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abstract

The role of collaboration networks within and across cities as drivers of urban creativity and new knowledge creation is increasingly acknowledged in the 
literature. We propose that the combination of (1) high internal social proximity between co-inventors within a city and (2) local cliques of inventors in which 
interaction is dense allows a city to achieve greater inventive creativity. Internal social proximity allows knowledge to circulate quickly across a larger pool of 
sources; dense cliques promote trust, cooperation, and a more effective use of the acquired knowledge. Moreover, social proximity between a city’s inventors 
and inventors outside the city contributes to enriching and renewing a city’s knowledge base by facilitating faster access to fresh external knowledge. We find 
evidence to support these propositions in a study of the inventive productivity of 331 US cities.

1. Introduction

The role of collaboration networks as drivers of regional and 
urban innovation has gained paramount attention during the last 
decade. The idea that social ties and inter-personal contacts medi-

ate the transmission of knowledge and are key explanatory factors 
of the urban concentration of innovative activities is not a new one 
and has been widely debated in the literature on agglomeration 
economies (Beaudry and Schiffauerova, 2009; Glaeser and Gottlieb, 
2009). However, until recently, a lack of micro-level data and 
for-mal network models has prevented a rigorous empirical 
evaluation of social networks’ effects on innovation. According 

 
 
 
 
 
 

 

 
 

2008; Breschi and Lissoni, 2004; Singh, 2005). However, several 
studies have consistently shown that knowledge creation and in-

ventive performance in a metropolitan area depend more on the 
agglomeration of inventors and creative individuals than on any 
structural property of the co-invention network (Bettencourt et al., 
2007; Fleming et al., 2007; Lobo and Strumsky, 2008).

This paper provides an empirical contribution to the litera-ture on 
knowledge-related agglomeration economies (Rosenthal and Strange, 
2001) and the micro-foundations of learning mechanisms and 
knowledge spillovers (Duranton and Puga, 2004) by  proposing a 
more careful examination of the relative importance of agglomeration 
forces versus social networks (and their struc-tural properties) on a 
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to Duranton and Puga (2004) and Puga (2010), in fact, the

micro-foundations of the learning mechanisms upon which

knowledge spillovers are based remain relatively less developed

with respect to the devel-opment of the theoretical and empirical

micro-foundations of other agglomeration economies. The use of

patent data as relational data can offer an empirical contribution in
this direction, as patent data can be employed to map the socio-

professional networks in which inventors are embedded (Ter Wal

and Boschma, 2009).

The extant literature does not offer conclusive evidence on the

importance of social networks for inventive performance. Social

proximity has been found to explain a great deal of the ten-

dency for knowledge to diffuse locally (Agrawal et al., 2006 and
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city’s inventive performance. Importantly, this work accounts for no

only the network structure within a metropolitan area but also for th
ties and the related knowledge flows linking inventors located i

different cities. Non-local sources of knowledge have been found t

provide a significant contribution to the diffusion of ideas and t

patenting growth at the local level (Agrawal et al., 2008, 2010; Ker

2010).

In particular, we argue that a city will achieve higher inventiv

productivity when its co-invention network presents a combina

tion of two key properties: high social proximity between networ

members in the city, i.e., internal social proximity, and local clique

of co-inventors in which interaction is dense, i.e., clique densit

In this context and throughout the paper, social proximity is hig

when interactions quickly link back to individuals participating i

the network. For example, suppose that A interacts with B, B inte

acts with C, and C interacts with D. In this instance, two member

of the network, B and C, separate A from D. Therefore, the social

se http://creativecommons.org/licenses/by-nc-nd/4.0/
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roximity between A and D is much greater than if, for example,

en other individuals were to separate A and D. Using this same

xample, additional cross-interactions between network members

ncrease the sense in which the network is more prone to the for-

ation of cliques and in that respect is denser. This would be the

ase if, for instance, A and C also interact directly. In this case,

 and C would both have a direct tie to an additional network

ember, more than in the original example. Moreover, A, B, and

 would represent a clique, namely a cohesive group of individuals

ho are directly connected to one another. In addition, we pro-

ose that the impact of internal social proximity on a city’s inven-

ive performance also critically interacts with the social proximity

f metropolitan inventors to inventors in other cities, i.e., external

ocial proximity.1

We test our hypotheses on a database covering 331 US

etropolitan Statistical Areas (MSAs)2, their inventors, and the re-

pective patents applied for at the European Patent Office (EPO). A

ajor concern in our empirical exercise regards the possible

ndogeneity between the patenting rate and network variables,

hich may arise if inventors are attracted to and develop net-work

ies in cities that are already highly innovative. To address this issue,

e adopt the following strategy. First, we attempt to mitigate the

roblem by taking a significant time lag between our dependent and

ndependent variables. Specifically, the depen-dent variable

easures patent productivity in 2009, whereas net-work variables

re computed in the time window 1995–1999. Nev-ertheless, this

pproach cannot completely rule out the possibil-ity of endogeneity

nd the resulting bias in the estimated coef-ficients. For this reason,

fter providing OLS estimates, we check and control for possible

ndogeneity using the instrumental vari-able technique proposed by

ewbel (2012). This approach identifies structural parameters in

egression models affected by endogeneity by supplementing

vailable external instruments with generated ones that are

ncorrelated with the product of heteroskedastic errors.

The remainder of the paper proceeds as follows. In the next

ection, we conceptually derive from the literature the research hy-

otheses to be verified. Section 3 describes the construction of our

ey network variables. Section 4 presents the empirical models to be

ested and the data. Section 5 discusses the empirical results and

omments on the robustness checks to detect and control for

ossible endogeneity. Finally, Section 6 concludes.

. Co-invention networks and inventive productivity

Inventive activity in the US is a predominantly urban phe-

omenon (Carlino et al., 2007; Feller, 1971). Approximately 94%of all

atent applications made by US organizations in the period 1990–

009 were generated within MSAs, with the ten most prolific cities

ccounting for approximately 48% of all patenting activity in the

eriod. The tendency for innovative activities to cluster in se-lected

ities has been attributed to the importance of agglomera-tion

conomies. Agglomeration economies, especially knowledge-related

nes, are the basis of enhanced economic performance and
1 Following Fleming et al. (2007) and Lobo and Strumsky (2008), we will use 
he term metropolitan network or internal co-invention network to denote the sub-

et of inventors, and the ties among them, in a given city; we will refer to the 
etropolitan network’s structural properties as its internal structure. Accordingly, 

ocial proximity among inventors in a city is labeled internal social proximity. We 
ill use the term external ties to denote links connecting metropolitan inventors 
ith inventors located in different cities. Accordingly, social proximity among in-

entors across cities is labeled external social proximity.

