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Abstract. In this paper we extend the H
∞ functional calculus to quaternionic operators

and to n-tuples of noncommuting operators using the theory of slice hyperholomorphic func-
tions and the associated functional calculus, called S-functional calculus. The S-functional
calculus has two versions one for quaternionic-valued functions and one for Clifford algebra-
valued functions and can be considered the Riesz-Dunford functional calculus based on
slice hyperholomorphicity because it shares with it the most important properties. The S-
functional calculus is based on the notion of S-spectrum which, in the case of quaternionic
normal operators on a Hilbert space, is also the notion of spectrum that appears in the
quaternionic spectral theorem. The main purpose of this paper is to construct the H

∞

functional calculus based on the notion of S-spectrum for both quaternionic operators and
for n-tuples of noncommuting operators. We remark that the H

∞ functional calculus for
(n+ 1)-tuples of operators applies, in particular, to the Dirac operator.
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1. Introduction

The H∞-functional calculus is an extension of the Riesz-Dunford functional calculus for 
bounded operators, see [21], to unbounded sectorial operators and it has been introduced by 
A. McIntosh in [38], see also [2]. This calculus is connected with pseudo-differential operators, 
with the Kato’s square root problem, and with the study of evolution equations and, in par-
ticular, the characterization of maximal regularity and of the fractional powers of differential 
operators. For an overview and more problems associated with this functional calculus see 
the paper [41], the book [27] and the references therein.

One of the main motivations to study quaternionic operators is the fact that they are im-
portant in the formulation of quantum mechanics. In fact, it was proved by G. Birkhoff 
and J. von Neumann [9], that there are essentially two possible ways to formulate quantum 
mechanics: using complex numbers or quaternions, see [1].

The main purpose of this paper is to construct the H∞ functional calculus based on the 
notion of S-spectrum for quaternionic operators and for n-tuples of noncommuting opera-
tors. To do this, we replace the Riesz-Dunford functional calculus by the S-functional calculus
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which is the quaternionic version of the Riesz-Dunford functional calculus, see [6, 12, 13, 20].
The S-functional calculus is based on the notion of S-spectrum which, in the case of quater-
nionic normal operators on a Hilbert space, is also the notion of spectrum that appears in
the quaternionic spectral theorem, see [7, 8, 24]. The S-functional calculus is defined for
slice hyperholomorphic functions: for the quaternionic version of the function theory see the
books [4, 20, 23] and for the Clifford algebra version see [20].

We begin by recalling some results and definitions from the complex setting, following the
paper [38] and the book [27]. Let A be a linear operator on a complex Banach space X, with
dense domain D(A) and dense range Ran(A). Let ω ∈ [0, π). We say that A is of type ω if
its spectrum σ(A) is contained in the sector

Sω = {z ∈ C : | arg(z)| ≤ ω} ∪ {0}

and if there exists a positive constant cµ, for µ > ω, such that

‖(A− zI)−1‖ ≤
cµ
|z|
,

for all z such that | arg(z)| ≥ µ.
For this class of operators, called sectorial operators, it is possible to construct a functional
calculus using bounded holomorphic functions g for which there exists two positive constants
α and c such that

|g(z)| ≤
c|z|α

1 + |z|2α
for all z ∈ S0

ω, (1)

where S0
ω is the interior of Sω. The strategy is based on the Cauchy formula for holomorphic

functions in which we replace the Cauchy kernel by the resolvent operator R(λ,A). In the
case A is a bounded linear operator then the spectrum of A is a bounded and nonempty set
in the complex plane, so using a suitable contour γ, that surrounds the spectrum of A it is
possible to define the bounded linear operator

g(A) =
1

2πi

∫

γ

(zI −A)−1g(z)dz. (2)

The integral (2) turns out to be convergent for sectorial operators, if we assume that estimate
(1) holds for the bounded holomorphic function g. We point out that the definition is well
posed, because the integral does not depend on the contour γ when γ does not intersect the
spectrum of A.
Now we extend the above calculus so that we can define operators such as Aλ with λ ∈ C or
λ2−βAβR(λ,A)2 with β ∈ (0, 2). Using the functional calculus defined in (2) and the rational
functional calculus

ϕ(A) =
(
A(I +A2)−1

)k+1
, k ∈ N, (3)

where

ϕ(z) =
( z

1 + z2

)k+1
, k ∈ N,

we can define a more general functional calculus for sectorial operators given by

f(A) = (ϕ(A))−1(fϕ)(A) (4)

where f is a holomorphic function on S0
ω which satisfies bounds of the type

|f(z)| ≤ c(|z|k + |z|−k), for c > 0, k > 0.

The calculus defined in (4) is called the H∞ functional calculus and has been introduced in
[38]. Note that, strictly speaking, we should write ϕk instead of ϕ, but we omit the subscript



for the sake of simplicity. The definition above is well posed since the operator f(A) does
not depend on the suitable rational function ϕ that we choose.
Moreover, observe that the operator (fϕ)(A) can be defined using the functional calculus
(2) for the function fϕ, where ϕ(z) = (z(1 + z2)−1)k+1. The operator (fϕ)(A) is bounded
but (ϕ(A))−1 is closed, so the operator f(A) defined in (4) is not necessarily bounded. This
calculus is very important because of Theorem 5.8 that we state in the sequel.

To explain how we can extend the H∞ functional calculus to the quaternionic setting we
must make precise the notions of spectrum, of resolvent operator, of holomorphicity. With
the standard imaginary units e1, e2 obeying e1e2+e2e1 = 0, e21 = e22 = −1 and e3 := e1e2, the
algebra of quaternionsH consists of elements of the form q = x0+x1e1+x2e2+x3e3, for xℓ ∈ R,
for ℓ = 0, . . . , 3. The real part, imaginary part and the square of the modulus of a quaternion
are defined as Re q = x0, Im q = x1e1 + x2e2 + x3e3, |q|

2 = x20 + x21 + x22 + x23, respectively.
The conjugate q̄ of the quaternion q is defined by q̄ = Re q− Im q = x0 − x1e1 − x2e2 − x3e3
and it satisfies

|q|2 = qq̄ = q̄q.

By S we denote the sphere of purely imaginary quaternions whose square is −1. Every
element i ∈ S works as an imaginary unit and with each i ∈ S we associate the complex plane
Ci = {u+iv : u, v ∈ R} so that we have that H can be seen as the union of the complex planes
Ci when i varies in S. In this paper for the quaternionic setting, and in the Clifford algebra
setting we use the notion of slice hyperholomorphicity, see Section 2. Regarding operators we
replace the classical notion of spectrum of an operator by the S-spectrum of a quaternionic
operator (resp. the S-spectrum of the n-tuples of operators) and the resolvent operator by
the two S-resolvent operators which are slice hyperholomorphic functions operator–valued,
see the book [20].
Precisely, we define the S-spectrum of the bounded quaternionic linear operator T as

σS(T ) = {s ∈ H : T 2 − 2Re(s)T + |s|2I is not invertible in B(V )}

where B(V ) denotes the space of all bounded linear operators on a two-sided quaternionic
Banach space V . In the case of bounded quaternionic linear operators the S-spectrum is a
nonempty and compact set. The S-resolvent set ρS(T ) is defined by

ρS(T ) = H \ σS(T ).

For s ∈ ρS(T ) we define the left S-resolvent operator as

S−1
L (s, T ) := −(T 2 − 2s0T + |s|2I)−1(T − sI), (5)

and the right S-resolvent operator as

S−1
R (s, T ) := −(T − sI)(T 2 − 2s0T + |s|2I)−1. (6)

Let U ⊂ H be a suitable domain that contains the S-spectrum of T . We define the quater-
nionic functional calculus for left slice hyperholomorphic functions f : U → H as

f(T ) =
1

2π

∫

∂(U∩Ci)
S−1
L (s, T ) dsi f(s), (7)

where dsi = −ids; for right slice hyperholomorphic functions, we define

f(T ) =
1

2π

∫

∂(U∩Ci)
f(s) dsi S

−1
R (s, T ). (8)

These definitions are well posed since the integrals depend neither on the open set U nor on
the complex plane Ci, for i ∈ S.



In the following we will consider just right linear quaternionic operators (similar considera-
tions can be done when we consider left linear operators). In order to extend the S-functional
calculus to closed operators it is necessary that the two S-resolvent operators are defined not
only on the domain of T but they must be defined for all elements in the two-sided quater-
nionic Banach space V . So for closed operators we define the S-resolvent set as

ρS(T ) := {s ∈ H : (T 2 − 2Re(s)T + |s|2I)−1 ∈ B(V )},

which we always suppose it to be nonempty, and the S-spectrum of T as

σS(T ) := H \ ρS(T ).

For s ∈ ρS(T ) the left S-resolvent operator is defined as

S−1
L (s, T ) := Qs(T )s− TQs(T ) (9)

while the right S-resolvent operator remains as in (6), we simply rewrite it in terms of Qs(T )
as:

S−1
R (s, T ) := −(T − Is)Qs(T ) (10)

where Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1 is called the pseudo-resolvent operator of T .
The quaternionic rational functions that we will use are intrinsic rational slice hyperholomor-
phic functions. This class of functions is of fundamental importance and allows the definition
of a rational functional calculus that includes the operators:

ψ(T ) =
(
T (I + T 2)−1

)k+1
, k ∈ N.

Note that, also in this case, we write ψ instead of ψk. We extend the S-functional calculus
to sectorial operators in the quaternionic setting, and then we use the classical regularizing
procedure to define the extended functional calculus for slice hyperholomorphic functions f
with suitable growth conditions

f(T ) := (ψ(T ))−1(ψf)(T ),

where the operator (ψf)(T ) is defined using the S-functional calculus for sectorial operators,
and ψ(T ) is defined by the rational quaternionic functional calculus. The definition does not
depend on the suitable rational function ψ that we choose.

Examples of operators to which this calculus applies are:

(i) The Cauchy-Fueter operator (and its variations)

∂

∂x0
+

3∑

j=1

ej
∂

∂xj
.

