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Externally adhesively bonded Carbon Fibre Reinforced Polymers (CFRP) plates are often regarded as an effective technique to strengthen notched steel beams. 
However, the possible CFRP intermediate debonding may dras-tically reduce the reinforced steel beam strength against fatigue crack propagation. It is assumed that, 
for the beam geometry and materials under analysis, the fatigue load does not directly cause debonding, but it may trigger steel crack propagation, leading to the 
onset of debonding. In this paper, analytical and numerical models for elasto-brittle adhesives were proposed to evaluate the stress and strain distribution in the 
reinforcement for a given crack length. The outcomes of experimental campaigns from the literature were considered to validate the proposed numerical and 
analytical techniques. A good agreement was found among the analytical, numerical and experimental results in terms of strain distribution in the CFRP material, 
showing the accuracy of the proposed models. Finally, a parametric analysis was performed to investigate the influence of some parameters on the CFRP strain 
distribution.

1. Introduction

The use of Carbon Fibre Reinforced Polymers (CFRP) as reinforcing 
materials for retrofitting steel structural elements is nowadays proved to 
be an efficient technique for strengthening or repairing of steel members 
(plates or beams) [1]. In particular, CFRP strengthening of undamaged 
steel elements leads to an increase of the load carrying capacity under 
monotonic loading with a marginal stiffness increment. On the other 
hand, CFRP repair of cracked steel elements subjected to cyclic loading 
may significantly improve the fatigue life since it reduces the stresses at 
the crack tip, the crack opening displacement and the effective stress 
range. CFRP materials are even more effective if they are pre-stressed, as 
compressive stresses are introduced into the reinforced element, 
reducing the effective stress range and then enhancing the fatigue life.

Concerning the fatigue behaviour of notched steel beams reinforced 
by using CFRP materials, several experimental campaigns were recently 
presented. In [2], the influence of crack propagation on the CFRP de-
bonding was analyzed for notched steel beams reinforced by using both 
non-prestressed and prestressed CFRP strips. In [3], different composite 
reinforcement types were considered, showing that the reinforcement 
may postpone crack initiation, reduce the fatigue crack propagation, 
limit the stiffness decay and decrease the residual deflection. In [4], the 
experimental outcomes revealed the presence of a debonded area

between the steel beam and the reinforcement. Finally, in [5] the 
cracked steel beams were strengthened using different patch systems 
and high-strength materials and the reinforcement was attached to the 
steel beam through adhesive bonding or mechanical anchorage. In 
particular, adhesively bonded CFRP plates led to the most relevant 
decrease in the fatigue crack growth rate. In [6], the use of different 
high-strength reinforcing materials was also experimentally studied. The 
strengthening significantly increased the member fatigue life not only 
for the stress redistribution on the cracked steel section but also because 
it led to a local bridging effect, thus reducing both the crack opening 
displacement and the stress intensity factor.

All the experimental outcomes also showed that the bond between 
the composite material and the steel element is the weakest link of the 
strengthened system. Nonetheless, although debonding at notch loca-
tion under static or fatigue loads has a significant influence on the CFRP 
strengthening effectiveness, a limited number of analytical or numerical 
models were proposed in the literature to estimate the effect of de-
bonding on the fatigue crack growth rate.

1.1. Problem statement

The use of high-stiffness composite materials such as CFRP, is ex-
tremely effective for crack bridging in the fatigue retrofit of cracked 
steel elements, resulting in a relevant decrease of the stresses at the
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where a is the crack size, N is the number of cycles, ΔKeff is the effective
SIF range, ΔKeff,th is the effective threshold SIF range and C and m are
material parameters (Paris constants). Besides, the effective stress in-
tensity factor range, ΔKeff, is given by:

= − = −K K K q KΔ (1 )·eff opmax max (2)

where q is the effective load ratio while Kmax is the stress intensity
factor at the maximum loading level. A simple formula was proposed in
the literature to evaluate the stress intensity factor of unreinforced
cracked I-beams [7]. Based on classical beam theory, it reads:
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where: M is the bending moment, Is is the moment of inertia of the steel
section, Icr is the moment of inertia of the cracked steel section and tw is
the web thickness. For a section subjected to an axial force the fol-
lowing formula is proposed:
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where: N is the axial force applied to the centroid of the cracked sec-tion, 
As is the section area and Acr is the area of the cracked steel sec-tion. In 
Eqs. (3) and (4), βM and βN are non-dimensional functions of the crack 
length and beam geometry for pure bending and axial force, re-
spectively.

Recently, such relationships were extended for CFRP reinforced 
cracked I-beams [8]. The composite material, in fact, introduces a 
compressive force, Ns, in the steel beam that is clearly not applied at the 
centroid of the cracked section (Fig. 1).