2 MSAs are defined by the US Office of Management and Budget (OMB) as urban core 

reas of at least 50,000 people, plus adjacent counties that have a high degree of social 
nd economic integration with the core, as measured by commuting ties. The choice of 
sing EPO rather than USPTO data is fully discussed in Appendix A.
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reativity in cities (Glaeser, 1999; Glaeser et al., 1992; Henderson

003; Rosenthal and Strange, 2001; Rosenthal and Strange, 2008

laeser and Gottlieb, 2009).

Metropolitan settings are key engines and incubators of new

nowledge creation processes because they facilitate intellectua

inkages among individuals through social proximity and face-to-fac

ontacts. As discussed by Glaeser and Gottlieb (2009), the  thic

eb of social interactions in cities creates agglomeration economie

hich can lead to considerable variation over time and space i

nnovative episodes. The co-location of creative individu-als withi

he same region or urban environment is credited with facilitatin

oth formal interactions and informal or serendipitous encounters i
hich the tacit knowledge relevant for inventive cre-ativity 

ransmitted and exchanged. This network of relationships generate

ervasive localized knowledge flows among individuals and firms an

uarantees the rapid diffusion of ideas at the local level, which in tur

oosts the inventive productivity of all local actors (Jaffe et al., 1993).

Recent literature suggests that two specific network structura

roperties (and their combination) are particularly desirable fo

nowledge diffusion and creation (Schilling and Phelps, 2007; Uzz

nd Spiro, 2005). First, the actors in the network are able to reac

ther actors in the network through a relatively low number o

ntermediaries; i.e., on average, they are socially proximate. Sec-ond

he actors in the network are locally clustered in the sense that the

end to create tightly knit groups (i.e., cliques) charac-terized by 
elatively high density of ties (Watts and Strogatz, 1998).

In the context of a co-invention network, knowledge and in

ormation tend to diffuse more rapidly, and with less noise, whe

elatively few intermediaries separate inventors (i.e., when interna

ocial proximity is high), than when members are connected by longe

hains of ties (i.e., when internal social proximity is low). As 
onsequence, new information or ideas generated within the networ

ay rapidly reach (or flow to) all other members of the network an

e recombined with their own knowledge, thereby improvin

nventive productivity.

Furthermore, when inventors are embedded in cohesive cliques, i
hich an actor’s partners also collaborate with one another, in

ormation spreads quickly, and more important, its usefulness an

eliability is verified along multiple pathways (Schilling and Phelp

007). Moreover, the high density of linkages within a clique cre-ate

onformity (Patacchini and Venanzoni, 2014) and a common code o
ommunication, which stimulates collective learning, an argumen

lso suggested in the debate on knowledge-related ag-glomeratio

conomies (Glaeser and Gottlieb, 2009). Finally, dense cliques ma

llow network members to monitor opportunistic behavior, whic

romotes trust and reciprocity among partners, thereby encouragin

igher levels of collaboration (Schilling and Phelps, 2007; Uzzi, 1996

herefore, denser cliques allow knowl-edge to be shared and use

apidly, spurring greater knowledge creation.

Thus, we would expect metropolitan inventive performance t

mprove where there is a combination of (1) high internal socia

roximity between network members and (2) local cliques of ac-tor

n which interaction is dense. When a network’s internal so-cia

roximity is low, dense collaborative cliques may find it dif-ficult t
aintain high levels of invention because there are few between

lique or between-team links that promote the transfer of knowledg

nd ideas generated elsewhere in the larger network. Similarly, whe

nternal social proximity is high, the lack of dense cliques and of th
edundancy of ties may be equally detrimental to invention. Althoug

nformation may circulate rapidly, it is not being spread throug

nown and trusted sources, which may lead to a less effectiv

xploitation of new ideas. Thus, we posit the fol-lowing:
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3 Lissoni et al. (2006) provide fuller details on the routine implemented to 

uniquely identify inventors.

4 In this paper, we have adopted the June 2003 definition of MSAs. For fuller details 
and maps, please see http://www.census.gov/population/www/metroareas/

metrodef.html. When information on an inventor’s MSA was unavailable, we used the 
state and the zip code to assign the inventor to the corresponding MSA us-ing ZIPList5, 
a commercial database listing every active ZIP code currently defined by the US Postal 
Service (http://www.zipinfo.com/products/z5cbsa/z5cbsa.htm). For each ZIP code that 
is part of a metro area, the database identifies the MSA in which the ZIP code lies. This 
database uses the MSA definitions issued by the OMB in June 2003.

5 The reciprocal of an infinite social distance, i.e., when two inventors in the net-

work are disconnected, is set at 0.

6 In the network literature, this index is commonly called the average social dis-

tance weighted reach. A detailed discussion of the key properties and advantages of 
this index is available in Appendix C.

7 In the network literature, this index is commonly referred to as the clustering 
Hypothesis 1: Within a city’s co-invention network, a combination

of high internal social proximity between inventors and high clique

density will be positively associated with higher rates of invention

in the city.

Local networking, however, may also present “a dark side” (Burt

2004). Regions and cities that are too inwardly oriented may actually

reduce their inventive potential and lose position in the urban

ranking (Neal, 2010). Actors in the local economy tend to converge

toward a common and homogenous pool of knowledge, such that the

variety of technological approaches and solutions de-creases and the

risk of lock-in increases. Moreover, external ties can provide

considerable resources and information advantages that would not

otherwise be available locally: new information concerning market

opportunities and unmet demand (Bresnahan et al., 2001); the

awareness of specialized skills and human capital (Gittelman 2007

Kerr 2010); and access to a larger repertoire of technological and

organizational solutions (Owen-Smith and Powell, 2004). More

generally, external ties forged between individuals, such as between

co-inventors, have been identified as an effective vehicle of

information transmission across “geographical holes” in

a network (Bell and Zaheer, 2007).

Therefore, the degree to which a city’s co-invention network is

embedded into the broader (national or global) knowledge net-work

may be as important as the structure of local networking ties. The

easier and faster the access to external knowledge is be-cause of

closer social ties among one city’s actors with other cities’ actors (i.e.

higher external social proximity), the more knowledge creation will

be enhanced. However, excessive reliance upon ex-ternal sources of

knowledge can pose the risk of technological dependence and may

undermine endogenous innovation capabil-ities. Moreover, external

knowledge will have a limited impact on a city’s inventive

productivity unless the metropolitan network has a pool of actors

able to absorb and diffuse that knowledge (Cohen and Levinthal

1990). When a network’s internal social proximity is low, knowledge

received through external ties is more likely to be lost through

transmission leakages and gaps. Conversely, if internal social

proximity is high and the circulation of ideas among actors in the city

is rapid, knowledge received from external sources is likely to benefit

a larger number of local individuals, with limited noise, thus allowing

for more effective knowledge absorption and recombination at the

local level. Hence, we posit the following:

Hypothesis 2: The combination of (1) high internal social proximity

among inventors within a focal city and (2) high external social

proximity among inventors in the focal city and inventors in other

cities will be positively associated with higher rates of invention in

the focal city.

