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Abstract—A machine learning-based framework is proposed to
evaluate the effect of design parameters, affected by both aleatory
and epistemic uncertainty, on the performance of antennas.
In particular, possibility theory is leveraged to define aleatory
and epistemic uncertainty in a common framework. Then, a
method combining Bayesian optimization and Polynomial Chaos
expansion is applied to accurately and efficiently propagate both
uncertainties throughout the system under study. A suitable
application example validates the proposed method.

Index Terms—Bayesian optimization, epistemic uncertainty,
Gaussian process, random-fuzzy problems.

I. INTRODUCTION

Uncertainty quantification (UQ) for antenna design is typi-
cally performed through statistical methods. Among these, the
traditional approach resorts to Monte Carlo (MC) analysis,
which requires a high number of simulations of the antenna
under study. Another method is the Polynomial Chaos (PC)
expansion [1]–[6], which models the variations in antenna
performance in terms of stochastic surrogates.

All these approaches are solidly based on probability the-
ory. Namely, the design parameters subject to uncertainty
are considered random variables, which are characterized by
probability distributions [7]–[9]. These distributions can be
chosen a priori over a given interval and/or around a nominal
value. However, assuming that all the design parameters are
affected by aleatory uncertainty, as described by probabilistic
frameworks, is not always a reliable approach. As a matter
of fact, when the uncertainty stems from lack of knowledge
about the value and/or variability of a parameter over a
certain interval, possibility theory [10] offers a more adequate
framework for representing such an epistemic uncertainty. An
epistemic UQ approach for textile antenna designs is presented
in [11]. However, in more complex scenarios, design parame-
ters affected by both aleatory and epistemic uncertainties are
present. In this case, a hybrid approach is necessary to tackle
the UQ problem.

In this contribution, we present a machine learning-based
framework for the solution of hybrid probabilistic-possibilistic
UQ problems: design parameters that suffer from aleatory
uncertainty effects (random variables) are assigned probability
distribution functions (PDFs), whereas design parameters af-
fected by epistemic uncertainty (fuzzy variables) are assigned

possibility distributions (PDs). Bayesian Optimization (BO) is
exploited to propagate epistemic uncertainty, and PC expan-
sion to deal with aleatory uncertainty. Efficiency and accuracy
of the presented hybrid algorithm are validated by a suitable
application example.

The manuscript is organized as follows. First, in Section II,
the relevant features of possibility theory are presented, and
the main features of standard hybrid probabilistic-possibilistic
algorithms are described. Section III briefly introduces BO,
and the procedure to apply BO to the possibilistic part of the
algorithm. Also, the hybridization of BO with the PC method
to speed up the UQ problem is discussed. An application
example is presented in Section IV. Conclusions are drawn
in Section V.

II. FORMULATION OF THE HYBRID
POSSIBILISTIC-PROBABILISTIC PROBLEM

The relevant features of possibility theory as a general
framework to represent both aleatory and epistemic uncertainty
are introduced in Section II-A, whereas the current standard
approach to joint UQ of possibilistic and probabilistic infor-
mation is briefly explained in Section II-B.

A. Possibility Theory and Epistemic Uncertainty

While probability theory describes random variables
(aleatory uncertainty) through probability distribution func-
tions, it falls short in representing variables affected by
epistemic uncertainty. To overcome this limitation, the more
general framework of possibility theory and fuzzy variables
was introduced [10].

In this framework, a real valued parameter x is characterized
by a possibility distribution (PD) π (x) such that:

π : R→ [0, 1] ,∃ x ∈ R : π (x) = 1. (1)

While a PDF represents the frequency of occurrence of an
event over a certain interval, a PD represents the likelihood
that a value x may assume. Hence, the set [0, 1] corresponds
to different level of confidence assigned to each value of x.
For instance, 0 corresponds to an impossible value, and 1
corresponds to a perfectly possible value.

Many PDs can be defined, among which the most commonly
used are the rectangular and the triangular ones. Rectangular
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Figure 1: (a) A triangular PD, π(x), and (b) the corresponding
possibility Π (solid) and necessity N (dashed) measures.

PDs typically represent the so-called total ignorance, that is the
case in which no information on the variability of a parameter
is available [12]. In this case, all the values in the interval
[x1, x2] are equally possible, and the confidence level assigned
to all values in this interval is equal to 1. Triangular PDs, on
the other hand, are suited when a higher degree of confidence
can be assigned to one value in the interval, and the confidence
level for all the other values decreases gradually (see Fig. 1(a)).

