� �

.
10. Obtain the disturbance zi by sampling from N 0;rzi

� �
.

11. Calculate deviation of footfalls intervals, T
�
i ¼ c5i �1ð Þi þ c6iT

�
i�1 þ c7iT

�
i�2 þ zi i ¼ 1;2; . . . ;Nð Þ, whereT

�
�1 ¼ T

�
�2 ¼ 0.

12. Generate the sequence of footfall intervals, Ti ¼ Ti þ T
�
i.

2.3.4. Position on structure
The pedestrian position xi during step i (i ¼ 1; . . . ;N) along a walking path is commonly seen as the point of application of

the footfall force. It can be described by the following equation:
xi tð Þ ¼ xi�1 þ v it; ð4Þ

where xi�1 represents the position at the end of the step i� 1; t ¼ 0; Ti½ � and x0 ¼ 0. Generally speaking, xi and v i are vectors.
As this study is limited to walking on flat horizontal surfaces, there are only two relevant vector components, both in the
plane of a floor or a footbridge deck. However, in case of straight walking paths (which is usually the case in simulations),
xi is reduced only to one component, i.e. along the path.

Previous comparative studies between treadmill and overground walking [31–35] showed no statistically significant dif-
ference between the average values of the gait parameters in the two walking conditions. However, the intra-pedestrian
variability of these parameters in the overground walking was found to be one order of magnitude higher than that of
the treadmill walking [23]. It was also found that the relationship between the spatiotemporal parameters obtained in
the treadmill walking can be extrapolated to the case of variable footfall speed measured overground. Therefore, it is reason-
able to assume that a relationship between DLF amplitudes and walking speed derived from treadmill data can also be
extrapolated to the case of overground speed. The next section starts from this premise.

3. Modelling variable DLFs

Each signal from the database of walking GRFs was normalised to body weight and cut into segments corresponding to
both step and stride intervals. The segmentation was done in the same manner as in case of the analysis pertinent to the
4
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force parameters described in Section 2, so the past and the current data analysis are compatible. Each segment correspond-
ing to a step interval was run through the fast Fourier transform (FFT) algorithm to extract the amplitudes (i.e. DLFs) of the
first five dominant Fourier harmonics. Moreover, the FFT is applied to the stride segments to get DLFs of the first five sub-

harmonics. In the following sections, DLFs will be labelled DLF jð Þ
i . The subscript indicates the step number in a sequence of N

steps, i.e. i ¼ 1; . . . ;N. The superscript j ¼ 1; . . . ;5 stands for the order of harmonics while j ¼ 0:5; . . . ;4:5 stands for the order
of subharmonics.

The next two sections focus on deriving a ‘‘treadmill model” of a DLF jð Þ
i sequence. At this stage, the variability of walking

speed on the step-by-step basis can be neglected. This means that in a walking trial the speed is assumed constant for all
successive footfalls and is equal to the given constant speed of rotation of the treadmill belt [23]. The average value and vari-
ation of the DLFs in a trial are also considered constants, hence the fluctuation of the DLF values in a trial can be modelled as
a stationary process. This ‘‘treadmill model” will be extended in Section 3.3 to ‘‘overground model”, where both the average
value and variation of the DLFs are functions of the variable speed for successive footfalls.

3.1. Preliminary data analysis

An example of a DLF jð Þ
i sequence across successive steps is illustrated in Fig. 1 for the second Fourier harmonic j ¼ 2ð Þ.

Based on a visual inspection, all other harmonics and subharmonics across all walking trials in the database show a similar
random character.

DLF jð Þ
i can be broken down into two components: an average value DLF jð Þ and random variations DLF

�
jð Þ

i , i.e.
DLF jð Þ
i ¼ DLF jð Þ þ DLF

�
jð Þ

i : ð5Þ

DLF jð Þ are not correlated with pedestrian body weight, which is in line with the findings reported elsewhere [5]. Also, vari-

ations DLF
�

jð Þ
i are not correlated either with variations of other (sub) harmonics and the corresponding variations of the foot-

fall intervals T
�
i. This means that DLF jð Þ

i can be studied independently from footfall intervals and other harmonics.