According to Fig. 1, it holds:

= −N Ns f 0 (5)

where Nf,0 is the CFRP axial force in the cracked section and:

= −M M N z·s f 0 (6)

In Eq. (6), Ms is the total bending moment acting in the steel section, 
M is the bending moment induced by external loads and z is the dis-
tance between the centroid of the steel beam and the centroid of the 
CFRP strip. After having introduced the additional bending moment to 
account for the load eccentricity, the stress intensity factor, KI, of the 
reinforced cracked steel beam is finally evaluated by taking into ac-
count Eqs. (3)–(6):

⎜ ⎟ ⎜ ⎟= − ⎛
⎝

− ⎞
⎠

− ⎛
⎝

− ⎞
⎠

K M N z
β

I t
I
I

N
β

A t
A
A

( · )
·

1
·

1I f
M

s w

s

cr
f

N

s w

s

cr
0 0

(7)

An alternative formulation based on the best fitting of numerical 
results was proposed in [9]. In Eq. (7), the compressive force Nf0 strongly 
affects the stress intensity factor evaluation. Analytical or nu-merical 
models for evaluating the CFRP axial force are then funda-mental to 
reliably estimate the fatigue life in retrofitted steel beams. Besides, the 
slip between the reinforcement and the steel substrate and the possible 
CFRP debonding should be taken into account.

1.2. Scope of the research

In this paper, reference is made to I-shaped simple supported steel 
beams. The main aim of this work is to propose both a numerical and an 
analytical model to evaluate the CFRP axial force in strengthened 
cracked steel beams. Recently, an analytical model was presented in 
[10] to provide an estimation of the axial force for long crack lengths, 
but it was unable to predict the debonded zone length. Besides, a 
simplified finite element (FE) model was proposed to validate the 
analytical results [4]. In this work, a more refined numerical analysis 
employing a cohesive damaged contact interaction is suggested to 
precisely estimate the CFRP axial force. Additionally, an analytical 
cohesive zone model is used to evaluate the axial force in the re-
inforcement together with the debonded zone length. Numerical and 
analytical analyses are performed for given crack lengths. It is also 
assumed that, for the adopted reinforced beam geometry and materials, 
the effect of fatigue load on debonding is negligible. Based on [11], 
indeed, the fatigue load does not directly influence debonding but it may 
induce crack propagation in the steel element, resulting then in 
debonding propagation. The proposed numerical and analytical models 
are validated with respect to the experimental outcomes presented in 
[4,12]. Finally, a parametric analysis is performed to investigate the 
influence of the most significant parameters on the CFRP strain dis-
tribution.

1.3. Previous studies

Several analytical and numerical studies were performed with re-
ference to plate end debonding. Analytical solutions were developed 
assuming an elastic behaviour at the interface between the steel beam 
and the reinforcement [13,14] or considering a softening interface 
behaviour and a cohesive crack modelling approach [15]. An energy 
based analytical formulation was proposed in [16]. In [17], a closed 
form solution of interfacial stresses and strain was proposed for un-
damaged FRP-plated steel beams bonded with ductile adhesives. FE 
models were also presented in [18,19].

Less attention, either analytically or numerically, was devoted in the 
literature to the evaluation of intermediate crack induced debonding in 
cracked steel beams reinforced by using CFRP materials. In [20], the 
interaction between the CFRP debonding and the damage level in the 
steel beam was considered. Debonding at the damage location was due 
to stress concentration and the initial damage level influenced the de-
bonding propagation rate. In [21], different levels of initial damage (i.e. 
notch depth) were considered and a numerical model accounted for both 
the crack propagation and the CFRP debonding. It turned out that the 
initial damage level significantly affected the steel beam behaviour and 
the CFRP debonding. In [22], a model accounting for the bond-slip 
behaviour of CFRP-steel interface was proposed and experimentally 
validated. Results of a parametric analysis showed the effectiveness of 
high modulus reinforcements. In [12], a closed form solution for the 
interfacial shear and normal stresses in steel beams strengthened with a 
CFRP plate was presented. A parametric study indicated that the 
maximum stresses at the notch locations decreased as the adhesive 
thickness reduced. In [4,10], analytical and numerical models were 
discussed to predict the CFRP stress redistribution and evaluate the 
fatigue crack growth curve. A debonded area was experimentally de-
tected and its effect on the fatigue crack growth was captured by the 
model.

z
Ms

Nf0

Ns

Fig. 1. Axial force acting on the reinforcement and axial force and bending
moment acting on the steel beam.

crack tip, of the crack opening displacement and of the effective stress 
range. On the other hand, the notch introduces stress concentrations, 
which may eventually trigger interfacial debonding. In addition, it was 
clearly shown that interfacial debonding has a significant influence on 
the fatigue life [4].

