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Abstract. Wire Rope Isolators are made of two parallel retaining plates, connected
through metallic wire ropes. Due to their good performances as vibration isolators, and
shock absorbers, these devices have been widely employed in industrial applications. The
dynamic behaviour of Wire Rope Isolators is strongly affected by both geometric and ma-
terial non-linearities, mainly due to the peculiar hysteretic bending behaviour of metallic
ropes. In this work a typical approach to characterize the hysteretic behaviour of wire rope
isolators, based on a semi-empirical phenomenological model, is compared to a different
approach based on a beam-like description of the wire rope and on a nonlinear formulation
of the cross sections cyclic bending behaviour. The hysteretic cross-sectional model is then
implemented within a corotational beam finite element, to fully account for the geomet-
ric non-linearities which characterize the response of the device. The performance of the
proposed models are assessed through a comparison with the results of a well documented
experimental test.
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1 INTRODUCTION

Wire rope isolators (WRI) are made of two parallel retaining plates or bars, connected
through a metallic cable (wire rope), see e.g. Figure 1. The cable is often arranged in
a nearly-helical shape, although different geometric configurations can also be adopted.
Due to their good performances as vibration isolators and shock absorbers, the wire rope
isolators have been widely employed in industrial applications to support equipment and
secondary structures [20]. Applications of this technology to the seismic isolation of
lightweight civil structures have also been envisaged and some research on this subject is
recently surfacing in the literature (see e.g. [19, 21]).

The dynamic behaviour of wire rope isolators is strongly affected by both geometric
and material non-linearities. The latter are mainly due to the peculiar hysteretic bending
behaviour of metallic cables. Relative displacements between the wires of the cable,
indeed, can occur during flexural vibrations, depending on the value of the vibration
amplitude. These internal sliding phenomena are associated with frictional dissipation
(see e.g. [7, 8, 9, 10]), which makes the dynamic response of the device inherently non-
linear and non-holonomic.

The typical approach adopted in the literature to characterize the hysteretic behaviour
of wire rope isolators (see e.g. [20, 17]) is based on semi-empirical phenomenological
models. These models allow to characterize the response of the devices with respect to
simple loading cases (typically along a set of three coordinate direction, i.e. the vertical,
shear and roll directions, see also Figure 1).

A different modelling approach is pursued in this work. The proposed model is based
on a beam-like description of the wire rope and on a nonlinear formulation of the cross
sections cyclic bending behaviour. At the cross-sectional level, the mechanical behaviour
of the wire rope is described by extending the mechanical formulation for the hysteretic
bending of stranded cables developed in [11], which has been recognized as adequate
to represent the local behaviour mainly controlled by interwire sliding processes. The
hysteretic cross-sectional model is then implemented within a corotational beam finite
element to fully account for the geometric non-linearities which characterize the response
of the device. The performance of the proposed models are assessed through comparisons
with the results of a well documented experimental test of the literature.

2 BLACK BOX APPROACHES FOR WRIs

The typical approach adopted in the literature to characterize the hysteretic behaviour
of wire rope isolators (see e.g. [20, 17]) is based on semi-empirical phenomenological
models. These models, however, allow to characterize the response of the devices only
with respect to simple loading cases (typically along a set of three coordinate direction, i.e.
the vertical, shear and roll directions). Indeed, the study conducted by Demedriades et al.
[3] shows that the hysteretic cycles in both shear and roll directions are symmetric, while
the vertical direction has an asymmetric cycle, which marks a clear difference between
compression and tensile behavior.

A survey of the literature on WRI shows as the Bouc-Wen (BW) model ([2, 22, 15, 4])
is the favorite one for modeling (with some modifications made necessary as it will be
explained in the following) these devices, since it is able to efficiently describe hysteretic
systems and is mathematically easy to understand. A disadvantage of this model is that
the model parameters need to be identified for each loading direction (see Figure 1), which



Francesco Foti, Jacopo Galeazzi, and Luca Martinelli

Figure 1: Schematic representation of a wire rope isolator.

increases their number and the difficulty to associate them a physical meaning in terms
of geometrical and mechanical properties of the specimen.

Moreover, the asymmetry of the behavior in the vertical mode will make the simple
Bouc-Wen model not adequate. Hence, the common approach in literature is to introduce
a modulating function F2 that “weights” in different ways the output from a BW model,
depending it is for an input that has one sign or the other.