Fig. 2 shows the lack of interconnection between successive DLF
�

jð Þ
i values, which means that the current value of DLF

�
jð Þ

i in
step i is independent from the values made in a few previous steps. Therefore, the variations can be considered a random
process. The coefficient of variation is an easy way to quantify it:
CoV jð Þ ¼ S jð Þ
DLF

DLF jð Þ ; ð6Þ
where S jð Þ
DLF is a standard deviation of DLF jð Þ

i .

DLF jð Þ
i values are in the range [0–1] and they fit well a Beta distribution B a; bð Þ as shown in Fig. 3. Parameters a and b of the

Beta distribution can be obtained from its mean l and variance r2 [36] as:
a ¼ l2 1� lð Þ
r2 � l; b ¼ a

1� l
l

: ð7Þ
Fig. 1. DLF 2ð Þ
i values for successive steps. The horizontal line is the average value DLF 2ð Þ.

5



Fig. 2. Autocorrelation function of DLF
�

2ð Þ
i , corresponding to the data presented in Fig. 1. The horizontal lines are a 95% confidence interval.

Fig. 3. Probability density of DLF 2ð Þ
i . The data are the same as in Fig. 1. The histogram is derived from the experimental data, while the line is the fitted Beta

distribution.
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In a trial, l and r2 can be approximated from its average DLF jð Þ and CoV jð Þ as:
l ffi DLF jð Þ; r2 ffi DLF jð Þ � CoV jð Þ
� �2

: ð8Þ
To conclude, the sequence DLF jð Þ
i in a treadmill walking trial can be considered a random process described by a Beta dis-

tribution which parameters can be approximated using the average DLF jð Þ and CoV jð Þ calculated form DLF data extracted from
a measured GRF trial. Therefore, adequate mathematical descriptions of the average and CoV are essential to generate reli-
ably an artificial sequence of DLFs. This is exactly what the next section aims to address.

3.2. Statistical modelling of DLF components

Fig. 4 shows a relationship between the average values DLF jð Þ from each walking trial and the constant (treadmill) walking
speed v. First of all, a visual inspection of the figure points to a significant degree of inter-pedestrian variability of the data.
Moreover, all the graphs show apparently increasing trend of the DLF values as pedestrians walk faster. Although the trend
becomes flatter for the higher (sub) harmonics, all the data can be described reliably by the following formulation:
DLF jð Þ ¼ DLF jð Þ
d 10 DLF jð Þ

r : ð9Þ
6



Fig. 4. DLF jð Þ vs. walking speed v. The dots represent the data, the solid lines the quadratic fit and the broken lines the 95% confidence bounds.
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The first factor DLF jð Þ
d represents a deterministic component of DLF jð Þ, while the second factor DLF jð Þ

r is a random variable
which accounts for the inter-pedestrian variability. The deterministic factor describes the global increasing trend in the rela-
tionship DLF jð Þ vs. v which can be mathematically modelled as a second-order polynomial:
DLF jð Þ
d ¼ c jð Þ

9 v
2 þ c jð Þ

10v þ c jð Þ
11: ð10Þ
The values of the coefficients c jð Þ
9 ; c jð Þ

10 and c jð Þ
11 were obtained by fitting the polynomial to the data shown in Fig. 4 and are

reported in Table 2. The fits and 95% confidence intervals are shown in Fig. 4 together with the actual data.

The random factor DLF jð Þ
r was calculated after substituting Eq. (10) into Eq. (9):
DLF jð Þ
r ¼ DLF jð Þ

10 c jð Þ
9 v2 þ c jð Þ

10v þ c jð Þ
11

� � : ð11Þ
Eventually, the value of DLF jð Þ
r representative of each pedestrian was estimated as the average value of the related six

experiments. The constant 10 in Eq. (9) limits values of the random factors to the range [0, 1]. In this way, the values fit well
Beta distribution B(c12; c13). The values of the parameters c12 and c13 listed in Table 2 were obtained using the maximum like-
lihood method [36].