As well known, the fatigue crack propagation is driven by the stress 
intensity factor (SIF) range at the crack tip. A modified version of the 
Paris law is often proposed in the literature in order to investigate the 
fatigue crack growth of CFRP strengthened steel elements [1]:



2. Analytical model

The analytical estimation of the axial force in the reinforcement 
should account for the interface behaviour between the composite 
material and the steel substrate. Cohesive zone models were used to 
study the intermediate debonding of FRP-plated concrete beams 
[23,24], but, to the authors’ knowledge, similar models do not exist for 
notched steel I-beams. In [12], a theoretical model was discussed but a 
simply linear interface behaviour was used. A non-linear bond-slip 
model for the estimation of the debonding process of reinforced steel I-
beams is described in the following.

2.1. Governing equations

In this work a simply supported steel I-beam reinforced with CFRP 
strips is considered (Fig. 2).

The beam is subjected to a four-point bending loading configura-
tion, which is typically adopted in the experimental programs [2,4,12]. 
A notch in the mid-section of the beam is considered (Fig. 2), but the 
model can be easily extended for a different loading configuration, 
geometry or notch location. As usual, both the steel I-beam and the 
CFRP plate are modelled as linear elastic Euler-Bernoulli beams [10,12]. 
Besides, the bending stiffness of the reinforcement plate is negligible 
compared to that of the steel I-beam. It is assumed that the flexural crack 
introduces local flexibility at the crack location (midspan section) that is 
conventionally modelled as a rotational spring with infinitesimal 
thickness [23,24]. For a beam under a bending loading configuration 
(Fig. 3), the contribution of the cracked section to the strain energy, U, 
can be evaluated as follows:
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where KI
M is the stress intensity factor due to pure bending moment 

(Eq.(3)) and Es is the steel Young’s modulus.
In Eq. (8), the term ( I

M 2) /K Es is the strain energy density for plane

stress condition. Eq. (8) can be rewritten as:
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is the stress intensity factor for a unit bending moment. The local
flexibility, cM, at the cracked section is then given by:
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while the rotational spring stiffness, kM, is:
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By discretizing the area A∗ (Fig. 3), the rotational spring stiffness can be 
easily computed numerically. Enforcing the global equilibrium of a 
given composite beam section (Fig. 4), it holds:
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where Ns, Ms, and Nf, Mf are the axial force and bending moment in the 
steel beam and CFRP reinforcement, respectively. M is the applied 
bending moment (assuming a null applied axial force), while z is the 
distance between the centroid of the steel beam and the centroid of the 
CFRP strip (Fig. 4).

The free body diagram for an infinitesimal portion of the CFRP re-
inforcement (Fig. 4) gives the following equilibrium equation:

′ + =N τ b· 0f a (14)

At the steel/adhesive interface, the steel longitudinal displacement
usa is equal to:

= +u u φ y·sa s s s (15)

where us and φs are the longitudinal displacement and rotation of the 
centroid of the steel beam section while ys is the distance from the steel 
beam centroid to the steel/adhesive interface (Fig. 4). Denoting as uf the 
CFRP longitudinal displacement, the relative displacement δ at the 
steel/adhesive interface is:

= − = + −δ u u u φ y u·sa f s s s f (16)

By differentiating Eq. (16) with respect to x, one has:

′ = ′ + ′ − ′δ u φ y u·s s s f (17)

Then, introducing the constitutive relationships for a linear elastic
behaviour of steel and CFRP it follows:
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where χs is the steel beam curvature. Neglecting the bending moment Mf 
in Eq. (13) and substituting Eq. (18) into Eq. (17), one has:
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For the given load configuration (Fig. 2), the bending moment be-tween 
the applied point loads is constant and equal to M0 and then Eq.

(19) can be rewritten as:

′ + =δ f N ε· Δf2 0 (20)

where:

Lb

adhesive CFRP stripsPP

a

c

notch
x

l

Fig. 2. Simply supported steel I-beam with a crack at midspan under a four-
point bending loading configuration.

bf

tw

tf

a
A*

Fig. 3. Section of the cracked I-beam at midspan.
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In Eq. (21), Δε0 is the “lack of fit” across the adhesive layer [13,17], 
while in the expression of f2 the second term is usually larger than the 
other ones and then:

≅f
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Differentiating once Eq. (20) with respect to x and applying Eq.(14), 
it holds:

− =′′δ f b τ· · 0a2 (23)

The interface between the steel and the reinforcement is modelled 
as a cohesive zone with a given bond-slip law. Several bond slip laws, 
from elasto-softening law to elasto-brittle law or brittle-softening law, 
may be considered but the linear or bilinear relationships are usually 
adopted [23,24].