(ii) Quaternionic operators appearing in quaternionic quantum mechanics such as the
Hamiltonian, see [1].

(iii) The global operator (see [17]) that annihilates slice hyperholomorphic functions:

|q|2
∂

∂x0
+ q

3∑

j=1

xj
∂

∂xj
, where q = x1e1 + x2e2 + x3e3.

We recall that some classical results on groups and semigroups of linear operators (see
[26, 28, 31, 37]) have been extended to the quaternionic setting in some recent papers. In [14]
it has been proved the quaternionic Hille-Yosida theorem, in [5] has been studied the problem
of generation by perturbations of the quaternionic infinitesimal generator and in [3] the natu-
ral functional calculus has been defined for the infinitesimal generator of quaternionic groups
of operators. For semigroups over real alternative *-algebras and generation theorems see [25].



Regarding the case of (n + 1)-tuples of operators we postpone the details in Section 7. We
only mention that the H∞ functional calculus of (n + 1)-tuples of operators applies to the
Dirac operator. We point out that the above formulas for the quaternionic functional calcu-
lus hold also for (n + 1)-tuples of noncommuting operators. Here we just recall the notion
of S-spectrum. By Vn we denote the tensor product of the real Banach space V with the
real Clifford algebra Rn we consider. In the case of (n + 1)-tuples of bounded operators
(T0, T1, ..., Tn) the S-spectrum is defined as

σS(T ) = {s ∈ H : T 2 − 2s0T + |s|2I is not invertible in B(Vn)}

where the operators Tℓ act on V for ℓ = 0, ..., n. The paravector operator

T = T0 + e1T1 + ...+ enTn

represents the (n+1)-tuples of bounded operators (T0, T1, ..., Tn) where e1, ..., en are the units
of the Clifford algebra Rn, s is the paravector s = s0 + s1e1 + ... + snen, with sℓ ∈ R for
ℓ = 0, ..., n and |s| is the Euclidean norm of the paravector s. With these notations in mind
also for the (n+1)-tuples of bounded operators (T0, T1, ..., Tn) we can define the S-resolvent
operators and the S-functional calculus, see [15, 18, 20].

Using a different approach, based on the classical theory of functions in the kernel of the
Dirac operator, see [10, 19], A. McIntosh with some of his coauthors developed the mono-
genic functional calculus, see [32, 33, 34, 35, 36], and based on it he also developed the H∞

functional calculus for commuting operators see [29].

The plan of the paper is as follows. In Section 2 we recall the main facts on slice hyper-
holomorphic functions. In Section 3 we study the rational functions in the quaternionic
setting and we define the rational functional calculus. Section 4 contains the S-functional
calculus for quaternionic linear operators of type ω and some properties. Section 5 is devoted
to the definition and some properties of theH∞ functional calculus for quaternionic operators
and in Section 6 we consider quadratic estimates that guarantee the boundedness of the H∞

functional calculus. In section 7 we adapt the results of the previous sections to the case of
(n+ 1)-tuples of noncommuting operators.

2. Preliminary results on slice hyperholomorphic functions

In this section we recall some basic facts on the theory of slice hyperholomorphic functions in
the quaternionic setting; for the proofs of the statements see the book [20] and the references
therein. We denote by S the 2-sphere of purely imaginary quaternions of modulus 1:

S = {q = x1e1 + x2e2 + x3e3 ∈ H | q2 = −1}

and we recall that for any i ∈ S we can define a complex plane Ci whose elements are of the
form q = u + iv for u, v ∈ R. Any quaternion q belongs to a suitable complex plane: if we
set

iq :=

{ q

|q| , if q 6= 0

any i ∈ S, if q = 0,

then q = u+ iqv with u = Re(q) and v = |q|, so, it follows that, the skew field of quaternions
H can be seen as

H =
⋃

i∈S

Ci.



Definition 2.1 (Slice hyperholomorphic function). Let U ⊂ H be open and let f : U → H be
a real differentiable function. For any i ∈ S, let fi := f |U∩Ci

denote the restriction of f to
the plane Ci. The function f is called left slice hyperholomorphic if, for any i ∈ S,

1

2

(
∂

∂u
fi(q) + i

∂

∂v
fi(q)

)
= 0 for all q = u+ iv ∈ U ∩ Ci (11)

and right slice hyperholomorphic if, for any i ∈ S,

1

2

(
∂

∂u
fi(q) +

∂

∂v
fi(q)i

)
= 0 for all q = u+ iv ∈ U ∩ Ci. (12)

A left (or right) slice hyperholomorphic function that satisfies f(U ∩Ci) ⊂ Ci for every i ∈ S

is called intrinsic.
We denote the set of all left slice hyperholomorphic functions on U by SHL(U), the set of all
right slice hyperholomorphic functions on U by SHR(U) and the set of all intrinsic functions
by N (U).

The importance of the class of intrinsic functions is due to the fact that the multiplication
and composition with intrinsic functions preserve slice hyperholomorphicity. This is not true
for arbitrary slice hyperholomorphic functions.

Theorem 2.2. Let U be an open set in H and let SHL(U), SHR(U) and N (U) the spaces
of slice hyperholomorphic functions defined above.

• If f ∈ N (U) and g ∈ SHL(U), then fg ∈ SHL(U).
• If f ∈ SHR(U) and g ∈ N (U), then fg ∈ SHR(U).
• If g ∈ N (U) and f ∈ SHL(g(U)), then f ◦ g ∈ SHL(U).
• If g ∈ N (U) and f ∈ SHR(g(U)), then f ◦ g ∈ SHR(U).

Remark 2.3. As a consequence of the above theorem, we have that intrinsic functions on U
are both left and right slice hyperholomorphic. As we shall see, the set N (U) is a commutative
real subalgebra (with respect to a suitable product) of SHL(U) and also of SHR(U). This
fact is of crucial importance for the definition of the H∞ functional calculus.

It is possible to introduce slice hyperholomorphic functions in different ways, see [17]. Using
Definition 2.1, to prove the most important results of this class of functions, such as the
Cauchy formula, we need additional conditions on the open set U that we introduced below.
For any q = u+ iqv ∈ H we define the set [q] := {u+ iv | i ∈ S}. By direct computations it
follows that an element q̃ belongs to [q] if and only if it is of the form q̃ = r−1qr for some
r 6= 0 and that [q] is a 2-sphere.

Definition 2.4. Let U ⊆ H. We say that U is axially symmetric if, for all u+ iv ∈ U , the
whole 2-sphere [u+ iv] is contained in U .

Definition 2.5. Let U ⊆ H be a domain in H. We say that U is a slice domain (s-domain
for short) if U ∩ R is nonempty and if U ∩ Ci is a domain in Ci for all i ∈ S.

We recall that a domain is an open set that is also simply connected.
To define rational functions and the associated rational functional calculus we are in need of
a few more properties of slice hyperholomorphic functions.

Theorem 2.6 (Representation Formula). Let U be an axially symmetric s-domain U ⊆ H.
Let f ∈ SHL(U). Choose any j ∈ S. Then the following equality holds for all x = u+ iv ∈ U :

f(u+ iv) =
1

2

[
f(u+ jv) + f(u− jv)

]
+ i

1

2

[
j[f(u− jv)− f(u+ jv)]

]
. (13)



Moreover, for all u, v ∈ R such that [u+ iv] ⊆ U , the functions

α(u, v) =
1

2

[
f(u+ jv) + f(u− jv)

]
and β(u, v) =

1

2

[
j[f(u− jv) − f(u+ jv)]

]
(14)

depend on u, v only.
Let f ∈ SHR(U). Choose any j ∈ S. Then the following equality holds for all x = u+ iv ∈ U :

f(u+ iv) =
1

2

[
f(u+ jv) + f(u− jv)

]
+

1

2

[
[f(u− jv)− f(u+ jv)]j

]
i. (15)

Moreover, for all u, v ∈ R such that [u+ iv] ⊆ U , the functions

α(u, v) =
1

2

[
f(u+ jv) + f(u− jv)

]
and β(u, v) =

1

2

[
[f(u− jv)− f(u+ jv)]j

]
(16)

depend on u, v only.

Lemma 2.7 (Splitting Lemma). Let U ⊆ H be an open set.
Let f ∈ SHL(U). Then for every i ∈ S, and every j ∈ S perpendicular to i, there are two
holomorphic functions F,G : U ∩Ci → Ci such that for any z = u+ iv, it is

fi(z) = F (z) +G(z)j.

Let f ∈ SHR(U). Then for every i ∈ S, and every j ∈ S, perpendicular to i, there are two
holomorphic functions F,G : U ∩Ci → Ci such that for any z = u+ iv, it is

fi(z) = F (z) + jG(z).

Remark 2.8. In the Splitting Lemma the two holomorphic functions F and G depend on
the complex plane Ci that we consider.

The Cauchy formula for slice hyperholomorphic functions, with a slice hyperholomorphic
kernel, is the key tool to define the S-functional calculus. Such formula has two different
Cauchy kernels according to right or left slice hyperholomorphicity; these kernels have power
series expansions for |q| < |s|:

∑∞
n=0 q

ns−1−n (in the left case), and
∑∞

n=0 s
−1−nqn (in the

right case). The sum of the first series leads to the definition of the left slice hyperholomorphic
Cauchy kernel; analogously the sum of the second series gives the right slice hyperholomorphic
Cauchy kernel.

Definition 2.9. The left slice hyperholomorphic Cauchy kernel is

S−1
L (s, q) = −(q2 − 2Re(s)q + |s|2)−1(q − s) for q /∈ [s]

and the right slice hyperholomorphic Cauchy kernel is

S−1
R (s, q) = −(q − s)(q2 − 2Re(s)q + |s|2)−1 for q /∈ [s].

So we can state the Cauchy formulas:

Theorem 2.10. Let U ⊂ H be an axially symmetric slice domain such that its boundary
∂(U ∩ Ci) in Ci consists of a finite number of continuously differentiable Jordan curves. Let
i ∈ S and set dsi = −i ds. If f is left slice hyperholomorphic on an open set that contains U ,
then

f(q) =
1

2π

∫

∂(U∩Ci)
S−1
L (s, q) dsi f(s) for all q ∈ U.