The calculated CoVs of the DLF values are shown in Fig. 5. Apart from the first harmonic, the data show no apparent trend
as walking speed increases. Therefore, they can be assumed uniformly distributed across the measured range of speeds. For
the first harmonic, the data form a concave pattern with the minimum at the speed of approximately 1.7 m/s. This can be
7



Table 2
Parameter values of DLF jð Þ model.

(Sub) harmonic order jð Þ c9 c10 c11 c12 c13

0.5 0.0049 �0.0028 0.0055 10.06 89.29
1 0.0037 0.3064 �0.1263 45.51 407.69
1.5 �0.0017 0.0222 0.0035 18.85 168.56
2 0.0341 �0.0551 0.0685 13.78 123.17
2.5 0.0077 �0.0140 0.0236 24.55 220.83
3 0.0118 �0.0246 0.0657 15.93 143.33
3.5 0.0114 �0.0270 0.0284 24.35 219.03
4 0.0103 �0.0039 0.0333 14.24 128.88
4.5 0.0077 �0.0164 0.0188 22.00 198.18
5 0.0024 0.0138 0.0089 10.66 96.85

Fig. 5. CoV jð Þ vs. walking speed v. The dots represent the data, the solid lines the quadratic fit and the broken lines the 95% confidence bounds.
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interpreted as the preferred walking speed at which the body energy expenditure is minimised [2]. The value is within the
range reported in the relevant studies on energetic cost of walking [14].
8
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Similar to the average values of DLF jð Þ, also CoV jð Þ can be described as the product of a deterministic factor CoV jð Þ
d and a

random factor CoV jð Þ
r :
Table 3
Parame

(Sub
CoV jð Þ ¼ CoV jð Þ
d 10 CoV jð Þ

r : ð12Þ

Broadly speaking, the deterministic part can be modelled as a second-order polynomial:
CoV jð Þ
d ¼ c jð Þ

14v
2 þ c jð Þ

15v þ c jð Þ
16 : ð13Þ
The values of the coefficients c jð Þ
14; c

jð Þ
15 and c jð Þ

16 are reported in Table 3. Note that coefficients c jð Þ
14 and c jð Þ

15 are zero for all har-

monics except the first, which means that the corresponding fit becomes just a constant flat line CoV jð Þ
d ¼ c jð Þ

16.

The random component, CoV jð Þ
r , is obtained by dividing the actual CoV jð Þ values by the deterministic part and the factor

10:
CoV jð Þ
r ¼ CoV jð Þ

10 c jð Þ
14v2 þ c jð Þ

15v þ c jð Þ
16

� � : ð14Þ
Similar to DLF jð Þ
r , the value of CoV jð Þ

r corresponding to each pedestrian was estimated as the average value of the related six

experiments. It was found that CoV jð Þ
r values fit well a Beta distribution, B(c17; c18). The values of the parameters c17 and c18

are determined by the maximum likelihood method [36] and are reported in Table 3. The fits and the corresponding 95%
confidence intervals are shown in Fig. 5 together with the actual data.
3.3. Synthetic DLF values

For a given sequence of variable footfall speeds in a walking trial, v i, elaborated in Section 2.1, the corresponding

sequence of variable (also called ‘‘adaptive” to speed) DLF jð Þ
i values is generated by the following algorithm:

1. Calculate the deterministic part of DLF jð Þ;DLF jð Þ
di ¼ c jð Þ

9 v2
i þ c jð Þ

10v i þ c jð Þ
11.

2. Sample DLF jð Þ
r from B(c12; c13).

3. Calculate the adaptive values for successive steps/strides, DLF jð Þ
i ¼ DLF jð Þ

di 10DLF
jð Þ

r .

4. Calculate the deterministic factor of CoV jð Þ;CoV jð Þ
di ¼ c jð Þ

14v2
i þ c jð Þ

15v i þ c jð Þ
16.

5. Sample CoV jð Þ
r from B(c17; c18).

6. Calculate CoV jð Þ for successive steps/strides, CoV jð Þ
i ¼ CoV jð Þ

di 10CoV
jð Þ

r .