In this study, an elasto-brittle bond-slip law is adopted (Fig. 5) to 
describe the brittle behaviour of the adhesive [10,12]. The bond-slip 
relationship is comprised of two stages, the elastic stage and the failure 
stage. This means that the elastic limit represents also the onset of 
debonding since no softening is present. The elasto-brittle relationship 
between the shear stress, τ, and the slip, δ, is described as:
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Such nonlinear relationship contains two material properties: the
elastic interface stiffness k1 and the slip at the debonding δ , with

=τ k δ1 being the CFRP-steel interface shear strength. The area under
the bond-slip relationship is the fracture energy, Gf:
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The fracture energy can be rewritten as a function of δ and τ :
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2.2. Evaluation of the debonding process

Under the external load, interfacial shear stress develops along the 
interface between the steel and the CFRP reinforcement. For an applied 
load higher or equal than a certain limit value, interfacial debonding 
occurs and propagates along the interface. The interface is divided in 
two regions, delimited by the flexural crack at midspan and reference is 
made to the right-hand side of the beam. The steel beam is also divided 
into two parts that are joined together at the crack location by a flexural 
spring with a stiffness kM (Fig. 6).

The following relationships hold between the relative rotation, ΔφAB, 
and the bending moment, Ms, in the steel beam at the cracked section:

= = − =φ φ φ M
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According to the bond-slip law described in Eq. (24), two different 
stages are present along the interface. In the first one (elastic stage), the 
opening of the flexural crack induces a finite slip between the steel beam 
and the CFRP, δB, which, for an applied moment at the cracked section 
Ms0, is equal to:

= =δ φ y M
k

y
2B B s

s
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0
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Stress concentration is then introduced at the interface due to the 
finite slip. However, in this stage the maximum interface shear stress, τ, 
is lower than the shear strength τ , and the shear stress distribution is 
sketched in Fig. 6a. As the load rises, the maximum interfacial shear 
stress increases up to the shear strength τ . Then, part of the right-hand 
interface enters the debonding stage and two different regions exist, 
namely the elastic region and the debonded zone. The length of the 
debonded zone, d, and the shear stress distribution are sketched in Fig. 
6b.

2.2.1. Elastic stage
In this stage, assuming the bond-slip law in Eq. (24), Eq. (23) can be 

rewritten as:

″− =δ λ δ· 02 (29)

Fig. 4. Notation, sign convention and internal forces in the reinforced steel beam.

Gf

k1

Fig. 5. Elasto-brittle bond-slip relationship.
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Substituting Eq. (22) into Eq. (30), it holds:
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The solution of Eq. (29) is:

= +−δ C e C eλx λx
1 2 (32)

For sufficiently long values of x, the slip is equal to zero and then C2 

= 0. Therefore, Eq. (32) becomes:

= −δ C e λx
1 (33)

This means that at a sufficiently long distance from the cracked 
section the strengthened beam behaves as a composite beam. As for the 
determination of C1, the following displacement boundary condition is 
applied at x = 0 (the cracked section) starting from Eq. (28):
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and then:

=C δ1 0 (35)

At the elastic limit, the bond slip is equal to δ and =C δ1 . The so-
lution for the bond slip, δel, and the shear stress, τel, at the elastic limit
are:
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The axial force in the composite strips at the elastic limit is finally 
computed from Eq. (20):
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where Δε0,el is the lack of fit at the elastic limit (Eq. (21)). To compute 
the external load, Pel, at the elastic limit (onset of debonding), Eq. (34) is 
firstly rewritten as:

=δ
M

k
y

2
s el

M s
0,

(38)

where Ms0,el is the bending moment in the steel beam in x = 0 at the 
elastic limit. Neglecting again the bending moment in the CFRP re-
inforcement, Ms0,el is given by Eq. (13) as:

= −M M N z·s el el f el0, 0, 0, (39)

where M0,el and Nf0,el are respectively the applied bending moment and 
the CFRP axial force in x = 0 at the elastic limit, while Nf0,el is com-
puted from Eq. (37):

=
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Substituing Eqs. (40) and (39) into Eq. (38), the lack of fit Δε0,el at the 
elastic limit is equal to:
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and finally the bending moment at the elastic limit, M0,el, is given by:
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resulting in an external load, Pel, at the elastic limit (onset of de-
bonding) equal to:

=P
M

cel
el0,

(43)

In the elastic stage, the response is linear with the applied load and 
then the solution for P < Pel is easily evaluated scaling the solution at 
the elastic limit (Eqs. (36) and (37)) by a factor P/Pel.

2.2.2. Elastic-debonding stage
If the load is increased beyond the elastic limit, a debonded region 

of length d appears at the interface. The right interface is divided into 
two regions, namely the elastic region (x > d) and the debonded re-
gion (x < d). In the elastic region the solution has the same form as in 
Eq. (33):

= >− −δ C e x d( )λ x d
3

( ) (44)

The constant C3 is evaluated by enforcing =δ δ for x= d, which
provides =C δ3 . The axial force in the composite strip is evaluated from
Eqs. (20) and (44) as:
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where Δε0 is the lack of fit for x = 0 (at the cracked section). The axial 
force in the composite strip at x= d, Nf,d, is finally computed from Eq.
(45):

= +N λδ ε
f

Δ
f d,

0

2 (46)

In the debonded region, τ = 0 and then δ″ = 0 (Eq. (23)). The slip is 
then linear:

= − + <δ C x d C x d( ) ( )4 5 (47)

The boundary conditions for Eq. (47) are:
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δ δ x d
N N x d
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forf f d, (48)

where Nf,d is given by Eq. (46). From Eq. (48), it follows:

A B

x
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x
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d d

A B

(a) (b)

Fig. 6. Model of the beam at crack location: (a) elastic stage and (b) elasto-debonding stage.
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and finally:

= − − + <δ λδ x d δ x d( ) ( ) (50)

The CFRP axial force in the debonded region is constant and given 
by Eq. (46).