If f is right slice hyperholomorphic on an open set that contains U , then

f(q) =
1

2π

∫

∂(U∩Ci)
f(s) dsi S

−1
R (s, q) for all q ∈ U.

The above integrals do not depend neither on the open set U nor on the complex plane Ci for
i ∈ S.



Theorem 2.11. The left slice hyperholomorphic Cauchy kernel S−1
L (s, q) is left slice hyper-

holomorphic in the variable q and right slice hyperholomorphic in the variable s in its domain
of definition (a similar result holds for S−1

R (s, q)). Moreover, we have S−1
R (s, q) = −S−1

L (q, s).

In the sequel we will be in need of the following theorem:

Theorem 2.12 (Cauchy’s integral theorem). Let U ⊂ H be an open set, let i ∈ S and let Di

be an open subset of U ∩Ci with Di ⊂ U ∩Ci such that its boundary ∂Di consists of a finite
number of continuously differentiable Jordan curves. For any f ∈ SHR(U) and g ∈ SHL(U),
it is ∫

∂Di

f(s) dsi g(s) = 0,

where dsi = −i ds.

3. Rational functions and their functional calculus

Let V be a two-sided quaternionic Banach space. We denote the set of all bounded quater-
nionic right-linear operators on V by B(V ). In the quaternionic setting, in particular for
unbounded operators, we have to specify if we are considering a left-linear or a right-linear
operator. When some properties of a quaternionic operator depend just on linearity we simply
say (quaternionic) linear operator and we do not specify the type of linearity. In analogy with
the complex case, we say that a linear operator, whose domain D(T ) := {v ∈ V : Tv ∈ V },
is closed if its graph is closed.

Definition 3.1. We define the S-resolvent set of a linear closed operator T as

ρS(T ) := {s ∈ H : (T 2 − 2Re(s)T + |s|2I)−1 ∈ B(V )},

where

T 2 − 2Re(s)T + |s|2I : D(T 2) → V,

and the S-spectrum of T as

σS(T ) := H \ ρS(T ).

If we consider bounded linear operators the S-spectrum is a compact and nonempty set in
H, but in the case of unbounded operators the S-spectrum can be every closed subset of H,
also an empty set. In the sequel, when we consider unbounded operators we will assume that
the S-resolvent set is nonempty.
For n = 0, 1, 2, ..., the powers of an operator T are defined inductively by the relations T 0 = I,
T 1 = T and

D(T n) = {v : v ∈ D(T n−1), T n−1v ∈ D(T ) },

T nv = T (T n−1v), v ∈ D(T n).

For aℓ ∈ H, ℓ = 0, . . . ,m, the polynomial

Pm(q) =

m∑

ℓ=0

aℓq
ℓ,

of degree m ∈ N, is right slice hyperholomorphic. The natural functional calculus for poly-
nomials is obtained by replacing q by the right (resp. left) linear operator T . We obtain the
right (resp. left) linear quaternionic operator

Pm(T ) =

m∑

ℓ=0

aℓT
ℓ : D(Tm) → V.



Analogous considerations can be done when we consider a left hyperholomorphic polynomial
Pm(q) =

∑m
ℓ=0 q

ℓaℓ of degree m ∈ N and the right (resp. left) linear quaternionic operator

Pm(T ) =
m∑

ℓ=0

T ℓaℓ : D(Tm) → V

is obtained replacing q by a right (resp. left) linear quaternionic operator T .

An important ingredient in the definition of the H∞ functional calculus is the rational func-
tional calculus. To define the quaternionic H∞ functional calculus we have to define the
rational functional calculus for intrinsic functions. As we have already observed in Remark
2.3, this class consists of functions that are both left and right slice hyperholomorphic. Thus
we first give the definition of rational left slice hyperholomorphic functions and then we con-
sider the subset of rational intrinsic functions.

Suppose that U ⊆ H is an axially symmetric s-domain and let f and g : U → H be left
slice hyperholomorphic functions. For any i, j ∈ S, with i ⊥ j, the Splitting Lemma 2.7
guarantees the existence of four holomorphic functions F,G,H,K : U ∩ Ci → Ci such that
for all z = x+ iy ∈ U ∩ Ci

fi(z) = F (z) +G(z)j gi(z) = H(z) +K(z)j. (17)

We define the function fi ⋆ gi : U ∩ Ci → H as

fi ⋆ gi(z) = [F (z)H(z) −G(z)K(z̄)] + [F (z)K(z) +G(z)H(z̄)]j. (18)

We now note that the Representation Formula provides an extension operator denoted by
ext, see [20], and so can give the following definition:

Definition 3.2. Let U ⊆ H be an axially symmetric s-domain and let f, g : U → H be left
slice hyperholomorphic. The function

(f ⋆ g)(q) = ext(fi ⋆ gi)(q)

defined as the extension of (18) is called the slice hyperholomorphic product of f and g and
is denoted by f ⋆ g.

Remark 3.3. Let U be an axially symmetric s-domain. The sets SHL(U) and SHR(U)
equipped with the operation of sum and ∗-product turn out to be non commutative, unital,
real algebras. N (U) is a real subalgebra of both of them.

Example 3.4. In the case f and g have power series expansion:
∑∞

n=0 q
nan and

∑∞
n=0 q

nbn,
respectively for an, bn ∈ H, then the slice hyperholomorphic product becomes

( ∞∑

n=0

qnan

)
⋆
( ∞∑

n=0

qnbn

)
=

∞∑

n=0

qn
n∑

k=0

an−kbk. (19)

Remark 3.5. For more comments on the slice hyperholomorphic product and all its conse-
quences see the book [20].

Let f be as above, and let its restriction to Ci be as in (17). We define the function f si :
U ∩ Ci → Ci as

f si (z) := F (z)F (z̄) +G(z)G(z̄), (20)

and we set

f s(q) = ext(f si )(q).



Definition 3.6 (Slice inverse function). Let U ⊆ H be an axially symmetric s-domain and
let f : U → H be a left slice hyperholomorphic function. We define the function f−⋆ as

f−⋆(q) := (f s(q))−1f c(q),

where f c(q) is the slice hyperholomorphic extension of

f ci (z) = F (z̄)−G(z)j.

The function f−⋆ is defined on U outside the zeros of f s.

Let Q(s) be a polynomial (with quaternionic coefficient on the right); then Q−⋆(s) is a rational
function. Given a polynomial P (s), the quaternionic rational functions are of the form

R(s) = (P ⋆ Q−⋆)(s),

or
R(s) = (Q−⋆ ⋆ P )(s),

so, in principle, one should make a choice between right quotient (first case) or left quotients
(second case). In case Q(s) has real coefficients, the two choices are equivalent, and this will
be the case we will consider in this paper.

Definition 3.7 (Rational functional calculus). Let R = P ∗Q−∗ be a rational function and
assume that R has no poles on the S-spectrum of T . Let T be a closed densely defined operator.
We define the rational functional calculus as:

R(T ) = (P ⋆ Q−∗)(T )

(or R(T ) = (Q−∗ ⋆ P )(T )).

The operator R(T ) is closed and densely defined and its domain is D(Tm) where

m := max{0,deg P − degQ}.

Remark 3.8. For our purposes, we will consider intrinsic rational functions defined on U .
In this case

R ⋆ R1 = RR1 = R1R = R1 ⋆ R,

for every R and R1 intrinsic rational functions. Moreover, if P (s) and Q(s) are intrinsic poly-
nomial then (P ⋆ Q−∗)(s) = (PQ−1)(s) = (Q−1P )(s). Intrinsic rational functions constitute
a real, commutative, subalgebra of both the real algebras SHL(U) and SHR(U).

Example 3.9. An important example of intrinsic rational function, useful in the sequel, is

ψk(s) =
( s

1 + s2

)k
, k ∈ N.

Note that, for the sake of simplicity, from now on we will write ψ(s) instead of ψk(s).
We recall that slice hyperholomorphic rational functions have poles that are real points and/or
spheres. This is compatible with the structure of the S-spectrum of T that consists of real
point and/or spheres, see p.142 in [20].
With ψ as above, we have

ψ(T ) =
(
T (I + T 2)−1

)k
, k ∈ N.

We summarize in the following the properties of the rational functional calculus. The proofs
are similar to the classical results and for this reason we omit them.

Proposition 3.10. Let T be a linear quaternionic operator single valued on a quaternionic
Banach space V . Let P and Q be intrinsic quaternionic polynomials of order n and m,
respectively. Then

(i) If P 6≡ 0 then P (T )Q(T ) = (PQ)(T ).



(ii) If P (T ) is injective and Q 6≡ 0 then

D(P (T )−1) ∩D(Q(T )) ⊂ D(P (T )−1Q(T )) ∩ D(Q(T )P (T )−1)

and

P (T )−1Q(T )v = Q(T )P (T )−1v, ∀v ∈ D(Q(T )) ∩ D(P (T )−1).

(iii) Suppose that T is a closed linear operator with ρS(T ) 6= ∅. Then P (T ) is closed and
P (σS(T )) = σS(P (T )).

For rational functions we have

Proposition 3.11. Let T be a linear quaternionic operator single valued on a quaternionic
Banach space V with ρS(T ) 6= ∅. Let 0 6≡ R = PQ−1 and R1 = P1Q

−1
1 be intrinsic rational

functions. Then we have:

(i) R(T ) is a closed operator.
(ii) R(σS(T )) ⊂ σS(R(T )), where σS(T ) = σS(T )∪{∞} denotes the extended S-spectrum

of T .
(iii) R(T )R1(T ) ⊂ (RR1)(T ) and equality holds if

(deg(P )− deg(Q))(deg(P1)− deg(Q1)) ≥ 0.

(iv) R(T ) +R1(T ) ⊂ (R+R1)(T ) and equality holds if

deg(PQ1 + P1Q) = max{deg(PQ1),deg(P1Q)}.