7. Compute mean and variance for each step/stride, l jð Þ
i ¼ DLF jð Þ

i ; r jð Þ
i

� �2
¼ CoV jð Þ

i � DLF jð Þ
i

� �2
.

8. Calculate parameters ai and bi of DLF jð Þ
i distribution of the (sub) harmonics in each (stride) step,

a jð Þ
i ¼ l jð Þ

ið Þ2 1�l jð Þ
ið Þ

r jð Þ
ið Þ2 � l jð Þ

i ; b jð Þ
i ¼ 1�l jð Þ

i

l jð Þ
i

a jð Þ
i .

9. Generate DLF jð Þ
i sequence by sampling from B(a jð Þ

i ; b jð Þ
i ).

The first three steps of the algorithm create artificial DLF values which variation is ‘‘reduced” to the inter-pedestrian vari-
ability. The remaining steps add the intra-pedestrian variability, so such DLFs account for the actual top level of variability of
the GRF amplitudes. The significance of this extra layer of variability to simulate reliably vibration response of a structure
will be demonstrated in the next section.
ter values of CoV jð Þ model.

) harmonic order jð Þ c14 c15 c16 c17 c18

0.5 0 0 0.1000 13.53 12.10
1 0.1450 �0.4773 0.4625 13.35 121.81
1.5 0 0 0.1000 27.33 24.54
2 0 0 0.1000 7.90 12.82
2.5 0 0 0.1000 39.65 36.29
3 0 0 0.1000 5.73 12.67
3.5 0 0 0.1000 23.24 19.41
4 0 0 0.1000 5.04 13.73
4.5 0 0 0.1000 20.53 16.62
5 0 0 0.1000 5.12 10.56

9
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4. Model assessment and validation

This section gathers everything presented so far to demonstrate the validity of the proposed model to reliably simulate
vibration response. In Section 4.1 amplitudes and trends of the synthetic DLFs generated as elaborated in the previous sec-
tion will be compared with the DLFs reported elsewhere ([3,19]). Responses of an imaginary (fictive) footbridge due to exper-
imentally measured and the corresponding synthetic walking forces featuring variable DLF amplitudes will be compared in
Section 4.2 to examine how close they match. Further comparison between the responses due to simulated walking forces
with a reduced and the top level of the step-by-step variability of DLFs will be elaborated in Section 4.3.
4.1. Comparison with other DLF studies

Fig. 6 shows widely popular deterministic DLF models of the first four walking harmonics derived by Kerr using single
footfall GRFs recorded by a force plate [3]. Kerr fitted a third order polynomial curve to DLFs of the first harmonic as a func-
tion of walking frequency. DLF values of the other three higher order harmonics were found independent from the walking
frequency, thus modelled as constants. Fig. 6 also shows synthetic DLF data from this study corresponding to the Kerr’s mod-
els. They include only deterministic components of DLFs described by Eq. (10). As the equation features walking speeds, the
corresponding walking frequencies were determined by the power law established in Section 2.3.1 and using the mean val-
ues of parameters c3 and c4 (see Eq. (3)).
Fig. 6. DLF jð Þ vs walking frequency. Solid lines: Kerr’s study [3] Bold line: averages. Fine line: 95% confidence interval. Dashed lines: present study.
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The plots relevant to the first harmonic show the same growing trend of DLFs as walking frequencies increase up to
2.3 Hz. The two curves run in parallel with a small offset of approximately 0.05. However, the present model is still within
Kerr’s 95% confidence interval. Above 2.3 Hz, the DLFs follow two opposite trends. Kerr’s model suggests decreasing while
the present model shows increasing DLF amplitudes with further increments of walking frequency. Nevertheless, Kerr him-
self noted that his results above 2.2 Hz are likely to be untrue due to a great level of data scarcity. For the higher harmonics,
unlike Kerr’s flat lines the present model features a light increasing trend in DLF values as pedestrians increase walking fre-
quency. Again, the apparent differences are for pacing rates higher than approximately 2.3 Hz. Considering different exper-
imental setups and the large scatter in the data points in both studies, the models generate fairly close results. The present
study derived the DLFs from continuously measured treadmill walking including many successive footfalls per a walking
trial rather than just a single footfall as collected by Kerr. Targeting a force plate during walking to avoid partial footfall mea-
surements can alter natural gait pattern yielding unrealistic force records [2]. Moreover, the present study added a higher
statistical rigor to the modelling by using around 30,000 data points, which is thirty times higher than in the Kerr’s study.