2.3. Axial strain in the CFRP reinforcement after debonding and at the 
elastic limit

The axial force in the reinforcement after debonding is given by Eq.
(46). From Eqs. (21) and (30) it follows:
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or equivalently from Eq. (24):
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Fig. 7. Midspan deflection of the bare beam: analytical and numerical results.

(a) (b)

(c) (d)
Fig. 8. Analytical, numerical and experimental results for the axial strain distribution in the CFRP reinforcement: (a) a/h=0.22, (b) a/h=0.3, (c) a/h=0.4, (d) a/
h=0.5.
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The axial strain in the reinforcement in the debonded region, εf,d, is 
evaluated as (Eq. (22)):
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Again, applying Eqs. (25) and (31), εf,d is rewritten in terms of the 
fracture energy Gf as:

= +ε
G

E t
M y
E I

2
f d

f

f f

s

s s
,

0

(55)

where tf is the thickness of the composite strip (laminate). Eq. (55) has 
an interesting physical meaning. It shows that the CFRP axial strain after 
debonding is the sum of the axial strain associated with the onset of 
interface debonding (first term) and of the axial strain in the steel beam 
cross section at the steel/adhesive interface (second term). The axial 
strain at the elastic limit, εf0,el, is evaluated as (see Eq. (40)):
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where M0,el is given by Eq. (42). Again, Eq. (56) has an important 
physical meaning, that is, the CFRP axial strain at the elastic limit (onset 
of debonding) is equal to the sum of the axial strain associated with the 
onset of the interface debonding (first term) and of the axial strain in the 
steel beam cross section at the steel/adhesive interface (second term).

2.4. Intermediate debonded zone length

The length of the debonded zone, d, is evaluated by using the 
analytical model. The slip in the elastic-debonding stage at the cracked 
section, δ0, is given by Eq. (50) for x =0:

= +δ λδd δ0 (57)

The bond slip at x=0 should be equal to:

= =
−

δ M
k

M N z
k2 2

s
M

f d
M0

0 0 ,

(58)

and then equating Eq. (57) to Eq. (58), the debonded zone length, d, is 
obtained:

=
−

−

d
δ

λδ

M N z

k2
f d

M
0 ,

(59)

where Nf,d is given by Eq. (52) or Eq. (53) in terms of the interface shear 
strength or the fracture energy.

3. Numerical model

3.1. Cohesive models

Debonding of the CFRP reinforcement is investigated in this section 
using the commercial finite element code Abaqus [25]. All the materials 
(CFRP reinforcement and steel beam) are considered as linear-elastic, 
isotropic and homogeneous and they were connected defining a proper 
interface. Two contact surfaces were defined in the finite element model, 
both on the CFRP reinforcement and on the steel beam and they were 
linked through a connection interface. This connection interface was 
modelled by means of a specific master-slave cohesive damaged contact 
interaction. Note that the connection interface had zero-thick-ness and 
the adhesive layer was not explicitly implemented in the finite element 
model. The mechanical properties of the adhesive layer were taken into 
account in the definition of the contact properties as illustrated below.

Fig. 9. Longitudinal strain in the debonded zone as function of the normalized 
crack length a/h: comparison between the experimental [4], numerical and 
analytical results.

By using Eqs. (25) and (31), Nf,d is rewritten in terms of the fracture 
energy Gf as:

Table 1
Comparison between the experimental results in [12] and the results of the analytical and numerical models discussed in this study.

Specimen Notch depth
[mm]

Reinforcement thickness
[mm]

Load at the elastic limit (experimental)
[kN]

Load at the elastic limit
(analytical) [kN]

Load at the elastic limit (numerical)
[kN]

AR-1 14.4 1.4 32 33.7 36.2
AR-2 14.4 1.4 34
AR-3 14.4 1.4 38

Table 2
Layout of the parametric analyses.