4. The S-functional calculus for quaternionic operators of type ω

As we have mentioned in the introduction we want to show that, at least for a suitable subclass
of closed densely defined operators, we can extend the formulas of the S-functional calculus
for bounded operators. In order to do this we need to define the S-resolvent operators as
follows. Let T be a closed linear operator on a two-sided quaternionic Banach space V and
assume that s ∈ ρS(T ) 6= ∅, then the operator

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1

is called the pseudo-resolvent of T .
We will denote the set of all closed quaternionic right-linear operators on the two-sided
quaternionic Banach space V by K(V ); in the case of left-linear operators we will use the
notation KL(V ).

Definition 4.1. Let T ∈ K(V ). The left S-resolvent operator is defined as

S−1
L (s, T ) := Qs(T )s − TQs(T ), s ∈ ρS(T ), (21)

and the right S-resolvent operator is defined as

S−1
R (s, T ) := −(T − Is)Qs(T ), s ∈ ρS(T ). (22)

In the sequel we will work just with right linear operators and the above S-resolvent opera-
tors are slice hyperholomorphic functions operator-valued and S−1

L (s, T )v and S−1
R (s, T )v are

defined for all v ∈ V .

Remark 4.2. We point out that in the case T ∈ KL(V ) the S-resolvent operators have to be
defined as

S−1
L (s, T ) := Qs(T )(s − T ), s ∈ ρS(T ), (23)

and the right S-resolvent operator is defined as

S−1
R (s, T ) := sQs(T )− TQs(T ), s ∈ ρS(T ). (24)



The S-resolvent equation has been proved in [6] when the operator T is bounded. For the case
of unbounded operators one has to be more careful with the domains of the operators that
are involved, see [11]. The resolvent equation of the S-functional calculus and the following
Lemma 4.4 will be important in the proofs of some properties of the S-functional calculus
for operators of type ω.

Theorem 4.3 (S-resolvent equation, see [11]). Let T ∈ K(V ). For s, p ∈ ρS(T ) with s /∈ [p],
it is

S−1
R (s, T )S−1

L (p, T )v =
[
[S−1

R (s, T )− S−1
L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]
]
(p2 − 2s0p+ |s|2)−1v, v ∈ V.

(25)

We recall the following lemma from [6].

Lemma 4.4. Let B ∈ B(V ). Let U be an axially symmetric s-domain and assume that
f ∈ N (U). Then, for p ∈ U , we have

1

2π

∫

∂(U∩Ci)
f(s)dsi(sB −Bp)(p2 − 2s0p+ |s|2)−1 = Bf(p),

where dsi = −i ds.

We can now consider the main definitions for the H∞ functional calculus for quaternionic
operators.

Definition 4.5 (Argument function). Let s ∈ H\{0}. We define arg(s) as the unique number
θ ∈ [0, π] such that s = |s|eθis .

Observe that θ = arg(s) does not depend on the choice of is if s ∈ R \ {0} since p = |p|e0i for
any i ∈ S if p > 0 and p = |p|eπi for any i ∈ S if p < 0.
Let ϑ ∈ [0, π] we define the sets

Sϑ = {s ∈ H | | arg(p)| ≤ ϑ or s = 0},

S0
ϑ = {s ∈ H | | arg(p)| < ϑ}. (26)

Definition 4.6 (Operator of type ω). Let ω ∈ [0, π) we say the the linear operator T :
D(T ) ⊆ V → V is of type ω if

(i) T is closed and densely defined
(ii) σS(T ) ⊂ Sϑ ∪ {∞}
(iii) for every ϑ ∈ (ω, π] there exists a positive constant Cϑ such that

‖S−1
L (s, T )‖ ≤

Cϑ

|s|
for all non zero s ∈ S0

ϑ,

‖S−1
R (s, T )‖ ≤

Cϑ

|s|
for all non zero s ∈ S0

ϑ.

We now introduce the following subsets of the set of slice hyperholomorphic functions that
consist of bounded slice hyperholomorphic functions.

Definition 4.7. Let µ ∈ (0, π]. We set

SH∞
L (S0

µ) = {f ∈ SHL(S
0
µ) such that ‖f‖∞ := sup

s∈S0
µ

|f(s)| <∞},

SH∞
R (S0

µ) = {f ∈ SHR(S
0
µ) such that ‖f‖∞ := sup

s∈S0
µ

|f(s)| <∞},

N∞(S0
µ) := {f ∈ N (S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞}.



In order to define bounded functions of operators of type ω, we need to introduce suitable
subclasses of bounded slice hyperholomorphic functions:

Definition 4.8. We define the spaces

ΨL(S
0
µ) = {f ∈ SH∞

L (S0
µ) such that ∃ α > 0, c > 0 |f(s)| ≤

c|s|α

1 + |s|2α
, for all s ∈ S0

µ},

ΨR(S
0
µ) = {f ∈ SH∞

R (S0
µ) such that ∃ α > 0, c > 0 |f(s)| ≤

c|s|α

1 + |s|2α
, for all s ∈ S0

µ},

Ψ(S0
µ) = {f ∈ N∞(S0

µ) such that ∃ α > 0, c > 0 |f(s)| ≤
c|s|α

1 + |s|2α
, for all s ∈ S0

µ}.

The following theorem is a crucial step for the definition of the S-functional calculus, because
it shows that the following integrals depend neither on the path that we choose nor on the
complex plane Ci, i ∈ S.

Theorem 4.9. Let T be an operator of type ω. Let i ∈ S, and let S0
µ be as in (26). Choose

a piecewise smooth path Γ in S0
µ ∩Ci that goes from ∞eiθ to ∞e−iθ, where ω < θ < µ. Then

the integrals

1

2π

∫

Γ
S−1
L (s, T ) dsi ψ(s), for all ψ ∈ ΨL(S

0
µ), (27)

1

2π

∫

Γ
ψ(s) dsi S

−1
R (s, T ), for all ψ ∈ ΨR(S

0
µ), (28)

depend neither on Γ nor on i ∈ S, and they define bounded operators.

Proof. We reason on the integral (27) since (28) can be treated in a similar way.
The growth estimates on ψ and on the resolvent operator imply that the integral (27) exists
and defines a bounded right-linear operator.
The independence of the choice of θ and of the choice of the path Γ in the complex plane Ci

follows from Cauchy’s integral theorem.
In order to show that the integral (27) is independent of the choice of the imaginary unit
i ∈ S, we take an arbitrary j ∈ S with j 6= i.
Let B(0, r) the ball centered at the origin with radius r; let a0 > 0 and θ0 ∈ (0, π), n ∈ N,
we define the sector Σ(θ0, a0) as

Σ(θ0, a0) := {s ∈ H : arg(s− an) ≥ θn}.

Let θ0 < θs < θp < π and set Us := Σ(θs, 0) ∪B(0, a0/2) and Up := Σ(θp, 0) ∪B(0, a0/3),
where the indices s and p denote the variable of integration over the boundary of the respective
set.
Suppose that Up and Us are slice domains and ∂(Us ∩Ci) and ∂(Up ∩Cj) are paths that are
contained in the sector.



Observe that ψ(s) is right slice hyperholomorphic on Up, and hence, by Theorem 2.10, we
have

ψ(T ) =
1

2π

∫

∂(Us∩CI )
ψ(s) dsi S

−1
R (s, T ) (29)

=
1

(2π)2

∫

∂(Us∩Ci)

(∫

∂(Up∩Cj)
ψ(p) dpj S

−1
R (p, s)

)
dsi S

−1
R (s, T ) (30)

=
1

2π

∫

∂(Up∩Ci)
ψ(p) dpj

1

2π

∫

∂(Us∩Ci)
S−1
R (p, s) dsi S

−1
R (s, T )

)
(31)

=
1

2π

∫

∂(Up∩Cj)
ψ(p) dpj S

−1
R (p, T ). (32)

To exchange order of integration we apply the Fubini theorem. The last equation follows as
an application of the S-functional calculus for unbounded operators, see [20, Theorem 4.16.7],
since S−1

R (p,∞) = lims→∞ S−1
R (p, s) = 0. So we get the statement.

Thanks to the above theorem the following definitions are well posed.

Definition 4.10 (The S-functional calculus for operators of type ω). Let T be an operator
of type ω. Let i ∈ S, and let S0

µ be the sector defined above. Choose a piecewise smooth path

Γ in S0
µ ∩ Ci that goes from ∞eiθ to ∞e−iθ, for ω < θ < µ, then

ψ(T ) :=
1

2π

∫

Γ
S−1
L (s, T ) dsi ψ(s), for all ψ ∈ ΨL(S

0
µ), (33)

ψ(T ) :=
1

2π

∫

Γ
ψ(s) dsi S

−1
R (s, T ), for all ψ ∈ ΨR(S

0
µ). (34)

Remark 4.11. For functions ψ that belong to Ψ(S0
µ) both representations can be used,

moreover

ψ(T ) :=
1

2π

∫

Γ
ψ(s) dsi S

−1
R (s, T ) =

1

2π

∫

Γ
S−1
L (s, T ) dsi ψ(s), for all ψ ∈ Ψ(S0

µ).

If T is an operator of type ω, then ψ(T ), defined in (55) and (56), satisfy:

(aψ + bϕ)(T ) = aψ(T ) + bϕ(T ), for all ψ,ϕ ∈ ΨL(S
0
µ),

(aψ + bϕ)(T ) = aψ(T ) + bϕ(T ), for all ψ,ϕ ∈ ΨR(S
0
µ).

These equalities can be verified with standard computations.

Theorem 4.12. Let T be an operator of type ω. Then

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ Ψ(S0
µ), ϕ ∈ ΨL(S

0
µ),

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ ΨR(S
0
µ), ϕ ∈ Ψ(S0

µ).