DLFs derived from continuously measured force time histories as in this study are rare and limited. The values for the first
five walking harmonics extracted by Kumar et al. [19] from treadmill force records generated by 12 test subjects (9 men and
3 women) at University of Sheffield are shown in Fig. 7. The average value of the dynamic load factors DLF jð Þ from the present
study together with their 95% confidence interval are added for comparison. Overall, the match is apparently closer than in
case of the Kerr’s model (Fig. 6). Increasing trends in DLF values are similar for all harmonics and most of the Sheffield data
are within the confidence intervals. The best match is for the first harmonic, while some Sheffield DLFs are below the lower
confidence border for the higher harmonics. However, more data points are needed to provide a more conclusive compar-
ison. The reader should also bear in mind that the Sheffield experiments measured ethnically more diverse population of test
subjects, while the treadmill records used in the present study included predominantly Spanish Caucasians.
Fig. 7. DLF jð Þ vs walking speed. Dashed lines represent average values, while solid lines are 95% confidence bounds. Dots are the results in [19].
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4.2. Validation

4.2.1. Test structure and synthetic forces
The fictive footbridge is a 50 m long simple supported beam with the modal mass 1000 kg, damping ratio 0.5% and vari-

able natural frequency in the range 0.6–12 Hz with step increments of 0.1 Hz. The frequency range is selected to mirror the
range of frequencies covered by the force model. Only the first mode of vibration having a half-sine mode shape is considered
in the simulations.

The vibration responses due to 50 treadmill forces measured for 50 individuals walking at their preferable speed were
computed. To increase the statistical reliability of the validation, these forces were recorded separately from those used
to derive the model. Next, each of the measured 50 forces was simulated 1000 times. Body weight W, walking speed v i

and step intervals Ti, were set equal to each measured force, while the corresponding sequence of DLFs was calculated fol-
lowing the algorithm presented in Section 3.3. Therefore, the simulated forces differ only by the sequence of DLFs values.

In vibration simulation walking forces was moving along the footbridge. The position of the force was computed through
the procedure outlined in Section 2.3.4. As only one mode of vibration of the structure is taken into account, the phases of the
force (sub) harmonics has a negligible effect on the response, so they are set to zero.

A total walking force signal is composed of three parts: due to harmonics F hð Þ
i tð Þ, due to subharmonics F sð Þ

k tð Þ and due to

the pedestrian’s weight W. During a step i; F hð Þ
i tð Þ is mathematically characterised as:
F hð Þ
i tð Þ ¼ W

X
j¼1;2;3;4;5

DLF jð Þ
i sin

2p j
Ti

t
� 	

; i ¼ 1; 2; . . . ;Nð Þ ð15Þ
where t is time and 0 6 t 6 Ti.

The component F sð Þ
k tð Þ is characterised over a stride k as:
F sð Þ
k tð Þ ¼ W

X
j¼0:5;1:5;2:5;3:5;4:5

DLF jð Þ
k sin

2p2j
Tk

t
� 	

; k ¼ 1;2; . . . ;
N
2

� 	
ð16Þ
in which t is within the limits 0 6 t 6 Tk.
As the total force signals are generated at discrete time steps Dt, the step intervals, Ti, are rounded to the minimum inte-

ger multiples of Dt.
Fig. 8. Walking force signals. Fine line: experimental data. Bold line: synthetic counterpart.
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Fig. 9. Summary of simulation results. Dots represent peak accelerations due to experimental forces and circles are their averages. Fine (blue) lines are the
upper and lower bounds of the peak accelerations due to the synthetic forces and the bold (red) line corresponds to their averages. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8 shows a portion of measured force signal comprising 11 successive footfalls and a synthetic counterpart. Note that
the signals differ as the (sub) harmonics in the synthetic force have zero phases. However, the variation is apparent and
similar.