Case Model parameters Remarks

a/h [–] k1 [N/
mm3]

Ef [MPa] Gf

[MPa/
mm]

τ [MPa]

1 0.22 584.6 195,000 0.3421 20 Effect of the
normalize crack size
a/h

2 0.3 584.6 195,000 0.3421 20
3 0.4 584.6 195,000 0.3421 20
4 0.5 584.6 195,000 0.3421 20
5 0.3 400 195,000 0.3421 16.54 Effect of the interface

elastic stiffness k16 0.3 600 195,000 0.3421 20.26
7 0.3 800 195,000 0.3421 23.39
8 0.3 1000 195,000 0.3421 26.15
9 0.3 1500 195,000 0.3421 32.03
10 0.3 584.6 165,000 0.3421 20 Effect of the

reinforcement
Young’s modulus Ef

11 0.3 584.6 205,000 0.3421 20
12 0.3 584.6 300,000 0.3421 20
13 0.3 584.6 375,000 0.3421 20
14 0.3 584.6 440,000 0.3421 20



3.2. Behaviour of the connection interface

The interface response is initially linear and, when a damage cri-
terion is fullfilled, it degrades according to a specific damage evolution
law. Two different stages of the interface behaviour can be defined: the
elastic behaviour and the damage behaviour. The interface behaviour is
described by the relationship between the traction vector t and the
separation vector δ , representing the normal and shear components

3.2.1. Elastic behaviour
In this stage, the contact interaction linear ascending branch was

defined by a uncoupled traction-separation model defined by the elastic
constitutive matrix K :
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where Knn, Kss and Ktt are the elastic stiffnesses in the normal and in the
two shear directions, respectively. These elastic stiffnesses are related to
the thickness and mechanical properties of the adhesive layer.

3.2.2. Damage behaviour
In this stage, a single damage variable D for the normal, tn, and the 

shear tractions, tt and ts, is introduced. This means that a strength cri-
terion is needed in order to define the damage initiation. As in [18], the 
following quadratic strength criterion is adopted:

⎛
⎝
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⎠

+ ⎛
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⎠
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2 2 2

(61)

where σ and τ are the interface normal and shear strength, respectively.
In general, τ is different in direction s and t. A unique value of τ was
considered in Eq. (61) because the same behaviour was assumed in both
directions. The symbol 〈 〉· is the Macaulay bracket, which indicates that
compressive stresses do not produce any damage in the interface, that is
when tn is negative it is set equal to zero. When the damage criterion is
satisfied, damage occurs and the damage variable D controls the trac-
tion vector t :

̂ = ⎧
⎨⎩

− >t D t t σ
t

(1 )· if
otherwisen

n n

n (62)

and

(a) (b)
Fig. 10. Effect of the normalized crack length a/h on (a) the CFRP strain at the elastic limit and (b) the length of the debonded zone.

(a) (b)
Fig. 11. Effect of the interface elastic stiffness k1 on (a) the CFRP strain at the elastic limit and (b) the length of the debonded zone.
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where σ and τ indicate the interface strengths, tn ̂is the damaged normal 
traction vector component, and ts ̂ and tt ̂ are the damaged shear and 
traction vector components. A discrete evolution of the damage vari-
able D was introduced in the finite element code in accordance with the 
adopted bond-slip relationship (Fig. 5).

4. Validation and parametric analysis

In this section, the analytical and numerical models are calibrated 
and validated with respect to the outcomes of two different experi-
mental campaigns on cracked steel beam reinforced by using CFRP strips 
and described in [4,12]. A parametric analysis is also performed to 
investigate the effects of the crack depth, the parameters of the in-
terface and the stiffness of the reinforcement.

4.1. Validation and calibration of the analytical and numerical models

The results of the analytical and numerical models are compared 
with the outcomes of two experimental campaigns on cracked steel 
beams reinforced by using CFRP strips tested under a four-point bending 
loading configuration.

In [4], the clear span of the I-beams was 1000 mm while the loading 
points were 500 mm apart. IPE 120 steel beams were used, with a height 
of 120 mm, a flange width of 64 mm, a flange thickness of 6.3 mm and a 
web thickness of 4.4 mm. The steel Young’s modulus was 210,000 MPa 
and the beams were artificially notched with an initial crack size of 20 
mm at the midspan. The CFRP plate (Sika CarboDur® M614) had a 
thickness of 1.4 mm, a width of 60 mm and a length of 800 mm. The 
CFRP Young’s modulus was 195,000 MPa.

In [12], the clear span of the I-beams was 1100 mm and the loading 
points were 200 mm apart. The beams had a height of 120 mm, a flange 
width of 74 mm, a flange thickness of 8.4 mm and a web thickness of 5 
mm. The steel Young’s modulus was 205100 MPa and the initial crack 
length was 14.4 mm. The CFRP plate had a thickness of 1.4 mm, a width 
of 74 mm and a length of 400 mm. The CFRP Young’s modulus was 
127,200 MPa.