According to the theory of fuzzy sets, an epistemic (or
fuzzy) variable x can also be fully characterized by its α-
cuts. The α-cuts of a fuzzy variable are intervals obtained by
cutting its PD at different α levels (with α ranging from 1 to
0). In Fig. 1(a), two α-cuts (red lines) of a triangular PD are
shown. The α-cut at level 0.3 is the interval [c, d], whereas the
α-cut at level 0.8 is the interval [m,n].

Eventually, starting from the PD π (x), possibility and
necessity measures Π (A) and N (A) of a subset A ∈ R are
defined as:

Π (A) = sup
x∈A

π (x) ; N (A) = 1− sup
x/∈A

π (x) . (2)

For the subset A = (−∞, x], the relationship between
the PD π (x) of a continuous uncertain variable x and its
corresponding possibility Π and necessity N measures is
illustrated in Fig. 1.

Given the subset A, it was proven that Π (A) and N (A)
represent the upper and lower bounds of all possible cumula-
tive distribution functions (CDFs) P (A), such that the relation
N(A) ≤ P (A) ≤ Π(A) holds [13], [14].

B. Uncertainty Propagation (UP) in Hybrid Possibilistic-
Probabilistic Problems

Hybrid probabilistic-possibilistic problems are characterized
by the coexistence of aleatory and epistemic uncertainty.
Taking their different meaning and behaviour into account,
aleatory uncertainty is characterized by PDFs p, whereas
epistemic uncertainty is modelled by PDs π. Several ap-
proaches have been proposed in literature to UP in such hybrid
problems, most of them resorting to “brute force” approaches
and requiring a very dense sampling of the input space.

Consider a function f depending on a total number of
M variables: T of theme are random variables r1, r2, ..., rT ,
and T − M are epistemic variables fT+1, fT+2, ..., fM , as

f (r1, ..., rT , fT+1, , ..., fM ). Propagation and quantification of
the uncertainty of the function f encompass the following
steps.

1) A number of realizations of the T random variables are
generated.

2) For a predetermined number of α-cuts ranging from α=1
to α=0, f is evaluated for each α-cut on a dense grid in
the space of epistemic variables.

3) The fmin and the fmax of the function f at different α
levels are as such determined in a brute-force way, and
denoted Infα and Supα. These minimum and maximum
values construct the PD π associated with a specific
random-variable realization.

4) This procedure is repeated for all random-variable real-
izations and the resulting distributions are obtained via
aggregation.

For the above-described algorithm, it is straightforward that
solution based on “brute force” methods may become com-
putationally inefficient even for a small number of random-
fuzzy variables. This issue is especially relevant for electro-
magnetic (EM) problems, where the objective function f is
often evaluated through computationally-expensive full-wave
simulations. To overcome these limitations, in the following
Section a machine learning-based approach will be presented,
which combines BO and PC expansion methods.

III. PROPOSED METHODOLOGY

In this Section, after a brief introduction of BO basic
concepts [15], the procedure of employing BO to propagate
the epistemic uncertainty in the previously-introduced hybrid
algorithm is explained. Eventually, Section III-C describes the
hybridization of BO with PC to effectively manage the part of
the algorithm pertinent to random variables.

A. Overview of Bayesian Optimization

BO is aimed at solving global optimization problems of the
form

min
x∈X⊂RD

f (x), (3)

where D is the number of design parameters x. The main idea
in BO is to perform the minimization (or maximization) on
surrogate models that mimic the actual optimization problem
but, compared to the latter, are cheaper to evaluate. The
flowchart of the BO algorithm is shown in Fig. 2. First, the
objective function f (x) is evaluated over an initial set of
design parameters [xk]

K
k=1 ∈ X (chosen, e.g., according to a

Latin hypercube). Then, a stochastic surrogate model of f (x)
is built based on these initial samples. Since the surrogate
model is cheap to evaluate, it is used by the optimizer to de-
termine the location of the candidate optimum. If the distance
between the selected point and the previously evaluated one
is below a certain threshold, convergence is reached and the
optimization is finished. Otherwise, this optimum is evaluated
through a new (expensive) simulation. The surrogate model is
updated until the computational budged is spent. Hence, each
additional simulation refines the surrogate model, increasing
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Figure 2: Flowchart of the BO algorithm.

the probability of finding the solution of the optimization
problem (3).