3. Measuring co-invention networks

3.1. Patents as relational data

The hypothesis that social networks and personal interactions

affect innovative productivity has only recently become amenable

to direct empirical testing. The adoption of patent data as a source

of relational data now makes it possible to examine networks us-

ing the tools of social network analysis and graph theory (Breschi

and Lissoni, 2004; Singh, 2005). In such a framework, the nodes

of the network are inventors and the edges of the network link

co-inventors listed on the same patent document. In other words

we assume that a pair of inventors is connected if they are jointly

designated as inventors in one or more patent documents.

To test our hypotheses and construct the co-invention network

we extracted data on all patent applications made by US organiza-

tions at the EPO, using the CRIOS-PATSTAT database. Next, we

ex-tracted the names and addresses of inventors as they were
listed
c

n each patent. Because the validity of results derived from social

etwork analysis techniques depends on the correct identification

f individual inventors (i.e., nodes), we thoroughly cleaned and

tandardized their names and addresses.3 We used the reported

ddresses to assign each inventor to one of the 370 US MSAs, us-

ng the definition files available on the US Census Bureau website.4

We excluded from the analysis the MSAs of Hawaii, Puerto Rico,

nd Alaska, along with 30 other MSAs, either because there were

o patents filed in the MSA in our sample period or because the

ata used to control for other economic characteristics of the city

ere missing or incomplete. The final data set includes informa-

ion on 331 MSAs. The selected MSAs account for approximately

4% of all EPO patent applications made by US organizations in

he period 1990–2009. Additional details on our methodology for

etwork construction are provided in Appendix B.

.2. Measuring social proximity

Internal social proximity among inventors in a network is com-

uted as the average across all nodes (i.e., inventors) in the net-

ork of the sum of the reciprocal social distances to all other

odes k she can reach in the co-invention network within the city:

nternal social proximityMSAi
=

∑n
j=1

∑n

k=1
j �=k

1
djk

n
(1)

here djk is the geodesic social distance (i.e., the smallest number

f intermediaries) that separates inventor j from inventor k in the

o-invention network internal to a city5, and n is the number of

nventors located in city i. The index ranges between 0 (every in-

entor in a city is an isolate, i.e., when she does not collaborate

ith any other inventor in the city) and n (every inventor directly

ollaborates with every other inventor in the city).6

The existence of local cliques of inventors in which interaction

s dense is captured by the extent to which the collaborators of an

nventor are also partners with one another. More formally, this is

easured as follows:

lique densityMSAi = (number of closed paths of length two)i

(number of paths of length two)i

(2)

In particular, a path of length two is any set of three nodes (e.g.,

, v, and w) that are connected by two edges (e.g., u collaborates

with v, and v collaborates with w). A path of length two is consid-

ered closed if the first and third nodes are also directly connected

(i.e., if u also collaborates with w). Clique density is measured as

the fraction of paths of length two in the network that are closed.

This index varies between 0 (there are no closed paths of length

two) and 1 (all paths of length two are closed).7
oefficient. This index is problematic in the case of affiliation networks, such as

http://www.census.gov/population/www/metroareas/metrodef.html
http://www.zipinfo.com/products/z5cbsa/z5cbsa.htm
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9 http://www.bls.gov/cew.
10 For all data used in the empirical analysis, which are available at the county level, we 

used the June 2003 delineation file of MSAs to aggregate them at the MSA level. The 
delineation file is available at http://www.census.gov/population/metro/files/

lists/2003/03cbsa.txt.
11 The ideal R&D measure would be private R&D expenditures. Unfortunately, these 

data are not available at the MSA level. However, the simple correlation co-efficient 
between the number of inventors active in each of the 50 US States and business funds 
for industrial R&D performance in 1999 (see Table A-32, Research and Development in 
According to Hypothesis 1, we expect that the interaction be-

ween internal social proximity and clique density will be posi-

ively associated with higher levels of inventive productivity.

Finally, we measured the extent to which metropolitan inven-

ors have external ties by computing the external social proximity

etween inventors located in a given city and all other inventors

ocated in all other cities. Formally, this variable is computed as

ollows:

xternal social proximityMSAi
=

∑ni

j=1

∑nh

h=1
1

djh

ni

(3)

here ni denotes the number of inventors located in city i, nh de-

otes the number of inventors located in other cities (i.e., not lo-

ated in city i), and djh denotes, as above, the geodesic social dis-

ance in the US global co-invention network between inventor j 
nd inventor h. The index ranges from zero (i.e., all inventors in

ity i are not connected to any external inventor) to nh in the (the-

retical) case in which every inventor in city i directly collaborates

ith every other inventor in every other city.8

According to Hypothesis 2, we expect the effect of external so-

ial proximity on metropolitan inventive productivity to be com-

lementary to the effect of internal social proximity.

. Data and estimation strategy

.1. Model specification

Our basic regression equations are the following:

og (patents/workers)i = α + β1ln(ISPi ) + β2CDi

+ β3ln(ISPi)CDi +
∑

h

δhZih + εi (4a)

og (patents/workers)i = α + γ1ln(ISPi) + γ2 ln (ESPi)

+ γ3ln(ISPi)ln(ESPi) +
∑

h

δhZih + εi (4b)

here, for each city i, the dependent variable is patent productiv-

ty measured as the log of the number of patents per worker in 
009, ISP is internal social proximity, CD is clique density, and ESP

s external social proximity. Moreover, the equations include a series

f other control variables (described in Section 4.4) (Zih), which ar

ntended to capture the impact of agglomeration economies on in-

entive productivity, plus an idiosyncratic error term (εi).

.2. Dependent variable

Our dependent variable is the innovative productivity of a city, 
nd it is measured as the  log of the  total number of patents pe

orker employed in the private sector in a given city in 2009. 
atents are dated according to their priority year, i.e., the first date 
t which the patent was applied for anywhere in the world, which 
s closest to the actual time of the invention. We took all EPO 
atents with priority year 2009 and assigned them to MSAs us-

ng the address of inventors as reported in the patent document. 
he number of patents has been normalized to account for a city’s 
ize by employment rather than by population, as the former most
o-invention networks, and tends to become inflated and biased as the number of 
nventors per patent increases (Newman, 2001, 2010). If patents contain more than 
wo inventors, closed paths of length two will arise automatically, inflating its value. 
herefore, we excluded from its computation those paths formed by inventors who 
re connected because of a joint patent and only counted those paths that are the 
utcome of independent interactions between pairs of inventors, as recommended by 
pshal (2010).