In both cases, the reinforcement was bonded to the steel beam using 
the same epoxy adhesive (Sikadur® 30). Results of an experimental 
campaign described in [26] provided the Young’s modulus of the ad-
hesive Ea = 4500 MPa, Poisson’s ratio νa = 0.30, tensile strength

σ = 25 MPa and shear modulus Ga = 1730 MPa. Different bond–slip 
relationships were proposed in [18,27,28]. The shear strength, τ , was 
estimated as [18]:

= =τ σ MPa0.9 22.5 (64)

while the following bond-slip relationship can be used (Eq. (24)):

⎜ ⎟= ⎛
⎝

⎞
⎠

δ t
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τ1
3

a

a

0.65

(65)

resulting, for an adhesive thickness ta = 1 mm, in an interface elastic 
stiffness k1 = 382 N/mm3. Note that, according to Eq. (60), the elastic 
stiffnesses Kss and Ktt in the shear direction are equal to:

⎜ ⎟= = ⎛
⎝
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K K G
t

3ss tt
a

a

0.65

(66)

These values were then corrected to best fit the experimental re-
sults, following a trial-and-error procedure, resulting in a maximum 
shear stress τ = 20 MPa and an interface elastic stiffness k1 = 585 N/
mm3. Note that the interface elastic stiffness has a marginal influence on 
the overall response of the reinforced steel beam as it will be shown in 
Section 4.2 through a parametric analysis. According to Eq. (26), the 
fracture energy at the interface is equal to 0.3421 N/mm.

4.1.1. Comparison with the experimental results of [4]
Based on the analytical formulation and the numerical simulation 

presented above, the debonding load is estimated for the geometry and 
material properties of the reinforced cracked steel beams tested in [4]. 
The finite element model was created using Abaqus [25] with the di-
mensions and support conditions given in Fig. 2. General purposes 4-
nodes shell elements were used to model both the steel beam and the 
reinforcement. The adherents were joined defining a proper connection 
interface as described in Section 3.1. A total of 8665 shell elements was 
used to model the steel beam, with a typical dimension equal to 6 × 6 
mm and with a total number of nodes equal to 8784. A total of 5340 
shell elements was used to model the CFRP reinforcement with a typical 
dimension of 3 × 3 mm for a total number of nodes equal to 5628. The 
elastic stiffness of the interface Knn, Kss and Ktt were assumed to be the 
same and equal to the stiffness k1 of the bond-slip relationship (k1 = 585 
N/mm3) while the shear components of interface strength were assumed 
equal to 20 MPa and the normal component equal to 5 MPa. Finally, in 
order to avoid convergence issues in the finite ele-ment model, a 
fictitious softening stage with a large stiffness is in-troduced at the end of 
the elastic stage. This resulted in a modest

(a) (b)
Fig. 12. Effect of the reinforcement Young’s modulus on (a) the CFRP strain and (b) the length of the debonded zone.
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where Pmax = 35 kN is the maximum applied load during the fatigue 
tests, c = 250 mm is the distance between the loading points and the 
beam supports, l = 500 mm is one half of the clear span, EI is the 
bending stiffness and kM is the rotational spring stiffness (Eq. (27)). 
Results from Eq. (67) and from the numerical model are in terms of 
midspan deflection against the ratio a/h, i.e., the crack depth a nor-
malized with respect to the beam height h (Fig. 7). A strong agreement is 
observed between the analytical and numerical results showing that the 
stiffness of the rotational spring kM was properly estimated in Section 
2.1.

Next, the CFRP axial strain distribution is plotted versus the dis-tance 
x from the midspan (cracked) cross section. In Fig. 8a–d, the numerical 
and analytical results are compared to the corresponding experimental 
outcomes (obtained from strain gauge measurements) for different 
values of the normalized crack length a/h (0.22, 0.3, 0.4, 0.5). In all the 
cases, the strain gauge readings reveal that a debonded zone is present in 
the beams. In detail, the CFRP tensile strain is constant over a length of 
approximately 50 mm for a ratio a/h of 0.22 and gradually increases as 
the crack length grows up to a CFRP tensile strain constant over a length 
of approximately 200 mm for a normalized crack length equal to 0.5. 
The plateau of constant CFRP axial strain is followed by a sharply 
decreasing axial strain distribution corresponding to the elastic zone. 
For all the values of a/h, the analytical and numerical models agree very 
well with the experimental results, both in terms of de-bonded length 
and axial strain in the debonded zone and with respect to the slope of the 
axial strain distribution in the elastic zone.

Besides, in the debonded zone, the reinforcement axial strain is 
independent of the crack length. This is also shown in Fig. 9 where, 
based on the analytical and numerical models, the axial strain in the 
debonded zone is plotted against the normalized crack length a/h and 
compared to the experimental strain gauges readings.

4.1.2. Comparison with the experimental results of [12]
The analytical and numerical models previously discussed are used 

to estimate the debonding load for the geometry and material proper-
ties of the beams experimentally tested by [12]. In this case, the initial 
crack length is 14.4 mm in all the damaged beams and since the epoxy 
adhesive was of the same type of the one used in [4], the same bond-slip 
relationship and numerical parameters for the contact interface re-
sponse were adopted. The analytical and numerical results from the 
models discussed in this study are listed in Table 1 and strongly agree 
with the values of the load at the elastic limit (onset of debonding) 
experimentally obtained.