For the surrogate model, Gaussian processes (GP) [16]
are adopted in this work, owing to their analytic inference,
accuracy and modeling power. In particular, the Matérn (5/2)
kernel was chosen as GP kernel, due to its capability to
model a wide class of functions (including non-differentiable
ones). The surrogate model in BO, contrary to other surrogate-
based optimization techniques, is stochastic. Therefore, the
model uncertainty is used to determine a sampling strategy
called ‘acquisition function’ in the BO framework. Among
the available acquisition functions, in this work the Expected
Improvement (EI) [17] is adopted as sampling method. EI is
defined as

E [I (x)]=E [max{0, fmin−y}] (4)

where E is the expectation operator, I (x) is a suitable measure
of improvement defined at the point x, fmin is the current
evaluated minimum of the objective function and y is the
prediction of the GP surrogate model at point x. Since y is
a Gaussian random variable, the expectation in (4) can be
calculated analytically. Moreover, the hyper-parameters σ2 and
ρ are optimized using maximum likelihood estimation via the
GPyOpt package [18].

B. BO for the Possibilistic Part of the Hybrid Problem

As explained in Section II-B, brute force methods are
commonly used for UP in hybrid problems. For example,
grid search (GS) method can be used to sample the space of
epistemic variables, whereas the Monte Carlo technique can
be employed to sample the space of random variables [19].
Another approach consists in using Monte Carlo for both ran-
dom and epistemic variables. In this work, we have replaced
the brute force methods by BO for the possibilistic part of the
hybrid algorithm.

BO is particularly suitable for the solution of possibilistic
optimization problems where both infα and supα of all α-
cuts need to be calculated for each realization of the RVs. A
possibility distribution is then constructed with these extreme
values. To this purpose, the acquisition function (4) is modified
as:

EImm (x)=max{E [max{0, fmin−y}] ,E [max{0, y−fmax}]}
(5)
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Figure 3: Flowchart of the proposed hybrid algorithm.

This modification allows us to calculate the candidate points
in the space of the design parameters with a higher potential of
finding a minimum and a maximum at the same time. Indeed,
as illustrated by the example in Section IV, the proposed
method is capable of finding both optima with a minimal
number of evaluations of the objective function f (x).

Because α-cuts are always nested, regardless of the specific
PD under consideration, BO is performed as follows. First,
for a small number of initial samples, BO is applied at the
top alpha level (α=1). Next, the optimization for all other
α levels is performed progressively by making use of the
samples already evaluated at the ”upper” α levels and by
evaluating only a few additional samples at each subsequent α
level. Optimization of the objective function at all α levels is
performed until the bottom α level (α = 0) is reached. During
this process, if a better optimum is found in the current α level,
the optimum for previous levels can be updated accordingly,
whenever applicable.

C. Joint UP with BO and PC

BO significantly accelerates the solution of the epistemic
sub-problems which already reduces the CPU-time of the
hybrid algorithm. However, the brute force methods employed
for the probabilistic part of the hybrid algorithm, still slow
down the hybrid method. To make the hybrid approach more
efficient, we replace the brute force MC method by PC
expansions [1]. Because of their accuracy and efficiency, PC
expansions are widely used for stochastic modeling. A suitable
model is built for both the minimum and the maximum of the
objective function with respect to the RVs and the α-cuts, as
follows:



Fmin (α, ξ) =

K∑
k=0

βmin,k (α)φk (ξ),

Fmax (α, ξ) =

K∑
k=0

βmax,k (α)φk (ξ), (6)

where φk (ξ) are suitable orthogonal polynomials, dependent
on the random variables ξ, (k = 0, . . . ,K). βmin,k (α) and
βmax,k (α) are the corresponding PC coefficients, depending
on the α-cut [1].

Note that the PC basis functions in (6) depend only on
the PDFs of the RVs ξ, and can be calculated in advance for
different distributions [6]. Therefore, only the βmin,k and βmin,k
must be predicted as follows: first, a number of collocations
points [ξi]

NPC

i=1 are determined in the random variables’ space,
according to the method reported in [5]. Second, BO is
performed at each of the collocation points in order to find
the minima and maxima of the cost function with respect
to different α-cuts. Then, the desired PC coefficients are
calculated by solving a suitable linear system [5]. Fmin and
Fmax at each of the α-cuts and for a specific instance of
the random variables ξi define the possibility distribution πi
of the objective function f . Thereto, a family of possibility
distributions is constructed by computing Fmin and Fmax (6)
for a number of Nξ MC samples of the RVs. Finally, based on
the resulting distributions, the Π and N measures are computed
using the aggregation method reported in [20]. The idea here
is to evaluate the spread of the output for every α-cut by
computing the corresponding CDF based on all the Π and
N and by choosing a quantile q. The final result will be
an interval for each α-cut that describes the behaviour of
the (q · 100) % of the curves coming from simulation. The
flowchart of the hybrid algorithm is shown in Fig. 3.