As an example, in this work a black box approach based on a five parameters BW
model [16] and a power modulating function F2 proposed by Ni et al. [17], has been
adopted as a reference modeling option to be compared with a potentially more advanced
mechanical model.

By denoting with F the restoring force provided by the WRI, with x the work-
conjugated displacement of the WRI and with z the hidden variable of the hysteretic
BW model, the adopted model can be expressed as:

F (x(t), z(t)) = F2 (x(t))F1 (x(t), z(t)) (1)

F1 (x(t), z(t)) = k1x(t) + (k2 − k1)x0z(t) (2)

F2 (x(t)) = bcx(t) (3)

ż(t) = 1
x0

(
ẋ(t)− σ |ẋ(t)| |z(t)|n−1 z(t) + (σ − 1)ẋ(t) |z(t)|n

)
(4)

where a dot denotes derivation with respect to a time-like variable t, and {x0, σ, n, k1, k2, b, c}
are the model parameters.

3 MECHANICAL MODEL OF WRIs

Metallic wire ropes are structural elements whose construction process follows a strict
hierarchy. Their internal structure can be described following a top-down approach. Re-
stricting the attention to the wire rope in Figure 2, and recalling that the approach can
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Figure 2: Schematic representation of the internal structure of a metallic wire rope.

be easily generalized to other configurations, starting from the top of the hierarchy the
following levels are identified: the rope itself, the strands and the wires. The internal
structure of the rope is completely defined by the centerline and the orientation of the
cross section of every element at each level. On each element a local reference system
is defined introducing on its centerline the Serret-Frenet moving frame. The strands are
helically twisted and grouped in concentric layers to form the rope and the same pro-
cess forms the strand from the wires. Accordingly, the centroidal line of each element
is described as a cylindrical helix in the frame of reference of the respective upper-level
element (see e.g. [5].

The axial-torsional response or wire ropes subjected to typical service load conditions
can be idealized as being linear elastic and decoupled from the bending response. Several
models have been proposed in the literature to characterized the stiffness of metallic
strands and wire ropes starting from the knowledge of the geometry and mechanical
properties of the constituents (see e.g. [18, 6, 13]. The bending behavior, on the other
hand, is markedly non linear and non-holonomic due to the possible activation of the
sticking/sliding frictional interfaces between the wires [7, 8, 9, 10, 11].

3.1 Moment-curvature law for the rope cross-section

Whenever the rope is bent, an axial force gradient is generated along the length of the
wires. This gradient makes the wires prone to sliding with respect to the neighbouring
ones, and is counteracted by the tangential friction forces acting on the internal contact
surfaces between the wires.

A typical moment-curvature curve of a metallic wire rope is depicted in Figure 3 for
a curvature that increases monotonically. At large values of the bending curvature χ =
χ (t) the bending problem is non-linear and controlled by the gross-sliding of the contact
surfaces between the wires of the strand; the wires are said to be in a “full-slip” state with
respect to the neighboring ones and the tangent bending stiffness of the strand reaches
its minimum value EImin.

At small values of the curvature, friction forces are large enough to overcome the axial
force gradient along the wires, and all the wires are stuck together (“full-stick” state).
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Figure 3: Typical cross-sectional bending moment-curvature (M − χ) diagram for a metallic wire rope.

In this state the cross section can be modeled according to a plane section hypothesis,
leading to the maximum value of the bending stiffness, which is denoted as EImax. A first
estimate of the values of the stiffness EImin and EImaxcan be obtained as in [5].

As already pointed out in [10], it is handy to introduce a curvature value χ0 that allows
to define a bi-linear approximation to the moment-curvature curve; χ0 will depend on the
friction coefficient between the rope constituents and will be linearly dependent on the
axial force T (see e.g. [8, 10]). As a simplifying assumption, whose validity will be later
assessed against experimental data, the dependence of χ0 on T will be in the following
disregarded.

