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Abstract. A variational model for epitaxially-strained thin films on rigid sub-
strates is derived both by Γ-convergence from a transition-layer setting, and
by relaxation from a sharp-interface description available in the literature for
regular configurations. The model is characterized by a configurational en-
ergy that accounts for both the competing mechanisms responsible for the
film shape. On the one hand, the lattice mismatch between the film and the
substrate generate large stresses, and corrugations may be present because
film atoms move to release the elastic energy. On the other hand, flatter pro-
files may be preferable to minimize the surface energy. Some first regularity
results are presented for energetically-optimal film profiles.

1. Introduction

In this paper we introduce a variational model for describing heteroepitaxial growth
of thin-films on a rigid substrate.

The first rigorous validation of a thin-film model as Γ-limit of a transition-layer model
introduced in [23] was performed in the seminal paper [10]. Our analysis moves ahead
from [10], as in our energy functionals we not only consider the surface-energy contri-
bution due to the free profile of the film and the surface of the substrate, but also that
related to the interface between the film and the substrate, and we take into account the
(possible) different elastic properties of the film and substrate materials. This is partic-
ularly important to fully treat the often encountered situation of heteroepitaxy, i.e., the
deposition of a material different from the one of the substrate.

In order to describe our model, we need to introduce some notation. Following [23]
we regard the substrate and the film as continua, we work in the framework of the theory
of small deformations in linear elasticity, and, as in [10], we restrict our analysis to two-
dimensional profiles (or three-dimensional configurations with planar symmetry). The
interface between the film and the substrate is always assumed to be contained in the
x-axis and the film thickness is measured by the height function h : [a, b]→ [0,+∞) with
b > a > 0. The subgraph

Ωh := {(x, y) : a < x < b, y < h(x)},
is the region occupied by the film and the substrate material, whereas the graph

Γh := ∂Ωh ∩ ((a, b)× R)

of the height function h represents the film profile. The elastic deformations of the film
are encoded by the material displacement u : Ωh → R2, and its associated strain-tensor,
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2 E. DAVOLI AND P.PIOVANO

i.e., the symmetric part of the gradient of u, denoted by

Eu := sym∇u.

In order to account for non-regular profiles, as in [10] the height function is assumed to
be lower semicontinuous and with bounded pointwise variation. We denote by

Γ̃h := ∂Ωh ∩ ((a, b)× R) ,

and by Γcuth the set of cuts in the profile of h, namely Γcuth := Γh \ Γ̃h.

As previously mentioned, elasticity must be included in the model as it plays a major
role in heteroepitaxy. Large stresses are in fact induced in the film by the lattice mismatch
between the film and the substrate materials [15]. We introduce a parameter e0 ≥ 0 to
represent such lattice mismatch and, as in [10], we assume that the minimum of the
energy is reached at

E0(y) :=

{
e0 (e1 � e1) if y ≥ 0

0 otherwise,

where (e1, e2) is the standard basis of R2. In the following we refer to E0 as the mismatch
strain.

The model considered in this paper is characterized by an energy functional F , defined
for any film configuration (u, h) as

F(u, h) =

ˆ
Ωh

W0(y,Eu(x, y)− E0(y)) dx dy

+

ˆ
Γ̃h

ϕ(y) dH1 + γfs(b− a) + 2γfH1(Γcuth ), (1.1)

where the surface density ϕ is given by

ϕ(y) :=

{
γf if y > 0,

min{γf , γs − γfs} otherwise,

with

γf > 0, γs > 0, and γs − γfs ≥ 0. (1.2)

The elastic energy density W0 : R×M2×2
sym → [0,+∞) satisfies

W0(y,E) :=
1

2
E : C(y)E

for every (y,E) ∈ R × M2×2
sym. In the expression above C(y) represents the elasticity

tensor,

C(y) :=

{
Cf if y > 0,

Cs otherwise,

and is assumed to satisfy

E : C(y)E > 0 (1.3)

for every y ∈ R and E ∈ M2×2
sym. The fourth-order tensors Cf and Cs are symmetric,

positive-definite, and possibly different. Our model includes therefore the case of a
different elastic behavior of the film and the substrate.