4.2.2. Results of vibration simulations
Fig. 9 shows peak accelerations of the virtual bridges due to each measured and simulated force signal. For each foot-

bridge frequency, the average and extreme values of the simulated responses are highlighted for comparison. The average
plots show apparent peaks at integer multiples of around 2 Hz and visible peaks at the frequencies in-between. These cor-
respond to the force harmonics and subharmonics, respectively. Moreover, this means that the average pacing rate corre-
sponding to the selected preferable walking speed was about 2 Hz for all test subjects, which is in line with findings
reported elsewhere [2]. Fig. 9 shows highly satisfactory match between the results due to the actual and artificial forces
for the footbridge natural frequencies approximately up to 10 Hz. The results start to part for the higher frequencies. This
is because the force model accounts for the first five dominant harmonics (i.e. integer multiples of pacing rate) and subhar-
monics and the mean pacing rate was around 2 Hz. Moreover, this shows that the energy of the frequency content of the
actual near-periodic forces above the fifth dominant harmonic still can induce notable vibrations, which was also observed
by others [25]. However, it was argued in the literature [15,5] that this is the limit above the Fourier modelling approach
stops to provide reasonable results. The results in Fig. 9 show that the present force model can predict both resonant and
non-resonant vibration response for natural frequencies of footbridges up to 10 Hz.

In the so established frequency range 0–10 Hz, the capacity of the model to reliably simulate the experiments was studied
by comparing acceleration responses due to each of 50 measured signals and the corresponding 1000 synthetic counterparts.
Results relevant to one measured force are shown in Fig. 10. This is an example where 96% of the peak accelerations due to
the measured force (bold plot) is within the extreme peak accelerations due to the artificial forces (fine lines) across the
whole range of different footbridge natural frequencies. Even when outside the extreme value borders, the measured data
is very close to the border. Similar graphs due to the remaining 49 measured forces show even better results. Namely,
97% of 4750 studied combinations of 50 pedestrian forces and 95 footbridges are fully within the borders.

4.3. The importance of intra-pedestrian variability

The shape and modal properties of the imaginary footbridges used in the vibration simulations carried out in this section
were set equal to those from the previous section. However, walking of individuals was modelled as unrestricted, i.e. with
13



Fig. 10. Peak acceleration responses relevant to one measured force signal. Bold lines connect the data due to the measured signal, while thin lines are the
minimum and maximum peak responses due to synthetic forces.

Fig. 11. Relative error between vibration responses due to the forces with reduced and top level variability of DLFs.
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the variable speed on the step-by-step basis. The mean lv and standard deviation rv of the average walking speed in a trial
were set to 1.4 m/s and 0.14 m/s, respectively. These are in the range of preferable (i.e. self-selected) walking speeds [2] and
correspond to the mean walking frequency 2.05 Hz and standard deviation 0.19 Hz [21]. Hence, the resonant vibration
response would be due to one of the corresponding five harmonics or five sub-harmonics of walking GRF. The pedestrian
weight was assumed to have a Gaussian distribution with the mean 750 N and standard deviation 150 N.

Two series of 10,000 force time histories were generated with reduced and top level of DLF variability using the same

sequence of step speeds v i, step intervals Ti, pedestrian weight W, and adaptive DLF component DLF jð Þ
i . In this way, a com-

parison between the pairs of the corresponding vibration responses could highlight the effect of the intra-pedestrian vari-
14
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ability of DLFs on the simulated vibration levels. Maximum accelerations were extracted from each series of 10,000 simu-
lations. Then they were sorted in ascending order and 95% quantiles were estimated from the 9500:10,000 order statistic
[37]. The relative errors between the corresponding 95% quantiles are shown in Fig. 11.