Proof. We prove the first relation the second one follows with similar computations. Let
σS(T ) ⊂ U1 and U2 be two open sectors that contain the S-spectrum of T and such that
U1 ∪ ∂U1 ⊂ U2 and U2 ∪ ∂U2 ⊂ S0

µ. Take p ∈ ∂(U1 ∩Ci) and s ∈ ∂(U2 ∩Ci) and observe that,



for i ∈ S, the S-resolvent equation (25) implies

ψ(T )ϕ(T ) =
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi S

−1
R (s, T )

∫

∂(U1∩Ci)
S−1
L (p, T ) dpi ϕ(p)

=
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
S−1
R (s, T )p(p2 − 2s0p+ |s|2)−1dpi ϕ(p)

−
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpi ϕ(p)

−
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
sS−1

R (s, T )(p2 − 2s0p+ |s|2)−1dpi ϕ(p)

+
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
sS−1

L (p, T )(p2 − 2s0p+ |s|2)−1dpi ϕ(p).

But since the functions
p 7→ p(p2 − 2s0p+ |s|2)−1ϕ(p)

and
p 7→ (p2 − 2s0p+ |s|2)−1ϕ(p)

are holomorphic on an open set that contains G1 ∩ Ci, Cauchy’s integral theorem implies

1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
S−1
R (s, T )p(p2 − 2s0p+ |s|2)−1dpi ϕ(p) = 0

and

−
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
sS−1

R (s, T )(p2 − 2s0p+ |s|2)−1dpi ϕ(p) = 0.

It follows that

ψ(T )ϕ(T ) = −
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
S−1
L (p, T )p(p2 − 2s0p+ |s|2)−1dpi ϕ(p)

+
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
sS−1

L (p, T )(p2 − 2s0p+ |s|2)−1dpi ϕ(p),

which can be written as

ψ(T )ϕ(T ) =
1

(2π)2

∫

∂(U2∩Ci)
ψ(s) dsi

∫

∂(U1∩Ci)
[sS−1

L (p, T )− S−1
L (p, T )p]×

× (p2 − 2s0p+ |s|2)−1dpi ϕ(p).

Using Lemma 4.4 we get

ψ(T )ϕ(T ) =
1

2π

∫

∂(U1∩Ci)
S−1
L (p, T )dpi ψ(p) ϕ(p)

=
1

2π

∫

∂(U1∩Ci)
S−1
L (p, T )dpi(ψϕ)(p) = (ψϕ)(T )

which gives the statement.

Remark 4.13. We point out that the spectral mapping theorem holds for this functional
calculus. Precisely: if ψ ∈ Ψ(S0

µ), then ψ(σS(T )) = σS(ψ(T )). If is important to observe that
the spectral mapping theorem holds just for intrinsic functions. The analogue convergence
theorem at p. 216 in the paper of A. McIntosh [38] holds also here, in fact it is based on the
principle of uniform boundedness which holds also for quaternionic operators. We will not
give the proof of this theorem because it is very similar to that classical case.



5. The H∞ functional calculus based on the S-spectrum

To define theH∞ functional calculus we suppose that T is an operator of type ω and moreover
we assume that it is one-to-one and with dense range. Here we will consider slice hyperholo-
morphic functions defined on the open sector S0

µ, for 0 ≤ ω < µ ≤ π which can grow at

infinity as |s|k and at the origin as |s|−k for k ∈ N. This enlarges the class of functions to
which the functional calculus can be applied. Precisely we define:

Definition 5.1 (The set Ω). Let ω be a real number such that 0 ≤ ω ≤ π. We denote by Ω
the set of linear operators T acting on a two sided quaternionic Banach space such that:

(i) T is a linear operator of type ω;
(ii) T is one-to-one and with dense range.

Then we define the following function spaces according to the set of operators defined above:

Definition 5.2. Let ω and µ be real numbers such that 0 ≤ ω < µ ≤ π, we set

FL(S
0
µ) = {f ∈ SHL(S

0
µ) such that |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0},

FR(S
0
µ) = {f ∈ SHR(S

0
µ) such that |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0}.

F(S0
µ) = {f ∈ N (S0

µ) such that |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0}.

To extend the functional calculus we consider a quaternionic two sided Banach space V , the
operators in the class Ω, and:

• The non commutative algebra FL(S
0
µ) (resp. FR(S

0
µ)).

• The S-functional calculus Φ for operators of type ω

Φ : ΨL(S
0
µ) (resp. ΨR(S

0
µ)) → B(V ), Φ : φ→ φ(T ).

• The commutative subalgebra of FL(S
0
µ) consisting of intrinsic rational functions.

• The functions in FL(S
0
µ) have at most polynomial growth. So taken an intrinsic

rational functions ψ the operator ψ(T ) can be defined by the rational functional
calculus. We assume also that ψ(T ) is injective.

Definition 5.3 (H∞ functional calculus). Let V be a two-sided quaternionic Banach space
and let T ∈ Ω. For k ∈ N consider the function

ψ(s) :=
( s

1 + s2

)k+1
.

For f ∈ FL(S
0
µ) we define the extended functional calculus as

f(T ) := (ψ(T ))−1(ψf)(T ). (35)

For f ∈ FR(S
0
µ), and T left linear we define the extended functional calculus as

f(T ) := (fψ)(T )(ψ(T ))−1. (36)

We say that ψ regularizes f .

Remark 5.4. In the previous definition the operator (ψf)(T ) (resp. (fψ)(T )) is defined
using the S-functional calculus Φ for operators of type ω, and ψ(T ) is defined by the rational
functional calculus.

Theorem 5.5. The definition of the functional calculus in (35) and in (36) does not depend
on the choice of the intrinsic rational slice hyperholomorphic function ψ.



Proof. Let us prove (35). Suppose that ψ and ψ′ are two different regularizers and set

A := (ψ(T ))−1(ψf)(T ) and B := (ψ′(T ))−1(ψ′f)(T ).

Observe that since the functions ψ and ψ′ commute, because there are intrinsic rational
functions, it is

ψ(T )ψ′(T ) = (ψψ′)(T ) = (ψ′ψ)(T ) = ψ′(T )ψ(T ),

so we get

(ψ′(T ))−1(ψ(T ))−1 = (ψ(T ))−1(ψ′(T ))−1.

It is now easy to see that

A = (ψ(T ))−1(ψf)(T ) = (ψ(T ))−1(ψ′(T ))−1(ψ′(T ))(ψf)(T ) =

= (ψ′(T ))−1(ψ(T ))−1(ψψ′f)(T )

= (ψ′(T ))−1(ψ(T ))−1ψ(T )(ψ′f)(T )

= (ψ′(T ))−1(ψ′f)(T ) = B,

where we used the fact that from the product rule, see Proposition 3.11, we have that the
inverse of ψ(T ) is (1/ψ)(T ). The proof of (36) follows in a similar way. �

We now state an important result for functions in FL(S
0
µ) (the same result with obvious

changes holds for functions in FR(S
0
µ)).

Theorem 5.6. Let f ∈ F(S0
µ) and g ∈ FL(S

0
µ). Then we have

f(T ) + g(T ) ⊂ (f + g)(T ),

f(T )g(T ) ⊂ (fg)(T ),

and D(f(T )g(T )) = D((fg)(T ))
⋂

D(g(T )).

Proof. Let us take ψ1 and ψ2 that regularize f and g, respectively. Observe that the function
ψ := ψ1ψ2 regularize f , g, f + g and fg because ψ1, ψ2 and f commute among themselves.
Observe that

f(T ) + g(T ) = (ψ(T ))−1(ψf)(T ) + (ψ(T ))−1(ψg)(T )

⊂ (ψ(T ))−1[(ψf)(T ) + (ψg)(T )]

= (ψ(T ))−1[ψ(f + g)](T ) = (f + g)(T ).

We can consider now the product rule

f(T )g(T ) = (ψ1(T ))
−1(ψ1f)(T ) (ψ2(T ))

−1(ψ2g)(T )

⊂ (ψ1(T ))
−1(ψ2(T ))

−1[(ψ1f)(T )(ψ2g)(T )]

= (ψ2(T )ψ1(T ))
−1[ψ1(T )ψ2(T )(fg)](T )

= (ψ(T ))−1(ψfg)(T ) = (fg)(T ),

where we have used ψ := ψ1ψ2. Regarding the domains it is as in that complex case.

Remark 5.7. We point out that in this case there is no spectral mapping theorem because
the operator f(T ) = (ψ(T ))−1(ψf)(T ) can be unbounded even when f is bounded.

The following convergence theorem is stated for functions in SH∞
L (S0

µ) but it holds also for

functions in SH∞
R (S0

µ) and is the quaternionic analogue of the theorem in Section 5 in [38].
The proof follows the proof of the convergence theorem in [38, p. 216], we just point out that
the convergence theorem is based on the principle of uniform boundedness that holds also for
quaternionic operators.



Theorem 5.8 (Convergence theorem). Suppose that 0 ≤ ω < µ ≤ π and that T is a linear
operator of type ω such that it is one to one and with dense range. Let fα be a net in SH∞

L (S0
µ)

and let f ∈ SH∞
L (S0

µ) and assume that:

(i) There exists a positive constant M , such that ‖fα(T )‖ ≤M ,
(ii) For every 0 < δ < λ <∞

sup{|fα(s)− f(s)| such that s ∈ S0
µ and δ ≤ |s| ≤ λ} → 0.

Then f(T ) ∈ B(V ) and fα(T )u→ f(T )u for all u ∈ V , moreover ‖f(T )‖ ≤M .

In the following section we discuss the boundedness of the H∞ functional calculus.

6. Quadratic estimates and the H∞ functional calculus

Let H be a right linear quaternionic Hilbert space with an H-valued inner product 〈·, ·〉 which
satisfies, for every α, β ∈ H, and x, y, z ∈ H, the relations:

〈x, y〉 = 〈y, x〉,

〈x, x〉 ≥ 0 and ‖x‖2 := 〈x, x〉 = 0 ⇐⇒ x = 0,

〈xα+ yβ, z〉 = 〈x, z〉α + 〈y, z〉β,

〈x, yα+ zβ〉 = ᾱ〈x, y〉+ β̄〈x, z〉.