8 A detailed discussion of the key properties and advantages of this index is avail-

ble in Appendix C.
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ikely represents the segment of the population engaged in inven

ive activities. We used the data on the average annual employ

ent in the private sector released by the Bureau of Labor Statis

ics (BLS), Quarterly Census of Employment and Wages (QCEW)

vailable at the county level and aggregated to the MSA level.10

.3. Network variables

We constructed our network variables by considering the co

nvention network in the period 1995–1999. By taking a significan

ime lag between our dependent variable and measures of networ

tructure, we are attempting to minimize concerns of reverse cau

ation and endogeneity in our estimated coefficients. Section 3 ha

lready outlined our key network variables: internal social proximity

lique density, and external social proximity.

.4. Agglomeration variables

Our regressions include several variables intended to captur

he importance of agglomeration economies for inventive activitie

see Carlino et al., 2007 for a similar approach).

Inventor density in each MSA accounts for the city scale effec

ssociated with the agglomeration of inventive individuals, whic

s well documented in the literature (Bettencourt et al., 2007; Lob

nd Strumsky, 2008). This variable is also lagged and has bee

omputed as the ratio between the total number of inventors ac

ive in a given MSA in the period 1995–1999 and the MSA lan

rea measured in square miles. It has been inserted in logs in th

egressions.

To control further for the scale of local inputs available for th

nventive process, our regressions also include a measure of R&D

ntensity and of human capital at the MSA level. The measure o

&D intensity used is the amount of R&D expenditures in scienc

nd engineering at local colleges and universities divided by th

umber of full-time students enrolled at colleges and universitie

n the MSA in 1999 (i.e., University R&D per student as in Carlin

t al. (2007)). Data on university R&D were derived from the NS

ebCaspar search engine.11

College educated per worker, instead, captures the local availabil

ty of human capital; it is computed as the ratio between the num

er of individuals (over 25 years of age) living in MSA i with a col

ege degree or more education  in 200

nd the total number of  employees in the same year. Data o

ducation were derived from the 2000 Census at the county leve

nd aggregated to the MSA level.12

Income per capita controls for a city’s economic wealth.13 More

over, population density, measured as the metropolitan populatio
ndustry: 1999, National Science Foundation, available at http: //www.nsf.gov/

tatistics/nsf02312/pdf/a32.pdf) is approximately 0.96. For these rea-sons, we are 
uite confident that our variables represent an acceptable proxy for the scale of 

nventive inputs at the MSA level. Data on R&D were retrieved from the NSF Survey of 
esearch and Development Expenditures at Universities and Colleges and data on students 

rom the Integrated Postsecondary Education Data System (IPEDS) Enrollment Survey as 
rchived at https://ncsesdata.nsf.gov/webcaspar/.
12 For details, see http://www.census.gov/support/USACdata.html.
13 Data on income per capita was taken from BEA Regional Accounts (http://www.

ea.gov/regional/). Income was deflated by using the Consumer Price Index (CPI) as 
eported  by the US BLS (http://www.bls.gov/cpi/), where the reference year is 1982–

4.

http://www.bls.gov/cew
http://www.census.gov/population/metro/files/lists/2003/03cbsa.txt
http://www.nsf.gov/statistics/nsf02312/pdf/a32.pdf
https://ncsesdata.nsf.gov/webcaspar/
http://www.census.gov/support/USACdata.html
http://www.bea.gov/regional/
http://www.bls.gov/cpi/


Table 1

Summary statisticsa.

Variable Mean Std. dev. Min Max

Patents per worker (2009) 0.0004 0.0005 0.00 0.0035

University R&D per student (1999) 1.17 2.08 0.00 13.73

College educated per worker (2000) 0.25 0.07 0.08 0.56

Income per capita (1999) 15,262.3 2577 8545.4 32,144.8

Population density (1999) 2628.62 692.42 865.28 6606.58

Herfindahl index on 35 IPC classes (1995–1999) 0.10 0.09 0.01 1.00

RTAb Electronics (1995–1999) –0.22 0.34 –0.92 0.46

RTA Scientific Instruments (1995–1999) –0.09 0.31 –0.89 0.68

RTA Chemicals (1995-1999) –0.06 0.33 –0.94 0.68

RTA Pharma-Biotech (1995–1999) –0.18 0.38 –0.94 0.63

RTA Industrial Processes (1995–1999) 0.10 0.34 –0.84 0.81

RTA Mechanical Engineering (1995-1999) 0.07 0.39 –0.90 0.85

RTA Consumer Goods (1995–1999) 0.09 0.37 –0.82 0.88

Average age of prior art (1995–1999) 6.99 2.06 0 15.33

Share of employment in manufacturing (1999) 0.18 0.09 0.03 0.55

Share of employment in professional and business services (1999) 0.12 0.04 0.04 0.27

Herfindahl index at the firm level (1995–1999) 0.15 0.16 0.00 1.00

Establishments per worker (1999) 0.07 0.01 0.04 0.14

Index of enforcement of non-compete laws (2004) 4.49 2.03 0 9

Inventor density (1995–1999)c 0.22 0.51 0.001 5.11

Internal social proximity (1995–1999)d 7.22 19.56 0.00 158.6

Clique density (1995–1999)e 0.18 0.22 0.00 1.00

External social proximity (1995–1999)f 348.87 391.20 0.17 2274.5

a Number of MSA observations = 331.
b RTA = Revealed technological advantage index (standardized between –1 and +1).
c Inventor density is the ratio between the total number of inventors active in a given MSA and the MSA land area measured

in square miles.
d Equation [1] provides the formal definition of internal social proximity.
e Equation [2] provides the formal definition of clique density.
f Equation [3] provides the formal definition of external social proximity.
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divided by the land area (in square miles) of the MSA, roughly ac

counts for the presence of urbanization (Jacobs) externalities. T

the extent that agglomeration economies outweigh congestion e

fects, we would expect this variable to positively affect metropol

tan patenting productivity (Carlino et al., 2007). Both variable

have been measured in 1999 and have been inserted in logs in th

regressions.