Energy functionals of the form (1.1) appear in the study of Stress-Driven Rearrange-
ment Instabilities (SDRI) [19] and well represent the competition between the roughening
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effect of the elastic energy and the regularizing effect of the surface energy that char-
acterize the formation of such crystal microstructures (see [15, 17, 19] and [9] for the
related problem of crystal cavities).

As already mentioned at the beginning of the introduction a similar functional to (1.1)
was derived in [10] by Γ-convergence from the transition-layer model introduced in [23]
in the case in which Cf = Cs, and γfs = 0. We observe here that in [10] the regularity
of the local minimizers of such energy is studied for isotropic film and substrate in the
case in which γf ≤ γs, and the local minimizers are shown to be smooth outside of
finitely many cusps and cuts and to form zero contact angles with the substrate (see also
[5, 9]). In the same regime in [16] thresholds for the film volume (dependent on the lattice
mismatch), below which the flat configuration is an absolute minimizer or only a local
minimizer, and below which minimizers are smooth, have been identified (see also [3, 4]
for the anisotropic setting). We point out that the functional in [10], when restricted to
the regime γf ≤ γs did not present any discontinuity along the film/substrate interface
contained in the x-axis. The same applies for the energy in [16]. In our more general
setting, instead, (1.1) always presents a sharp discontinuity with respect to the elastic
tensors. Additionally the relaxation results of this paper include the dewetting regime,
γf > γs − γfs, for which the surface tension also presents a sharp discontinuity.

Related SDRI models have been studied in [2, 14, 18]. In [14] the existence and the
shape of island profiles, which enforces the presence of nonzero contact angles, has been
analyzed in the constraint of faceted profiles. In [18] a mathematical justification of island
nucleation was provided by deriving scaling laws for the minimal energy in terms of e0

and the film volume, and then extended in [2] to the situation of unbounded domains,
in the two regimes of small- and large-slope approximations for the profile function h.
Finally, the evolutionary problem for thin-film profiles has been studied in dimension
two in [11] for the evolution driven by surface diffusion, and in [22] for the growth in
the evaporation-condensation case (see also [7, 13] for a related model describing vicinal
surfaces in epitaxial growth). Recently the analysis of [11] has been extended to three
dimensions in [12]. A complete analysis of the regularity of optimal profiles, as well as
of contact angle conditions will be the subject of the companion paper [8].

The paper is organized as follows. In Section 2 we introduce the mathematical setting
and we rigorously state our main result (see Theorem 2.3). Section 3 is devoted to the
analytical derivation of the energy (1.1) by relaxation and by Γ-convergence, respectively,
from the sharp-interface and the transition-layer models. In Section 4 we present a
first regularity analysis for the local minimizers of such energy. We first perform a
volume penalization of the energy to allow more freedom in the admissible variations,
and finally prove in our setting the internal-ball condition, an idea first introduced in [6]
and employed also in [9, 10].

2. Setting of the problem and main results

2.1. Mathematical setting. In this subsection we introduce the main definitions and
the notation used throughout the paper. We begin by characterizing the admissible film
profiles. The set AP of admissible film profiles in (a, b) is denoted by

AP (a, b) := {h : [a, b]→ [0,+∞) : h is lower semicontinuous and Varh < +∞},
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where Varh denotes the pointwise variation of h, namely,

Varh := sup
{ n∑
i=1

|h(xi)− h(xi−1)| :

P := {x1, . . . , xn} is a partition of [a, b]
}
.

We recall that for every lower semicontinuous function h : [a, b]→ [0,+∞), to have finite
pointwise variation is equivalent to the condition

H1(Γh) < +∞,
where

Γh := ∂Ωh ∩ ((a, b)× R) .

For every h ∈ AP (a, b), and for every x ∈ (a, b), consider the left and right limits

h(x±) := lim
z→x±

h(z).

We define

h−(x) := min{h(x+), h(x−)} = lim inf
z→x

h(z),

and

h+(x) := max{h(x+), h(x−)} = lim sup
z→x

h(z).