Definition 6.1. We will call a subset N ⊆ H a Hilbert basis if

〈x, y〉 = 0 for x, y ∈ N so that x 6= y, (37)

〈x, x〉 = 1 for x ∈ N so that x 6= 0, (38)

{x ∈ H : 〈x, y〉 = 0 for all y ∈ N} = {0}. (39)

With a choice of the Hilbert basis N a quaternionic Hilbert space on one side (left or right)
can always been made two-sided. Thus it is not reductive to consider a quaternionic two-sided
Hilbert space and repeat what we have done in the case of a Banach space to define a H∞

functional calculus.
The crucial tool to show the boundedness of the H∞ functional calculus are the so called
quadratic estimated, see [38].

Definition 6.2 (Quadratic estimate). Let T be a right linear operator of type ω on a quater-
nionic Hilbert space H and let ψ ∈ Ψ(S0

µ) where 0 ≤ ω < µ ≤ π. We say that T satisfies a
quadratic estimate with respect to ψ if there exists a positive constant β such that

∫ ∞

0
‖ψ(tT )u‖2

dt

t
≤ β2‖u‖2, for all u ∈ H,

where we write ‖u‖ for ‖u‖H.

Let us introduce the notation

Ψ+(S0
µ) = {ψ ∈ Ψ(S0

µ) : ψ(t) > 0 for all t ∈ (0,∞)}

and
ψt(s) = ψ(ts), t ∈ (0,∞).

Theorem 6.3. Let 0 ≤ ω < µ ≤ π and assume that T is a right linear operator in Ω.
Suppose that T and its adjoint T ∗ satisfy the quadratic estimates with respect to the functions

ψ and ψ̃ ∈ Ψ+(S0
µ). Suppose that f belongs to SH∞

L (S0
µ). Then the operator f(T ) is bounded

and there exists a positive constant C such that

‖f(T )‖ ≤ C‖f‖∞ for all f ∈ SH∞
L (S0

µ).



Proof. We follow the proof of Theorem at p. 221 in [38], and we point out the differences.

We observe that we choose the function ψ, ψ̃ and η in the space of intrinsic functions Ψ+(S0
µ)

because the pointwise product

ϕ(s) := ψ(s)ψ̃(s)η(s)

has to be slice hyperholomorphic and moreover η has to be such that
∫ ∞

0
ϕ(t)

dt

t
= 1.

For f ∈ SH∞
L (S0

µ) let us define

fε,R(s) =

∫ R

ε

(ϕtf)(s)
dt

t
.

Using the quadratic estimates it follows that there exists a positive constant C such that

‖fε,R(T )‖ ≤ C‖f‖∞

the Convergence Theorem 5.8 gives the formula

f(T )u = lim
ε→0

lim
R→∞

fε,R(T )u for all u ∈ H

where (ηtf)(T ) is defined by the S-functional calculus

(ηtf)(T ) =
1

2π

∫

Γ
S−1
L (s, T ) dsi ηt(s)f(s), for all f ∈ ΨL(S

0
µ),

since ηtf ∈ ΨL(S
0
µ) because ηt is intrinsic. Precisely, the quadratic estimates and some

computations show that there exists a positive constant Cβ such that

|〈fε,R(T )u, v〉| ≤ Cβ sup
t∈(0,∞)

‖(ηtf)(T )‖‖u‖‖v‖.

Since

‖(ηtf)(T )‖ ≤
1

2π
‖f‖∞ sup

i∈S

∫

Γ
‖S−1

L (s, T )‖|dsi| |ηt(s)|

≤
1

2π
sup
i∈S

‖f‖∞

∫

Γ

Cη

|s|
|dsi|

c|s|α

1 + |s|2α

≤ CT (µ, η)‖f‖∞.

From the above estimates we get the statement.

7. The case of n-tuples of operators

The notion of slice hyperholomorphicity can be given for Clifford algebra-valued functions, see
[20]. In this section, we recall the main results on this function theory and on the operators
that we will consider later, without giving the details of the proofs (which can be found in
[20]).

7.1. Preliminaries on the function theory. Let Rn be the real Clifford algebra over n
imaginary units e1, . . . , en satisfying the relations eiej + ejei = 0 for i 6= j and e2i = −1.
An element in the Clifford algebra will be denoted by

∑
A eAxA where A = {i1 . . . ir} ∈

P{1, 2, . . . , n}, i1 < . . . < ir is a multi-index and eA = ei1ei2 . . . eir , e∅ = 1. An element
(x0, x1, . . . , xn) ∈ R

n+1 will be identified with the element

x = x0 + x = x0 +

n∑

j=1

xjej ,



a so-called paravector, in the Clifford algebra Rn. The real part x0 of x will also be denoted
by Re(x). The square of the norm of x ∈ R

n+1 is defined by |x|2 = x20 + x21 + . . . + x2n and
the conjugate of x is

x̄ = x0 − x = x0 −
n∑

j=1

xjej .

Let

S := {x = e1x1 + . . .+ enxn : x21 + . . .+ x2n = 1}.

Observe that for i ∈ S, we obviously have i2 = −1. Given an element x = x0 + x ∈ R
n+1, we

set

ix :=

{
x/|x| if x 6= 0

any element of S if x = 0,

then x = u+ ixv with u = x0 and v = |x|. For any element x = u+ ixv ∈ R
n+1, the set

[x] := {y ∈ R
n+1 : y = u+ iv, i ∈ S}

is an (n − 1)-dimensional sphere in R
n+1. The vector space R + iR passing through 1 and

i ∈ S will be denoted by Ci and an element belonging to Ci will be indicated by u+ iv with
u, v ∈ R.
Since we identify the set of paravectors with the space R

n+1, if U ⊆ R
n+1 is an open set, a

function f : U ⊆ R
n+1 → Rn can be interpreted as a function of a paravector x.

Definition 7.1 (Slice hyperholomorphic functions). Let U ⊆ R
n+1 be an open set and let

f : U → Rn be a real differentiable function. Let i ∈ S and let fi be the restriction of f to the
complex plane Ci.
The function f is said to be left slice hyperholomorphic (or slice monogenic) if, for every
i ∈ S, it satisfies

1

2

(
∂

∂u
fi(u+ iv) + i

∂

∂v
fi(u+ iv)

)
= 0

on U ∩ Ci. We denote the set of left slice hyperholomorphic functions on the open set U by
SML(U).
The function f is said to be right slice hyperholomorphic (or right slice monogenic) if, for
every i ∈ S, it satisfies

1

2

(
∂

∂u
fi(u+ iv) +

∂

∂v
fi(u+ iv)i

)
= 0

on U ∩Ci. We denote the set of right slice hyperholomorphic functions on the open set U by
SMR(U).
A left (or right) slice hyperholomorphic function that satisfies f(U ∩ Ci) ⊂ Ci for any i ∈ S

is called intrinsic. The set of all intrinsic functions will be denoted by N (U).

Remark 7.2. We use the same symbol N (U) to denote intrinsic functions for the quater-
nionic case and for the Clifford algebra case, the meaning is clear from the context and no
confusion arises.

Remark 7.3. Let x be a paravector, then any power series of the form
∑∞

ℓ=0 x
ℓaℓ with

aℓ ∈ Rn, for ℓ ∈ N, is left slice hyperholomorphic and any power series of the form
∑∞

ℓ=0 bℓx
ℓ

with bℓ ∈ Rn, for ℓ ∈ N, is right slice hyperholomorphic. In the case aℓ, or similarly bℓ (for all
ℓ ∈ N∪{0}) are real numbers the power series define intrinsic functions, where they converge.
They are both left and right slice hyperholomorphic.



Lemma 7.4 (Splitting Lemma). Let U ⊂ R
n+1 be open and let f : U → Rn be a left slice

hyperholomorphic function. For every i = i1 ∈ S, let i2, . . . , in be a completion to a basis of
Rn that satisfies the relation iris+ isir = −2δr,s. Let fi be the restriction of f to the complex
plane Ci. Then there exist 2n−1 holomorphic functions FA : U ∩Ci → Ci such that for every
z ∈ U ∩Ci

fi(z) =
n−1∑

|A|=0

FA(z)iA

where iA = iℓ1 · · · iℓs for any nonempty subset A = {ℓ1 < . . . < ℓs} of {2, . . . , n} and i∅ = 1.
Similarly, if g : U → H is right slice hyperholomorphic, then there exist 2n−1 holomorphic
functions GA : U ∩ Ci → Ci such that for every z ∈ U ∩Ci

gi(z) =

n−1∑

|A|=0

iAGA(z).

Slice hyperholomorphic functions have good properties when they are defined on suitable
domains whose definition mimics the one in the quaternionic case.

Definition 7.5 (Axially symmetric slice domain). Let U be a domain in R
n+1. We say that

U is a slice domain (s-domain for short) if U ∩R is nonempty and if U ∩Ci is a domain in
Ci for all i ∈ S. We say that U is axially symmetric if, for all x ∈ U , the (n − 1)-sphere [x]
is contained in U .

The crucial result of slice hyperholomorphic functions is the representation formula (or struc-
ture formula), first proved in [16].

Theorem 7.6 (Representation Formula). Let U ⊆ R
n+1 be an axially symmetric s-domain

and let f ∈ SML(U). Then for any vector x = u+ ixv ∈ U the following formula hold:

f(x) =
1

2

[
f(u+ iv) + f(u− iv)

]
+

1

2

[
ixi[f(u− iv)− f(u+ iv)]

]
. (40)

If f ∈ SMR(U) then

f(x) =
1

2

[
f(u+ iv) + f(u− iv)

]
+

1

2

[
[f(u− iv)− f(u+ iv)]i

]
ix. (41)

The proof of the following Cauchy formula is based on the Representation Formula.