In addition, the Herfindahl index at the technology level, com

puted using the share of patents made in each of 35 technolog-ica

fields (i.e., Herfindahl index on 35 IPC classes) in the period  1995

199914, captures to what extent a city is specialized in a narrow set o
technological fields. This variable controls for the presence o

externalities arising from technological specialization that severa

empirical studies suggest prevail over urbanization effect

(Henderson, 2003; Rosenthal and Strange, 2003, 2004). The reveale

technological advantage (RTA) index in each MSA in the period 1995

1999 measures specialization in seven broad techno-logical area

namely electronics, scientific instruments, chemicals, pharmaceutica

and biotechnology, industrial processes, mechanical engineering, an

consumer goods, and accounts for variations in patent propensit

across technologies. Moreover, the average age of prior art patents cite

by patents in each MSA captures the extent to which metropolita

inventors are engaged in newer or more fertile technologica

areas; it is measured in years, by considering patents with priorit

date in the period 1995–1999, and it is introduced in logs in th

regressions. Additionally, our regressions include the share o

employment in manufacturing and in profes-sional and busines

services in 1999, computed on data taken from the BLS - QCEW

(codes 1013 and 1024, respectively).

The Herfindahl index at the patent-assignee level (i.e., Herfind-ah

index at the firm level) in the period 1995–1999 controls for the exten

to which inventive activities within a city are concen-
14 To this purpose, we exploited the reclassification table of International Patent 
Classification (IPC) codes into 35 technology fields compiled by the World Intellec-tual 
Property Organization (WIPO) and available at http://www.wipo.int/ipstats/en/

statistics/technology_concordance.html.

t  
v

rated in the hands of few firms. Similarly, the number of establish-

ents per worker in each MSA in 1999 accounts for the local mar-ket

tructure and captures whether more competitive MSAs enable

reater knowledge creation (Glaeser et al., 1992). Data on the num-

er of establishments were taken from BLS – QCEW and aggre-gated

rom the county to the MSA level; it has been introduced in logs in
he regressions.

We also added a variable accounting for the degree of enforce-

ent of non-compete laws in the state where each city is located

i.e., index of enforcement of non-compete laws), as the enforcement

f such laws may prevent knowledge circulation and inhibit cre-

tive efforts (Gilson, 1999). The index considers 12 questions for

ach jurisdiction and assigns one point to each jurisdiction for

ach question if the jurisdiction’s enforcement of that dimension

f noncompetition law exceeds a given threshold. Thus, the index

aries from 0 to 12, with higher values signaling a stronger en-

orcement of non-compete agreements (Garmaise, 2011; Malsberg

004).

Finally, all regressions include BEA region dummies.

Table 1 provides descriptive statistics of the variables used in 
our study, while Table 2 illustrates the values of the dependent and

of the network variables for six selected MSAs.

On average, the number of patents per worker is equal to

0.0004. Moreover, Table 2 reveals the existence of sizeable

spatial heterogeneity across cities with respect to inventive

productivity. Regarding the key network variables are concerned

each inventor can reach on average approximately 7 other

inventors within the city and nearly 350 outside the city.

5. Empirical results

5.1. The impact of co-invention network structure on inventive 
productivity

This section comments on the results of the estimation of equa-

ions [4a] and [4b]. For all models, coefficients on agglomera-tion

ariables (see Section 4.4) were consistent with estimates in

http://www.wipo.int/ipstats/en/statistics/technology_concordance.html


Table 2

Values of network variables for selected MSAsa.

Patents per worker Number of inventors Inventor densityb Internal social proximityc Clique densityd External social proximitye

Boston-Cambridge-Quincy, MA-NH

0.00145 9633 2.75 36.74 0.84 516.12

San Francisco-Oakland-Fremont, CA

0.00196 8660 3.50 90.71 0.73 880.24

Chicago-Naperville-Joliet, IL-IN-WI

0.00052 7033 0.98 40.75 0.73 588.46

Cleveland-Elyria-Mentor, OH

0.00060 1771 0.88 7.75 0.24 241.34

Austin-Round Rock, TX

0.00063 1628 0.39 4.63 0.52 237.77

Orlando, FL

0.00017 443 0.13 3.34 0.88 219.02

a Patents per worker is measured in 2009. The other variables are measured over the period 1995–1999.
b Inventor density is the ratio between the total number of inventors active in a given MSA and the MSA land area measured in square miles.
c Equation [1] provides the formal definition of internal social proximity.
d Equation [2] provides the formal definition of clique density.
e Equation [3] provides the formal definition of external social proximity.
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he literature and are not reported with  the exception  o

nven-tor density15. The full set of estimates is available in Table

1 in Appendix D. Our primary results are reported in Table 3

odels 1 and 2 report ordinary least-squares (OLS) estimates with

tandard errors robust to arbitrary heteroscedasticity.

Inventor density shows, as expected, a consistently positive and

ignificant effect across all models. It captures the positive effect o

he inventive potential available in a city, which is primarily related

o the concentration of skilled and creative individuals and to the

ositive scaling effect between patenting and population detected

y Bettencourt et al. (2007).

Regarding the network variables, the coefficient on the inter-action

term between internal social proximity and clique density

i.e., β3 in [4a]) shows a positive and highly statistically signif-ican

ffect (Model 1, Table 3) on inventive productivity, thereby
upporting Hypothesis 1. It is important to note that the negative

oefficient on internal social proximity (i.e., β1 in [4a]) has to be

nterpreted as the effect of internal social proximity on the depen

ent variable when the value of clique density is zero (Jaccard and

urrisi, 2003). In the absence of dense cliques of interaction (i.e., a

igh level of clique density), cities may lose the ability to en-sure the

apid diffusion and recombination of ideas and knowledge and

onsequently, inventive performance may decline and ultimately

ail.16 Similarly, the effect of clique density (i.e., β2 in [4a]) is indeed

egative when the (log of) internal social proxim-ity is equal to zero

.e., when internal social proximity is equal to one, but its effec

ecomes positive when internal social proximity is equal to 4.5 (=
xp(0.286/0.190)) (i.e., for relatively small values). When interna

ocial proximity is below a minimum thresh-old, the network i

haracterized by dense cliques of collaborators without any direct o
ndirect links to other teams of inventors. In those cases, information

preads rapidly within cliques, but highly redundant knowledge i

ikely to circulate, which is detrimental to inventive creativity.17
15 The unreported variables include: university R&D per student, college educated per 
orker, income per capita, population density, the Herfindahl index on 35 IPC classes, 

he seven RTA indexes, the average age of prior art, the share of employ-ment in 
anufacturing, the share of employment in professional and business ser-vices, the 
erfindahl index at the firm level, the number of establishments per worker, the index 
f enforcement of non-compete laws, and dummy variables for BEA regions.

16 Although internal social proximity presents a negative (not significant) sign, its 

arginal effect becomes positive when clique density is equal to 0.07 (= 0.013/0.190), 

ell below the sample average value.