IV. APPLICATION EXAMPLE

In this Section, the hybrid probabilistic-possibilistic method
is applied to the dual-polarized textile patch antenna pre-
sented in [21] (see Fig. 4). The antenna operates in the
[2.4, 2.4835] GHz ISM band. The substrate permittivity εr
and height h are regarded as epistemic variables defined in
the intervals [1.43, 1.63] and [3.44, 4.44] mm, respectively. A
uniform PD is assigned to the height, whereas a triangular
PD is chosen for the relative permittivity. Moreover, the patch
width W and length L are regarded as random parameters
with W ∼ N (45.385, 0.1268) and L ∼ N (44.515, 0.1627),
respectively [22]. Here, N (µ, σ) is the Gaussian distribution
with mean µ and standard deviation σ. The purpose is to
estimate the uncertainty of the antenna’s scattering parameters
at a frequency of 2.4557 GHz. To calculate these scattering
parameters, the Momentum electromagnetic field simulator of
Advanced Design System (ADS) [23] is adopted.

To compute the PC model coefficients in (6), BO is per-
formed for K = 10 samples of the random variables (W,L).
In particular, 36 α-cuts ranging from possibility level 1 to 0 are
considered for each collocation point. BO starts with 11 (h, εr)
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Figure 4: Geometry of the antenna under study. Nominal values: sub-
strate height h = 3.94 mm, substrate relative permittivity εr = 1.53,
patch width W = 45.32 mm, patch length L = 44.46 mm.
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Figure 5: Possibility and Necessity functions of the magnitude of S11

(dB) at 2.4557 GHz estimated with PC (random variables) and BO
(epistemic variables) are shown with solid lines. The same functions
computed with the approach presented in [19] are displayed with
stars. Additionally, the blue dashed line indicates the obtained CDF.

samples at α = 1, while 2 additional samples are selected for
each following α level, for a total maximum computational
budget of 81 (h, εr) samples. After estimating the PC model
coefficients at each α level via BO, a PC model is computed
with polynomials up to the third order, for both the minimum
and maximum of the scattering parameters |S11| and |S21|.
Then, PC models are evaluated for 1000 MC samples drawn
from the RVs’ distributions. Finally, the hybrid outputs are
aggregated and the resulting possibility and necessity functions
are presented in Figs. 5 and 6 for |S11| and |S21|, respectively.
The elapsed time is 4.3 hours for this method, using a personal
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Figure 6: Possibility and Necessity functions of the magnitude of S21

(dB) at 2.4557 GHz estimated with PC (random variables) and BO
(epistemic variables) are shown with solid lines. The same functions
computed with the approach presented in [19] are displayed with
stars. Additionally, the blue dashed line indicates the CDF obtained.

computer with 8 GB and 8 cores Intel(R) Core(TM) i7-2600
CPU @ 3.40GHz.

For comparison, the same example was also solved fol-
lowing the procedure adopted in [19]. The corresponding Π
and N measures are displayed in Figs. 5 and 6. In particular,
the objective function was evaluated for a uniform grid of 9
× 9 (h, εr) samples and 1000 (W,L) MC samples, and the
elapsed time is 233.4 hours. Results show that for the same
number of samples, the proposed BO-PC approach provides
a more efficient and accurate solution to the hybrid random-
fuzzy problem.

Additionally, a CDF calculated with 10000 (h, εr, L,W )
samples by treating all variables as probabilistic is shown as
a blue dashed line in Figs. 5 and 6. In this example, the
parameters h and εr were assigned uniform distributions in
the intervals [3.44, 4.44] mm and [1.43, 1.63], respectively. As
pointed out in Section II-A, the CDF is always in the domain
defined by the possibility and necessity functions.

V. CONCLUSION

A hybrid machine learning-based framework to propagate
both aleatory and epistemic uncertainties in antenna design
is presented in this contribution. The method leverages the
framework of the theory of evidence, to address both proba-
bilistic and possibilistic definitions of uncertainty. Moreover,
the proposed algorithm speeds up standard hybrid algorithms
by adopting a BO framework for the possibilistic part of
the algorithm. To include random variability, PC expansions
are successfully hybridized with BO. The presented hybrid
UQ method assures higher computational efficiency and better
prediction accuracy than standard solution approaches (mostly
resorting to repeated simulations and grid-search algorithms),
as it was shown by means of a suitable application example.
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