Focusing on a rope section in tension the moment-curvature curve is symmetric and
can be described, as proposed in [11], through the following five-parameter BW model:

M (χ(t), z(t)) = EIminχ(t) + (EImax − EImin)χ0z(t) (5)

ż(t) = 1
χ0

(
χ̇(t)− σ |χ̇(t)| |z(t)|n−1 z(t) + (σ − 1)χ̇(t) |z(t)|n

)
(6)

The set of model parameters that describe the rope cross-section bending behaviour is
then {χ0, σ, n, EImax, EImin}.

3.2 The corotational beam element

Equations (5) and (6), along with a linear model for the axial-torsional response, fully
define the relation between generalized stress and strain variables of the strand cross sec-
tion whenever embedded in a plane Euler-Bernoulli beam. The proposed constitutive
equations have been implemented within a corotational beam element previously devel-
oped in [5, 14, 12] to study the static and dynamic response of flexible structures, taking
into account geometrical and material nonlinearities.

4 NUMERICAL APPLICATIONS

The modeling approaches described in the previous Sections have been applied to the
study of a WRI device, similar to the one Figure 1, tested by Balaji et al. [1]. The
geometrical characteristic of the chosen WRI are (see Figure 1): wire rope diameter
D = 12 mm, number of coils N = 12, width of plate W = 120 mm, length of plate
L = 215 mm, height of the device H = 127 mm. The parameters of both the black-box
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and mechanical models have been identified to match the experimental results reported
in [1], and are listed in Tables 1 and 2.

Figures 4(a) and 4(b) show the numerical and experimental results for two different
values of the maximum imposed displacements (±5 mm and±10 mm) in the case of testing
in direction “vertical” of Figure 1. The parameters for both models were identified on the
experimental cycle of ±5 mm amplitude, and used unaltered to predict the response for
the lager amplitude cycle.

The outcomes from the black-box approach are in very good agreement with the ex-
perimental data. The limit of this approach, however, is that a set of parameters has to
be identified for each basic deformation mode (i.e. roll, shear, vertical), which leads to
errors in the case of complex loading scenarios that involve a combination of the basic
deformation modes of the WRI.

The outcome form the mechanical model properly reproduces in tension the experi-
mental response for the ±5 mm test,used in the calibration of this model (see Figure
4(a)), but is not able to fully reproduce the response in compression. The reason has
been traced not to geometrical effects at the global level, which are correctly captured by
the corotational finite element formulation, but to the cross-sectional bending behaviour.
Indeed, experimental results show that this depends on the axial force in a different way
if the force is of tension or of compression. The outcome depicted in Figure 4(b), for a
cycle of larger amplitude (±10 mm), highlights the shortcomings of having considered χ0
independent from the value of the axial force (both in tension and in compression). This
hypothesis that assigns to χ0 a role similar to that of the first yielding curvature in a bi-
linear elastic-plastic moment-curvature law, leads to neglect the role of the axial force on
the the internal contact pressures. These, in turn, control the sticking-sliding transition
of the wire-to-wire contacts, and hence both the dissipated energy and the value of the
tangent stiffness.

k1 k2 x0 σ n b b
[kg/mm] [kg/mm] [mm] [-] [-] [-] [-]

8.5 100 0.2 3 1 1.4 0.1
Table 1: Identified values of the parameters for the black-box model.

EImin EImax χ0 σ n
[Nm2] [Nm2] [m−1] [-] [-]

4.9 37.5 0.09 1 1
Table 2: Identified values of the parameters for the mechanical model.

5 CONCLUSIONS

In this work a typical semi-empirical phenomenological (black-box) model to charac-
terize the hysteretic behaviour of wire rope isolators is compared to a different modeling
approach, based on a beam-like description of the wire rope and on a nonlinear formulation
of the cross sections cyclic bending behaviour.

The performance of the proposed models, assessed through a comparison with the
results of a well documented experimental test, has highlighted a good agreement of the
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Figure 4: Comparison between experimental and numerical results: (a) imposed displacement: ±5 mm;
(b) imposed displacement ±10 mm. Experimental data are from [1].

outcome from the phenomenological model with the experimental data. The limit of this
approach being that it requires a different calibration for each loading direction (i.e. roll,
vertical and shear direction).

The mechanical model, while being potentially more general, suffers in its present
formulation from: (a) not being able to fully reproduce the response in compression and
(b) not being able to fully account for the dependence of the dissipated energy and the
value of the tangent stiffness on the value of the axial force. These last aspects are at
present under development.
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