Theorem 7.7 (The Cauchy formula with slice hyperholomorphic kernel). Let U ⊂ R
n+1

be an axially symmetric s-domain. Suppose that ∂(U ∩ Ci) is a finite union of continuously
differentiable Jordan curves for every i ∈ S and set dsi = −i ds.
If f is a (left) slice hyperholomorphic function on a set that contains U then

f(x) =
1

2π

∫

∂(U∩Ci)
S−1
L (s, x) dsi f(s) (42)

where
S−1
L (s, x) := −(x2 − 2Re(s)x+ |s|2)−1(x− s), x 6∈ [s]. (43)

If f is a right slice hyperholomorphic function on a set that contains U , then

f(x) =
1

2π

∫

∂(U∩Ci)
f(s) dsi S

−1
R (s, x) (44)

where
S−1
R (s, x) := −(x− s̄)(x2 − 2Re(s)x+ |s|2)−1, x 6∈ [s]. (45)

The integrals depend neither on U nor on the imaginary unit i ∈ S.



7.2. Preliminaries on operator theory. In the following we will assume that V is a real
Banach space. We denote by Vn the two-sided Banach module over Rn corresponding to
V ⊗ Rn. For µ = 0, 1, ..., n let Tµ : D(Tµ) → V be linear operators that do not necessarily
commute among themselves, where D(Tµ) denotes the domain of Tµ which is contained in V .
To define the H∞ functional calculus for the (n+ 1)-tuple of linear operators (T0, T1, .., Tn),
we will consider the so-called operator in paravector form

T = T0 + e1T1 + . . . + enTn

whose domain is D(T ) =
⋂n

µ=0 D(Tµ).
The case of n-tuples of operators is obviously contained in the previous case by setting T0 = 0,
namely when we take (0, T1, .., Tn). In the following we will consider n+1-tuples of operators,
including operator T0, because from the point of view of our theory there are no additional
difficulties.
We denote by B(V ) the space of all bounded R-homomorphisms from the Banach space V
into itself endowed with the natural norm denoted by ‖ · ‖B(V ). Let TA ∈ B(V ). We define
the operator

T =
∑

A

TAeA

and its action on the generic element of Vn

v =
∑

B

vBeB

as

T (v) =
∑

A,B

TA(vB)eAeB .

The operator T is a right-module homomorphism which is a bounded linear map on Vn. The
set of all such bounded operators is denoted by B(Vn). We define a norm in B(Vn) by setting

‖T‖B(Vn) =
∑

A

‖TA‖B(V ).

We denote by K(Vn) the set of those paravector operators T that are linear and closed. The
notion of S-spectrum, S-resolvent set and of S-resolvent operator can be defied in the Clifford
setting as follows.

Definition 7.8. The S-resolvent set ρS(T ) of T is defined as

ρS(T ) := {s ∈ R
n+1 : Qs(T ) ∈ B(Vn)}

where

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1, (46)

and

T 2 − 2Re(s)T + |s|2I : D(T 2) → Vn.

The S-spectrum σS(T ) of T is defined by

σS(T ) = R
n+1 \ ρS(T ).

In the case of n-tuples of operators when T is bounded, i.e. all the components Tµ are
bounded, then the S-spectrum is a nonempty compact set in R

n+1. When at least one of the
operators Tµ is unbounded then ρS(T ) can be every closed subset of Rn+1. In this case, we
will always assume that the set ρS(T ) is nonempty.



Definition 7.9. Let T ∈ K(Vn). The left S-resolvent operator is defined as

S−1
L (s, T ) := Qs(T )s− TQs(T ), s ∈ ρS(T ) (47)

and the right S-resolvent operator is defined as

S−1
R (s, T ) := −(T − Is)Qs(T ), s ∈ ρS(T ). (48)

The S-resolvent equation for the case of unbounded operators T has been considered in [11]
for the quaternionic operators but its proof can be easily adapted to the the case of n-tuples
of operators. Let T ∈ K(Vn). For s, p ∈ ρS(T ) with s /∈ [p], it is

S−1
R (s, T )S−1

L (p, T )v =
[
[S−1

R (s, T )− S−1
L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]
]
(p2 − 2s0p+ |s|2)−1v, v ∈ Vn.

(49)

7.3. The rational functional calculus. In the Clifford algebra setting, the definition of
slice hyperholomorphic rational function is slightly more complicated than in the quaternionic
case. To introduce it, we need some preliminary definitions and results.
We begin by defining the slice hyperholomorphic product, which is more involved than in the
quaternionic case.

The slice hyperholomorphic product.
For any i ∈ S set i = i1 and consider a completion to a basis {i1, . . . , in} of Rn such that
iℓiℓ′ + iℓ′iℓ = −2δℓℓ′ . The Splitting Lemma 7.4 guarantees the existence of holomorphic func-
tions FA, GA : U ∩ Ci → Ci such that for all z = u+ iv ∈ U ∩ Ci, the restriction to Ci of f
and g, denoted by fi and gi respectively, can be written as

fi(z) =
∑

A

FA(z)iA, gi(z) =
∑

B

GB(z)iB ,

where A,B are subsets of {2, . . . , n} and, by definition, i∅ = 1. We define the function
fi ∗ gi : U ∩ Ci → Rn as

(fi ∗ gi)(z) =
∑

|A|even

(−1)
|A|
2 FA(z)GA(z) +

∑

|A|odd

(−1)
|A|+1

2 FA(z)GA(z̄)

+
∑

|A|even,B 6=A

FA(z)GB(z)iAiB +
∑

|A|odd,B 6=A

FA(z)GB(z̄)iAiB . (50)

Then (fi ∗gi)(z) is obviously a holomorphic map on Ci, and hence its unique slice hyperholo-
morphic extension to U , which can be constructed according to the Representation Formula
7.6, is given by

(f ∗ g)(x) := ext(fi ∗ gi)(x).

Definition 7.10. Let U ⊆ R
n+1 be an axially symmetric s-domain and let f, g : U → Rn be

left slice hyperholomorphic functions. The function

(f ∗ g)(x) = ext(fi ∗ gi)(x)

defined as the extension of (7.3) is called the s-monogenic product of f and g. This product
is called ∗-product of f and g.

An analogous definition can be made for right slice hyperholomorphic functions. Since we
will concentrate on intrinsic rational functions in the sequel, which are both left and right
slice hyperholomorphic we will limit ourselves to the left case.

The ∗-inverse function.



Let U ⊆ R
n+1 be an axially symmetric s-domain and let f : U → Rn be a left slice hy-

perholomorphic function. Let us consider the restriction fi(z) of f to the plane Ci and its
representation given by the Splitting Lemma

fi(z) =
∑

A

FA(z)iA. (51)

Let us define the function f ci : U ∩ Ci → Ci as

f ci (z) : =
∑

A

F c
A(z)iA

=
∑

|A|≡0

FA(z̄)iA −
∑

|A|≡1

FA(z)iA −
∑

|A|≡2

FA(z̄)iA +
∑

|A|≡3

FA(z)iA,

where the equivalence ≡ is intended as ≡ (mod4), i.e. the congruence modulo 4. Since any
function FA is obviously holomorphic it can be uniquely extended to a slice hyperholomorphic
function on U , according to the Representation Formula. Thus we can give the following
definition:

Definition 7.11. Let U ⊆ R
n+1 be an axially symmetric s-domain and let f : U → Rn be a

left slice hyperholomorphic function. The function

f c(x) = ext(f ci )(x)

is called the slice hyperholomorphic conjugate of f .

Using the notion of ∗-multiplication of slice hyperholomorphic functions, it is possible to
associate to any slice hyperholomorphic function f its symmetrization denoted by f s. Let
U ⊆ R

n+1 be an axially symmetric s-domain, let f : U → Rn be a slice hyperholomorphic
function, and let is restriction to Ci be as in (51). Here we will use the notation [fi]0 to
denote the “scalar” part of the function fi, i.e. the part whose coefficient in the Splitting
Lemma is i∅ = 1. We define the function f s : U ∩ Ci → Ci as

f si : = [fI ∗ f
c
i ]0

=
[
(
∑

B

FB(z)IB)(
∑

|A|≡0

FA(z̄)IA −
∑

|A|≡1

FA(z)IA −
∑

|A|≡2

FA(z̄)IA +
∑

|A|≡3

FA(z)IA)
]
0
.

The function f si is holomorphic and hence its unique slice hyperholomorphic extension to U
motivates the following definition:

Definition 7.12. Let U ⊆ R
n+1 be an axially symmetric s-domain and let f : U → Rn be a

slice hyperholomorphic function. The function

f s(x) = ext(f si )(x)

defined by the extension of f si = [fi∗f
c
i ]0 from U ∩Ci to the whole U is called the symmetriza-

tion of f .

The following lemma is important for the definition of the ∗-inverse.

Lemma 7.13. Let U ⊆ R
n+1 be an axially symmetric s-domain and let f, g be left slice

hyperholomorphic functions. Then

f sg = f s ∗ g = g ∗ f s.

Moreover, if Zfs is the zero set of f s, then

(f s)−1g = (f s)−1 ∗ g = g ∗ (f s)−1 on U \ Zfs .



Definition 7.14. Let U ⊆ R
n+1 be an axially symmetric s-domain. Let f : U → Rn be a

left slice hyperholomorphic function such that for some i ∈ S its restriction fi to the complex
plane Ci satisfies the condition

fi ∗ f
c
i has values in Ci. (52)

We define the function:

f−∗ := ext((f si )
−1f ci )

where f si = [fi ∗ f
c
i ]0 = fi ∗ f

c
i , and we will call it slice hyperholomorphic inverse of the

function f .

The next proposition shows that the function f−∗ is the inverse of f with respect to the
∗-product:

Lemma 7.15. Let U ⊆ R
n+1 be an axially symmetric s-domain. Let f : U → Rn be an

s-monogenic function such that for some i ∈ S we have that fi ∗ f
c
i has values in Ci. Then on

U \ Zfs we have:

f−∗ ∗ f = f ∗ f−∗ = 1.

Remark 7.16. Note that the ∗-inverse of a slice hyperholomorphic function f is defined
under the additional assumption that that for some i ∈ S we have that fi ∗ f

c
i has values in

Ci. This assumption is automatically satisfied, for all i ∈ S, by the intrinsic functions.