17 Several authors have highlighted the negative effects of cliquish network struc-

tures (Uzzi, 1996). Cliquishness can cause isolation and reduce exposure to alterna-
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Turning to our Hypothesis 2, the coefficient on the interac-tion term

between internal and external social proximity (i.e., γ3

n [4b]) shows a positive and highly statistically significant effect

Model 2, Table 3), suggesting that the impact of internal social

roximity on inventive productivity increases with the amount of

xternal knowledge available to local inventors. The negative and

ignificant effect of internal social proximity (i.e., γ1 in [4b]) in-

icates that in the absence of non-redundant and fresh external

nowledge, inventive productivity may be hindered, as the local

nowledge base may crystallize around a common and homoge-nous

ool of knowledge, thus inhibiting the variety of technologi-cal

pproaches and solutions and increasing the risk of technologi-cal

ock-in. Similarly, the negative sign of external social proximity

i.e., γ2 in [4b]) suggests that external knowledge will have a lim-ited

mpact on a city’s inventive productivity unless the metropoli-tan

etwork has a pool of actors able to trans-code, absorb, and diffuse

hat knowledge. Disproportionate reliance upon external sources of

nowledge may not have effects on productivity if it is not associated

ith an internal network structure facilitating knowledge

irculation.

.2. Detecting and controlling for endogeneity

Despite having substantially lagged the various variables (by up

o 15 years in the case of the network- and patent-based vari-ables),

e nevertheless cannot rule out the possibility that se-rial

orrelation in MSA-level activity could cause our network and other

ontrol measures (chiefly, inventor density) to be correlated with the

odel error term. Indeed, highly innovative cities in 2009 were likely

o also be highly innovative in 1999; furthermore, cities may exhibit

ersistent differences and heterogeneity in terms of inventors’

roductivity and their ability to forge new ties (Lee, 2010).18 In an

ttempt to check the robustness of our OLS es-timates to this issue,

e adopted an instrumental variable ap-proach using amenities as

nstruments for the suspect endogenous
ive ideas, limiting the absorption and recombination of knowledge sourced from

xternal links and thus reducing creative drive.
18 Because of their superior capabilities, more productive inventors are expected

o form more, new, non-redundant ties. More prolific inventors are also more vis-

ble to their peers and are generally considered better partners, thereby becoming

ore attractive for new collaborations. In short, inventors who are more productive

re more likely to develop new and more ties both within and across cities, which

ffect both the structural properties of the co-invention network and increase the

nnovative performance of the city in which these individuals are located. At the

ity level of analysis, this process may eventually lead inventors to develop net-

orks in cities that are already highly productive (i.e., host more prolific inventors).



Table 3

The impact of co-invention network structure on metropolitan inventive productivitya.

Dependent variable: Log of patents per worker (2009) Model 1 Model 2 Model 3 Model 4

OLS OLS IV-GMMf IV-GMMf

Inventor density (1995–1999)b (log) 0.151∗∗∗ 0.148∗∗∗ 0.074∗∗∗ 0.077∗∗∗

(0.036) (0.033) (0.015) (0.016)

Internal social proximity (1995–1999)c (log) –0.013 –0.060∗∗ 0.003 –0.013

(0.017) (0.026) (0.009) (0.012)

Clique density (1995–1999)d –0.286∗∗ –0.063

(0.135) (0.079)

Internal social proximity × Clique density (1995–1999) 0.190∗ 0.217∗∗∗

(0.105) (0.037)

External social proximity (1995–1999)e (log) –0.006 –0.001

(0.008) (0.005)

Internal social proximity × External social proximity (1995–1999)f 0.013∗∗ 0.008∗∗∗

(0.005) (0.002)

Hansen J overidentification test statisticg χ2 = 96.477 χ2 = 108.022

p = 0.712 p = 0.400

C statistic (orthogonality of external excluded instruments)g χ2 = 7.063 χ2 = 3.808

p = 0.631 p = 0.924

Kleibergen–Paap rk under identification test LM statisticg χ2 = 146.165∗∗∗ χ2 = 145.301∗∗∗

p = 0.006 p = 0.007

Kleibergen–Paap rk weak instruments F statisticg 4.791 6.560

Endogeneity testg χ2 = 5.796 χ2 = 9.898

p = 0.215 p = 0.042

Number of MSA observations 331 331 319h 319h

R-square 0.637 0.634 0.602 0.598

Fg 12.847∗∗∗ 12.578∗∗∗ 39.704∗∗∗ 24.819∗∗∗

Standard errors are in parentheses and robust to arbitrary heteroscedasticity.
∗, ∗∗, ∗∗∗ Denote statistical significance at the 10, 5, and 1 % level. Each model includes additional control for agglomeration variables,

namely: university R&D per student; college educated per worker; income per capita (log); population density (log); Herfindahl index

on 35 IPC classes; revealed technological advantage index in seven broad technological areas (i.e., electronics, scientific instruments,

chemicals, pharmaceuticals and biotechnology, industrial processes, mechanical engineering, and consumer goods); the average age of

prior art (log); the share of employment in manufacturing; the share of employment in professional and business services; the Herfind-

ahl index at the firm level; the number of establishments per worker (log); the index of enforcement of non-compete laws; dummy

variables for BEA regions.
a Coefficients have been multiplied by 1000 to ease readability.
b Inventor density is the ratio between the total number of inventors active in a given MSA and the MSA land area measured in square

miles.
c Equation [1] provides the formal definition of internal social proximity.
d Equation [2] provides the formal definition of clique density.
e Equation [3] provides the formal definition of external social proximity.
f Estimates are obtained by applying the two step IV GMM estimator and the ivreg2h routine available in STATA12 (Lewbel, 2012).

IV GMM instruments in models 3 and 4 include three dummy variables for topography to account for the slope of land (plains with

hills or mountains, open hills and mountains, hills and mountains) (1999); a dummy variable taking value 1 if the MSA is on the ocean

(1999); surface water as share of total MSA’s land (1999); inverse of minimum annual temperature (1999); the number of museums

per inhabitant (1999), the number of property crimes per 10000 inhabitant (1999) and the share of urbanized land on total MSA’s land

(1999).
g Test statistic is robust to arbitrary heteroscedasticity.
h Due to some missing in the instruments, the number of MSA observations included in the analysis is 319.