Broadly speaking, artificial forces with reduced DLF variability underestimate the vibration response. Within the range of
the fundamental force harmonic [1.7–2.5] Hz, there is no notable difference. However, the relative error becomes larger (i.e.
up to 10%) as the order of harmonics increases. The corresponding frequency ranges in Fig. 11 are j� 1:7—2:5½ � Hz,
j ¼ 2; . . . ;5. This is because intra-pedestrian DLF variability of the higher harmonics is up to four times that of the fundamen-
tal harmonic. The dips in Fig. 9 are more prominent in the frequency range of the subharmonics, 0:5� j� 1:7—2:5½ � Hz. These
show the relative error between 8.5 and 20%. Outside the frequency ranges of the force harmonics and sub-harmonics the
error is as high as 22%. Note that vibration response in this case is not resonant.
5. Discussion and conclusions

The key novelty of the model developed in this study is that it creates stochastic walking force signals where all modelling
parameters are functions of variable walking speed on the step-by-step basis. This is a radical departure from traditionally
used deterministic models which generate periodic force time histories and where the key modelling parameters are func-
tions of the average pacing rate in a walking trial. Walking speed rather than pacing rate is a more natural choice of the input
variable as human nervous system adopts speed of successive steps to the surrounding environment and different circum-
stances, such as vibration of the supporting ground. Moreover, crowded situations are the most relevant loading scenarios
where the speed of individual pedestrians is more or less controlled by the crowd flow and the crowd density.

This study started from the previously developed models describing both inter- and intra-pedestrian variability of walk-
ing speed and spatiotemporal parameters in a walking trial. Then it delivered a complementary model of variable DLFs cor-
responding to the first five dominant harmonics and subharmonics of the walking force. Although Kerr studied the first four
harmonics only based on single footfall data [3], his deterministic DLF values are in line with the corresponding DLF values
derived in the present study from continuously measured force time histories. Both the mean and CoV of DLFs are described
as the products of two factors. The first represents the deterministic dependence on the step speed and is modelled as a
second-order polynomial. The second factor stands for the random inter-pedestrian variability of the DLFs and it is defined
by a Beta distribution. Finally, all the relevant models could be integrated in a comprehensive model of artificial walking
force signals where both pacing rate and force amplitudes vary on the step-by-step basis as functions of the variable step
speed.

Results of extensive numerical simulations of vibration response of virtual footbridges showed little difference between
the peak accelerations due to the actual and the equivalent artificial walking forces. Moreover, the results provided a strong
argument for including intra-pedestrian variability of gait into a reliable model of pedestrian loading. In comparison with
inter-pedestrian variability, this important attribute of individual walking excitation is unfairly disregarded in the civil engi-
neering context yielding in this study errors in predicted vibration response as high as 22%.

This study has several limitations, mainly due to the lack of the relevant data. It focusses to pedestrian loading induced by
individuals only, while a more relevant load case scenario (particularly for footbridges) is a constant flow of pedestrians. It
gets even more complicated in case of dense crowds when gait of individuals is affected by a proximity of surrounding peo-
ple. People are social beings who mutually interact through different combinations of visual, audio and tactile cues. How
these external (social) stimuli influence the walking forces remains unanswered. However, an error as high as 22% just
due to neglecting intra-pedestrian variability seems unlikely for pedestrian streams. Still, rare studies based on experimental
measurements and numerical simulations of footbridge vibrations due to multiple pedestrian occupants argued that intra-
pedestrian variability of walking deserves comparable attention as external cues [11,12].

The walking forces used to derive the force model are recorded on a ‘‘rigid” ground. So, it also remains unknown to which
extent the vertical footfall forces studied here are close to those generated on more or less flexible surfaces. Moreover, the
force recordings took place in a controlled laboratory environment. Forces recorded on real structures might show a different
level of step-by-step variability. Finally, the model is applicable to flat structures, such as footbridges without a dominant
cumber or slabs without a slope, as the walking forces on horizontal and inclined surfaces are different [2]. However, the
modelling approach is not restricted to the kind of force records analysed in this study. In contrary, the model can fit a wider
range of measured walking force signals recorded under above mentioned and currently unexplored circumstances as soon
as they have been made available.
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