The rational functional calculus.
Consider a left slice hyperholomorphic polynomial

P(x) =

m∑

ℓ=0

xℓaℓ, where aℓ ∈ Rn

in the paravector variable x. The natural functional calculus is obtained by replacing the
paravector operator x by the paravector operator T = T0 + T1e1 + . . . + Tnen:

P(T ) =
m∑

ℓ=0

T ℓaℓ, where aℓ ∈ Rn

whose domain is D(P(T )) = D(Tm).

Let Q(s) be a polynomial in the paravector variable s satisfying the condition (52), i.e.
Qi ∗ Q

c
i has values in Ci for every i ∈ S. Then Q−∗(s) is a rational function. If we use the

∗-multiplication and if P(s) is a polynomial then rational functions are of the form

R(s) = P(s) ∗ Q−∗(s)

or

R(s) = Q−∗(s) ∗ P(s).

In the sequel we will be interested in the functional calculus for intrinsic rational functions,
so

P(s) ∗ Q−∗(s) = Q−∗(s) ∗ P(s) =
P(s)

Q(s)
.

Let R be a rational function and assume that R has no poles on the S-spectrum of T ; suppose
that T is a closed densely defined paravector operator and define

R(T ) = P(T ) ∗ Q−∗(T ).

This operator is also closed and densely defined and its domain is D(Tm) where

m := max{0,deg P − degQ}.



We point out the Propositions 3.10 and 3.11 holds also in this setting and we do not repeat
them.

7.4. The S-functional calculus for n-tuples of operators of type ω. The S-resolvent
operators, on which the S-functional calculus for n-tuples of operators is based, are defined
as follows: for T ∈ K(V ) the left S-resolvent operator is

S−1
L (s, T ) := Qs(T )s− TQs(T ), s ∈ ρS(T ), (53)

and the right S-resolvent operator is

S−1
R (s, T ) := −(T − Is)Qs(T ), s ∈ ρS(T ), (54)

where

Qs(T ) := (T 2 − 2Re(s)T + |s|2I)−1.

The argument function for p ∈ R
n+1 \ {0} is denoted by arg(p) and it is the unique number

θ ∈ [0, π] such that p = |p|eθip . Observe that θ = arg(s) does not depend on the choice of is
if s ∈ R \ {0} since p = |p|e0i for any i ∈ S if p > 0 and p = |p|eπi for any i ∈ S if p < 0.
Let ϑ ∈ [0, π] and us define the sets

Sϑ = {s ∈ R
n+1 : s = 0 or | arg(p)| ≤ ϑ}

S0
ϑ = {s ∈ R

n+1 : | arg(p)| < ϑ}.

Definition 7.17 (Paravector operators of type ω). Let ω ∈ [0, π) we say that the paravector
operator T : D(T ) ⊆ Vn → Vn, where T = T0 + T1e1 + . . .+ Tnen, is of type ω if

(i) T is closed and densely defined,
(ii) σS(T ) ⊂ Sϑ ∪ {∞},
(iii) for every ϑ ∈ (ω, π] there exists a positive constant Cϑ such that

‖S−1
L (s, T )‖ ≤

Cϑ

|s|
for all non zero s ∈ S0

ϑ,

‖S−1
R (s, T )‖ ≤

Cϑ

|s|
for all non zero s ∈ S0

ϑ.

We now define suitable subsets of the set of slice hyperholomorphic functions. Let µ ∈ (0, π].
We set

SM∞
L (S0

µ) = {f ∈ SML(S
0
µ) such that ‖f‖∞ := sup

s∈S0
µ

|f(s)| <∞},

SM∞
R (S0

µ) = {f ∈ SMR(S
0
µ) such that ‖f‖∞ := sup

s∈S0
µ

|f(s)| <∞},

N∞(S0
µ) := {f ∈ N (S0

µ) such that ‖f‖∞ := sup
s∈S0

µ

|f(s)| <∞}.

To define the S-functional calculus for paravector operators of type ω we need the following
definition.

Definition 7.18. Let µ ∈ (0, π], we set

ΨL(S
0
µ) = {f ∈ SM∞

L (S0
µ) such that ∃ α > 0, c > 0 |f(s)| ≤

c|s|α

1 + |s|2α
, for all s ∈ S0

µ},

ΨR(S
0
µ) = {f ∈ SM∞

R (S0
µ) such that ∃ α > 0, c > 0 |f(s)| ≤

c|s|α

1 + |s|2α
, for all s ∈ S0

µ},

Ψ(S0
µ) = {f ∈ N∞(S0

µ) such that ∃ α > 0, c > 0 |f(s)| ≤
c|s|α

1 + |s|2α
, for all s ∈ S0

µ}.



The analogue of Theorem 4.9 in the Clifford algebra setting allows to define the S-functional
calculus for paravector operators of type ω. Thus, with the identification of the (n+1)-tuple
(T0, T1, ..., Tn) of linear operators with the paravector operator T = T0 + T1e1 + . . . + Tnen,
we obtain the S-functional calculus for n + 1-tuples of operators and, as we discussed, also
for (0, T1, ..., Tn).

Definition 7.19 (The S-functional calculus for n-tuples of operators of type ω). Let i ∈ S,
and let S0

µ be the sector defined above. Choose a piecewise smooth path Γ in S0
µ ∩Ci that goes

from ∞eiθ to ∞e−iθ, for ω < θ < µ, then

ψ(T ) :=
1

2π

∫

Γ
S−1
L (s, T ) dsi ψ(s), for all ψ ∈ ΨL(S

0
µ), (55)

ψ(T ) :=
1

2π

∫

Γ
ψ(s) dsi S

−1
R (s, T ), for all ψ ∈ ΨR(S

0
µ). (56)

The definition is well posed since the two integrals above do not depend neither on Γ nor on
i ∈ S.
If ψ belongs to Ψ(S0

µ) both the representations (55) and (56) can be used and

ψ(T ) :=
1

2π

∫

Γ
ψ(s) dsi S

−1
R (s, T ) =

1

2π

∫

Γ
S−1
L (s, T ) dsi ψ(s), for all ψ ∈ Ψ(S0

µ).

As in the quaternionic case, the S-functional calculus satisfies the following properties.

Theorem 7.20. The operators ψ(T ) defined in (55) and (56) are bounded linear operators:

(aψ + bϕ)(T ) = aψ(T ) + bϕ(T ), for all ψ,ϕ ∈ ΨL(S
0
µ),

(aψ + bϕ)(T ) = aψ(T ) + bϕ(T ), for all ψ,ϕ ∈ ΨR(S
0
µ).

and moreover

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ Ψ(S0
µ), ϕ ∈ ΨL(S

0
µ),

(ψϕ)(T ) = ψ(T )ϕ(T ), for all ψ ∈ ΨR(S
0
µ), ϕ ∈ Ψ(S0

µ).

7.5. The H∞ functional calculus. We are now in the position to state the H∞ functional
calculus for n+ 1-tuples of operators:

Definition 7.21. Let ω and µ be two real numbers such that 0 ≤ ω < µ ≤ π and we make
the following assumptions on the linear operator T

(i) T is an operator of type ω;
(ii) T is one-to-one and with dense range.

We define

FML(S
0
µ) = {f ∈ SML(S

0
µ) such that |f(s)| ≤ C(|s|k+ |s|−k) for some k > 0 and C > 0},

FMR(S
0
µ) = {f ∈ SMR(S

0
µ) such that |f(s)| ≤ C(|s|k+|s|−k) for some k > 0 and C > 0}.

FM(S0
µ) = {f ∈ NM(S0

µ) such that |f(s)| ≤ C(|s|k + |s|−k) for some k > 0 and C > 0}.

Definition 7.22. For k > 0 let us set

ψ(s) :=
( s

1 + s2

)k+1
.

For f ∈ FML(S
0
µ) we define the functional calculus

f(T ) := (ψ(T ))−1(ψf)(T ),

where the operator (fψ)(T ) is defined using the S-functional calculus, and ψ(T ) is defined by
the rational functional calculus.



The independence of the definition from the regularizing function ψ and the product rule
holds also here.

Remark 7.23. We point out that in this case there is no spectral mapping theorem available
and the operator f(T ) = (ψ(T ))−1(fψ)(T ) can be unbounded also when f is bounded.

The analogue of the convergence theorem 5.8 holds in the Clifford algebra case, and it can
be considered the paravector case version of the theorem in Section 5 in [38].

Remark 7.24. We conclude by pointing out that some examples of operators to which the
S-functional and the H∞-functional calculi apply are the Dirac operator

D = e1
∂

∂x1
+ . . .+ en

∂

∂xn

and the global operator that annihilates slice hyperholomorphic functions, see [17]:

G(x) = |x|2
∂

∂x0
+ x

n∑

j=1

xj
∂

∂xj
.

Remark 7.25. In a Hilbert space a quadratic estimate is essentially contained in the Plancherel
theorem. On Lipschitz perturbations of the classical spaces, including the real line and the Eu-
clidean spaces, there are no Plancherel theorems, and the boundedness is technically difficult.
In later contexts the quadratic estimates are consequences of the Coifman-McIntosh-Meyer
(CMcM) Theorem. In fact, people found direct proofs, not via quadratic estimates.
The papers [30] and [22] are equivalent, providing two simplest, independent and direct proofs
of the boundedness of the H∞ functional calculus of the Clifford Dirac differential operators
D = D1e1 + · · · +Dnen and the non-homogeneous D = D0 +D, where Dk, k = 0, 1, ..., n is
the partial differential operator with respect to the k-th variable.
The paper [39] deals with the equivalence relationship between the three forms of the func-
tional calculus, viz., the Cauchy-Dunford form, the Fourier multiplier form under the Fourier
transformation theory on Lipschitz curves and surfaces of Coifman and Meyer, and the mono-
genic singular integral operator form. Indeed, the operators in the functional calculi all form
bounded operator algebras. For Lipschitz perturbations of the spheres in the complex plane,
in the quaternionic space, in the Euclidean n-space, as well as perturbation of the n-complex
sphere, and of the n-torus, analogous H∞ functional calculi were established. They all cor-
respond to the associated spherical Dirac differential operators, see e.g. [39] and [40] and the
references therein.
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