4.2. Parametric analysis

Based on the analytical model, a parametric analysis is finally per-
formed to investigate the effect of some design parameters on the CFRP 
axial strain (both at the elastic limit and after the onset of debonding) 
and on the debonded zone length. The analysis is performed with re-
ference to the geometry and materials of the steel I-beams investigated 
in [4]. Accordingly, the load P (Fig. 2) is adopted equal to the maximum 
applied load during the fatigue tests (Pmax = 35 kN) while the fracture 
energy at the interface is assumed equal to 0.3421 N/mm (see Section 
4.1) and kept constant throughout the parametric analysis. The layout of 
the parametric analysis is reported in Table 2.

First, the effect of the normalized crack length is investigated. In

Section 2.3, it is shown that the axial strain after debonding for a given 
bending moment, M0, in the cracked section does not depend on the ratio 
a/h. Instead, the axial strain at the elastic limit, εf,el, and the de-bonded 
zone length d depend on the ratio a/h through the rotational spring 
stiffness kM. In  Fig. 10a, the CFRP strain at the elastic limit is first 
plotted as function of the normalized crack length a/h.

It is observed that the normalized crack length has a negligible in-
fluence on the axial strain at the elastic limit. In Fig. 10b, the debonded 
zone length d is plotted versus the normalized crack length a/h and it is 
observed to drastically increase as the normalized crack length grows. 
This indicates that debonding is strongly affected by the crack length.

Second, the effect of the interface elastic stiffness k1 is investigated. In 
the analytical model, it is observed that the axial strain after the onset of 
debonding does not depend on k1. In Fig. 11a and b the CFRP axial strain 
at the elastic limit, εf,el, and the debonded zone length, d, is  plotted 
versus the elastic stiffness k1 showing that the interfacial elastic stiffness 
has a marginal influence on both factors.

Then, the reinforcement Young’s modulus and its effect on the axial 
strain and the length of the debonded zone is considered. In Fig. 12a, 
based on the analytical model (Eqs. (56) and (57)), the axial strain at the 
elastic limit and after the onset of debonding is plotted versus the 
reinforcement elastic stiffness Ef. It is thus clearly observed that in both 
cases the axial strain tends to decrease as the reinforcement elastic 
stiffness Ef increases.

Finally, the Young’s modulus of the CFRP reinforcement and its effect 
on the debonded zone length d is analyzed. In Fig. 12b, the de-bonded 
zone length is plotted with respect to the reinforcement elastic stiffness Ef 
and it can be noticed that the Young’s modulus of the CFRP 
reinforcement has a marginal effect on this parameter.

5. Conclusions

In this paper, cracked steel beams strengthened by using composite
materials under fatigue loads were studied. On the basis of the out-
comes of an experimental campaign on artificially notched I-shaped
steel beams strengthened with CFRP reinforcements [4] and through
the development of an analytical formulation and of a numerical model
accounting for a cohesive interface between the composite and the steel
substrate, the main aim and novelty of this study is to estimate how the
fatigue crack propagation (in terms of crack length) is strictly related
and influenced by the progressive debonding of the reinforcement. In
detail:

(a) Among the experimental findings on the fatigue behaviour of arti-
ficially notched steel beams strengthened with CFRP plates [4], 
strain gauges measurements revealed the presence of a debonded 
area between the reinforcement and the steel substrate close to the 
crack location.

(b) Analytical models were previously developed in [4,10]. The ori-
ginality of the more refined analytical model proposed in this work 
consists in the fact that it is not only able to evaluate the CFRP axial 
force but also to predict the debonded zone length. The analytical 
formulation was calibrated and validated with respect to the ex-
perimental outcomes presented in [4,12]. An extremely good 
agreement is observed.

(c) A numerical finite element model, employing a damaging cohesive 
interface, was presented. The advantage of this model, with respect 
to the (FE) simulations proposed in [4], relies on the possibility to 
follow the progressive debonding of the reinforcement for a certain 
crack length and under an increasing load. The FE model was also 
employed for the validation of the analytical results and a good 
agreement was found.

(d) Finally, based on the analytical model, a parametric analysis was 
performed to investigate the influence of the most relevant para-
meters on the strain distribution in the reinforcement layer. In de-
tail, the crack length in the notched steel beam does not influence

increment of the fracture energy Gf, which entailed for a limited in-
crement of the interface strength.

At first, the midspan deflection of the bare steel beam is computed. 
The analytical model is based on the rotational spring concept and the 
midspan deflection is:



the axial strain along the debonded zone but marginally affects the
axial strain at the elastic limit and strongly influences the debonded
zone length. The same holds for the elastic stiffness at the interface.
The Young’s modulus of the CFRP reinforcement has a marginal
effect on the debonded zone length and it is observed that as the
reinforcement elastic stiffness increases the axial strain in the CFRP
tends to decrease.
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