 
 
 
 
 
 
 
 

 
 
 
 

w

t  
s  
a  
g  
( , 
2  
h  
q  
s  
t . 
S  
w

regressors (i.e., inventor density and network structural

character-istics). The importance of amenities for individual

location choices has been richly described and documented in the

literature since the seminal paper by Roback (1982), and

differences in (consump-tion) amenities can cause differences in

population density across space (Rappaport, 2008). Hence, if

amenities positively affect inventor density (as argued by

Carlino et al., 2007), by extension, amenities can also impact

network structural characteristics.19

Following Albouy (2008, 2009) and Albouy and Stuart (2014), we

accounted for both natural and artificial amenities as instruments for

inventor density and network variables. As natural amenities, we

considered the following variables: three dummy variables for
topography to account for the slope of land (plains

19 Ultimately, an increase in the density of the population of inventors due to their 
attraction to specific locations could plausibly spur interaction among them 
(Brueckner and Largey, 2008). As noted by Glaeser et al. (2001), crowding makes 
encounters easier, meaning that density increases socialization (Liben-Nowell et al., 
2005; Pan et al., 2013).

N

d

ith hills or mountains, open hills and mountains, hills and moun-

ains); a dummy variable taking value 1 if the MSA is on the ocean;

urface water as share of total area; and the inverse of min-imum

nnual temperature.20 Several studies emphasize the impor-tance of

eographic conditions as predictors of population den-sity

Burchfield et al., 2006; Rosenthal and Strange, 2008; Combes et al.

009). Mountainous and coastal areas have been found to experience

igher income and greater leisure amenities (Saiz, 2010) and higher

uality of life (Albouy, 2008). Moreover, Partridge (2010) documents

izeable migrations toward more mountainous and coastal areas in
he US, possibly because they offer more pleasant places to stay

imilarly, Rappaport (2007) illustrates the relevance of clement

eather in directing population migration flows.
20 Data on average temperatures were derived from http://wonder.cdc.gov/

ASA-NLDAS.html and data on topographic characteristics from http://ers.usda.gov/

ata-products/natural-amenities-scale.aspx.

http://wonder.cdc.gov/NASA-NLDAS.html
http://ers.usda.gov/data-products/natural-amenities-scale.aspx
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23 To shed further light on the instrument relevance and exogeneity tests, we per-
formed an additional robustness check (results not shown) and re-ran all the es-

timates by excluding the inventor density variable, which is the one that is likely most 
As artificial amenities, we included the following variables: the

umber of museums per inhabitant, the number of property crimes

er 10,000 inhabitants, and the share of urbanized land in an MSA’s

otal land (Carlino et al., 2007; Albouy 2008, 2009; Glaeser et al.,

001; Wu, 2010; Wang and Wu, 2011).21 Artificial amenities such as

eisure activities, safety, and the architectural beauty of local

uildings, increase attractiveness, density, and in turn, the possibility

o get in contact with an attractive mix of so-cial partners (Albouy,

008; Glaeser et al., 2001).

In particular, we applied the estimation method proposed by

ewbel (2012), which serves to identify structural parameters in

egression models affected by endogeneity by supplementing avail-

ble external instruments through constructed ones obtained as

imple functions of the model’s data. Identification is achieved by

aving regressors that are uncorrelated with the product of het-

roskedastic errors. The greater the degree of heteroskedasticity in

he error process, the higher will be the correlation of the gener-ated

nstruments with the included endogenous variables, which are the

egressands in the auxiliary (’first-stage’) regressions. Es-timations

ave been obtained by applying the robust two-step GMM estimator

s recommended by Baum et al. (2007) and Baum (2006), as for an

veridentified equation, IV-GMM robust estimates will be more

fficient than 2SLS estimates. First-stage results are available in Table

2 and D3 in Appendix D.

Regarding Models 3 and 4 in Table 3, which reports the main

esults of the second-stage regressions, our key findings on the in-

eraction variables, i.e., internal social proximity × clique density and

nternal social proximity × external social proximity, seem to be

upported, albeit with reduced magnitude in the case of the

nteraction between internal and external proximity. This conclu-

ion is however subject to demonstrating the instruments’ valid-ity.

owever, performing such a diagnostic is more complex with

ultiple endogenous variables, as each instrument plays a role in

ach first-stage regression, making identification more problematic

Baum et al., 2007).

Table 3 reports the usual battery of diagnostic tests for instru-

ent validity (i.e., orthogonality and strength) at the bottom. Tests of

veridentifying restrictions (the Hansen tests and the related J

tatistics), in both cases, do not allow us to reject the null that the

xcluded instruments are independent of the error process, al-

hough these tests are known to suffer from weak power (Baum et

l., 2003). Moreover, the C statistic on the external excluded instru-

ents confirms that the specified orthogonality conditions are sat-

sfied. The underidentification tests strongly reject the null hypoth-

sis, suggesting that the Lewbel’s approach is satisfactory in this case.

he assessment of instrument relevance is generally based on the

omparison of the Kleinberg–Paap rk Wald statistic with the

abulated Stock and Yogo (2005) critical values. Unfortunately, this

omparison cannot be implemented in the present case because the

tock and Yogo (2005) critical values have been tabulated for up to
00 excluded instruments and three endogenous regressors. In terms

f the F statistic22, the results in Tables D2 and D3 show F statistics

reater than 10 with the exception of the inventor density variable.

inally, the endogeneity test on all suspect endogenous variables (i.e.,

nventor density and the network variables) does not reject the null

f exogeneity in the case of equation [4a] in Model
21 As discussed by Albouy (2008), even if artificial amenity variables tend to present a 
igh degree of collinearity and could be questioned on the grounds of endogeneity, as 
ecently documented by Rosenthal and Ross (2010) in the case of crime, oftentimes 
here is no other recourse, due to the unavailability of natural experiments and 
onfounding factors in urban dynamics.

22 According to Staiger and Stock (1997)’s ‘rule of thumb’, an F statistic greater than 10 

xcludes serious weak identification problems (meaning that weak instru-ment bias is 
mall); yet, this criterion is safely applicable only to the cases of a single endogenous 
ariable.
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, whereas exogeneity is rejected in the case of equation [4b] in

odel 4.23

Despite the warnings highlighted above and the possible esti-

ation bias, the main results are nevertheless consistent with the

LS estimates. On balance, therefore, we can reasonably conclude

hat the results concerning our key hypotheses are confirmed and

ufficiently robust, suggesting that any remaining endogeneity in our

egressions is unlikely to explain our central findings.

. Conclusions

Our results provide a contribution to the debate on agglomer-

tion, networks, and inventive performance. First, our findings in-

icate that urban settings are key engines and incubators of new

nowledge creation processes not only because they provide in-

ivisibility (i.e., agglomeration) benefits but also because they fa-

ilitate synergies between individuals (i.e., social networks). While

ur results do not contradict prior findings that agglomeration and

cale effects are important, we show that network structure is im-

ortant for inventive activities in cities. Second, we explicitly mod-

led the interaction between the internal structure of a metropoli-tan

o-invention network and the embeddedness of a city’s inven-tors in
he global collaboration network. Whereas previous stud-ies have

ndicated the importance of external linkages, these have been either

early neglected or poorly modeled in empirical anal-yses

nterestingly, our results show that external linkages are im-portant

or sustaining higher rates of inventive productivity, es-pecially when

ombined with an internal network structure that facilitates faster

nowledge diffusion and recombination. Third, in terms o

ethodology, we have also shown that social network analysis

echniques are useful for grasping the micro-level founda-tion (i.e.

he social interaction processes aimed at new knowledge creation) o
eso-level outcomes (i.e., inventive productivity at the city level).

Finally, our results should be interpreted with some caution

atent data capture only a subset of links relevant to knowledge

xchange, and we observe only those links stemming from the sub-

et of US patents applied for through the EPO, which nonetheless

re likely to channel more valuable knowledge (see the discussion

n Appendix A). In this respect, our results supply conservative es-

imates of the effect of a city’s internal network structure and its

nterplay with external connections.

A few final comments on the robustness of our estimates are also

n order. We acknowledge that identification in a sample as small as

urs is a critical issue and that the choice of valid instru-ments

specially of artificial amenities, can be subject to skepti-cism

otwithstanding, diagnostic tests tend to support the IV es-timates

btained and the attempt to verify the robustness of our OLS

stimates. On balance, therefore, we can conclude that the key

ndings of this paper are sufficiently sound and based on robust

vidence.
ffected by a possible weak instrument problem on the basis of the F statistic of the 
xcluded instruments in the first stage. Diagnostic tests and estimates are 
ubstantially unchanged. Interestingly, having three endogenous regressors enables 
he comparison with the Stock and Yogo (2005) critical values. In both cases, the 
leinberg–Paap rk Wald statistic allows us to reject the null of weak instruments with 
 bias of 20% with respect to the OLS. Moreover, the joint test for endogeneity on all 
uspect endogenous variables does not allow us to reject the null of exogene-ity for 
oth models. Even if we cannot definitively exclude the possibility that these results 
an be partly related to the weak power of endogeneity tests, and their sen-sitiveness 
o the treatment of errors and details of model specification, and even if we cannot 
laim with absolute certainty that our instruments are fully exogenous and strong, 
hese results are quite encouraging in supporting our main findings.
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Appendix A. Patent data

By providing the name of each inventor involved with an inven-

tion and each inventor’s address, patent data enable us to assem-

ble and analyze the full set of co-invention ties linking individuals

and to distinguish (co-invention) ties linking inventors located in

the same city from co-invention ties linking individuals located in

different cities. In this paper, we restrict our attention to the ties

formed between US inventors.

Although co-invention data may capture a subset of all relevant

connections linking individuals within and across cities, these are

neither accidental nor unchecked. The network of inventors is the

most immediate and influential environment from which ideas and

information can be drawn, at least for the technical contents of their

patents (Fleming et al., 2007; Breschi and Lissoni, 2004).

USPTO patent data might appear a more natural choice for a study

on the inventive productivity of US cities. However, the use of EPO

data can be defended on methodological grounds. First, by using

patent applications of US organizations at the EPO, we are able to

drop from the analysis patents of low quality or with low commercial

value, which would not be cost-effective to extend to Europe. Several

scholars have argued that, precisely in the period of our

investigation, the average quality of patents issued by the USPTO had

declined due to a series of concomitant factors, lead-ing to a dramatic

surge in the number of patents. As a conse-quence of these trends

patents of insufficient quality or with in-adequate search of prior art

were issued more often (Hall et al., 2004; Jaffe and Lerner, 2004)

Second, EPO patent records provide more information than USPTO

records, such as the inventors’ ad-dresses (street and zip code). This

is crucial information for the correct identification of individual

inventors and to avoid problems of homonymy. For example, the

NBER database on USPTO patents provides information on the street

address for only 11.5% of the ob-servations in the ‘Inventors’ file

Conversely, nearly all EPO patents report the inventors’ street

address, with a few exceptions due to some companies’ policy to

provide the address of their headquar-ters regardless of where an

invention was produced. Third, tests comparing the distribution of

patents per MSA per year applied for at the EPO with the distribution

of patents per MSA per year ap-plied for at the USPTO reject that the

two differ at any statistically significant level.

Appendix B. Methodological notes on the network construction

From a technical perspective, the co-invention network is the

one-mode projection of an affiliation (or two-mode) network. As

such, it is a valued network. In this paper, we binarize the adja-cency

matrices, an approach that is consistent with most of the existing

studies in the management and economic geography lit-erature and

graph models. The co-invention network consists of all co-invention

ties among inventors who received patents in the period 1995–1999

Specifically, we constructed a binary adjacency matrix, where the

generic cell (i,j) is equal to one if inventor i cre-ated one or more

patents with inventor j and 0 otherwise. The choice of a five-year

period to construct the co-invention network is consistent with

previous studies (Fleming et al., 2007; Lobo and Strumsky, 2008;

Schilling and Phelps, 2007). Adopting different time windows did not

substantively change the results.

Appendix C. Network variables

The index used to measure social proximity/distance is the so-

called average social distance weighted reach. This index particu-
arly suits our empirical setting because it can be computed for spars

nd fragmented networks such as co-invention networks and capture

oth the size and connectivity of the network. Alternative indicators o
he topological structure of the network—such as the average socia

istance or the density—suffer from im-portant shortcomings. Firs

he computation of these indexes re-quires inventors to be connecte

o obtain finite social proximity values between any two inventor

his is problematic in the case of co-invention networks, which ar

enerally composed of several components and tend to be highl

ragmented (i.e., co-invention networks are generally composed o

elatively small sub-groups of nodes called network component

isconnected from one another). Moreover, they provide usefu

nsights on how well connected actors within a city are and therefor

n how smoothly knowledge flows but do not tell much about th

cale of such effects. Finally, the so-called average of reciprocal pat

ength discussed in Jackson (2008) could be used as an alternativ

easure. This indicator can also be computed for networks that ar

ot fully connected, but it captures only a network’s connectivity an

ot its size. In our view, both dimensions are important in explainin

he inventive produc-tivity of a city. Given two networks with th

ame average social proximity among nodes, the amount o

nowledge flowing within the city will be higher the larger th

umber of nodes in the net-work. We therefore preferred the so-calle

verage social distance weighted reach to the average of reciproca

ath length index.

Regarding external social proximity, the chosen indicator is a

mprovement relative to the measures used in previous studie

uch as the mere number of external co-inventors to the cit

Fleming et al., 2007; Lobo and Strumsky, 2008) or a centralit

ndex (Giuliani and Bell, 2005), which can be computed only fo

onnected networks (see the discussion above).

ppendix D. Additional empirical results

See Tables D1, D2 and D3.
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