In the following Int(A) denotes the interior part of a set A. Let us now recall some
properties of height functions h ∈ AP (a, b), regarding their graphs Γh, their subgraphs
Ωh, the film and the substrate parts of the subgraph, namely

Ω+
h := Ωh ∩ {y > 0}

and

Ω−h := Ωh ∩ {y ≤ 0}
respectively, and the set

Γ̃h := ∂Ω̄h ∩ ((a, b)× R). (2.1)

Any h ∈ AP (a, b) satisfies the following assertions (see [10, Lemma 2.1]):

1. Ω+
h has finite perimeter in ((a, b)× R),

2. Γh = {(x, y) : a < x < b, h(x) < y < h+(x)},
3. h− is lower semicontinuous and Int

(
Ω
)

= {(x, y) : a < x < b, y < h−(x)},
4. Γ̃h = {(x, y) : a < x < b, h−(x) ≤ y ≤ h+(x)},
5. Γh and Γ̃h are connected.

We now characterize various portions of Γh. To this aim we denote the jump set of a
function h ∈ AP (a, b), i.e., the set of its profile discontinuities, by

J(h) := {x ∈ (a, b) : h−(x) 6= h+(x)}, (2.2)

whereas the set of vertical cuts in the graph of h is given by

C(h) := {x ∈ (a, b) : h(x) < h−(x)}. (2.3)

The graph Γh of a height function h is then characterized by the decomposition

Γh = Γjumph t Γcuth t Γgraphh ,

where t denotes the disjoint union, and

Γjumph := {(x, y) : x ∈ (a, b) ∩ J(h), h−(x) ≤ y ≤ h+(x)},
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Γcuth := {(x, y) : x ∈ (a, b) ∩ C(h), h(x) ≤ y < h−(x)}, (2.4)

Γgraphh := Γh \ (Γjumph ∪ Γcuth ).

Γgraph
h

Γjump
h

Γcut
h

Γcusp
h

o

Figure 1. In the figure above an admissible profile function h is dis-

played. The portions of Γh corresponding to Γgraphh , Γjumph , and Γcuth

are represented with the colors green, yellow, and red respectively. The
points in Γcusph are marked by enclosing them within squares.

We observe that Γgraphh represents the regular part of the graph of h, whilst both

Γjumph and Γcuth consist in (at most countable) unions of segments, corresponding to the
jumps and the cuts in the graph of h, respectively (see Figure 1). Notice also that

Γh = Γ̃h t Γcuth .

Denoting by h′−(x) and h′+(x) the left and right derivatives of h in a point x, respec-
tively, we identify the set of cusps in Γh by

Γcusph :=
{

(x, h−(x)) : either x ∈ J(h)

or we have that x 6∈ J(h) with h′+(x) = +∞ or h′−(x) = −∞
}

(see Figure 1).

For every h ∈ AP (a, b) we indicate its set of of zeros by

Zh := Γh ∩ {x ∈ [a, b] : h(x) = 0}.

We now define the family X of admissible film configurations as

X := {(u, h) : u ∈ H1
loc(Ωh;R2) and h ∈ AP (a, b)}

and we endow X with the following notion of convergence.
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Definition 2.1. We say that a sequence {(un, hn)} ⊂ X converges to (u, h) ∈ X, and
we write (un, hn)→ (u, h) in X if

1. supn Varhn < +∞,
2. R2 \ Ωhn converges to R2 \ Ωh in the Hausdorff metric,
3. un ⇀ u weakly in H1(Ω′;R2) for every Ω′ ⊂⊂ Ωh.

Let us also consider the following subfamily XLip of configurations with Lipschitz
profiles, namely,

XLip := {(u, h) : u ∈ H1
loc(Ωh;R2), h is Lipschitz}.

We recall that the thin-film model analyzed in this paper is characterized by the energy
F defined in (1.1) and evaluated on configurations (u, h) ∈ X.

We state here the definition of µ-local minimizers of the energy F .

Definition 2.2. We say that a pair (u, h) ∈ X is a µ-local minimizer of the functional
F if F(u, h) < +∞ and

F(u, h) ≤ F(v, g)

for every (v, g) ∈ X satisfying |Ω+
g | = |Ω+

h | and |Ωg∆Ωh| ≤ µ.

Note that every global minimizer (with or without volume constraint) is a µ-local mini-
mizer.

2.2. The sharp-interface and the transition-layer models. We now recall classical
thin-film models from the Literature. The sharp-interface model for epitaxy is charac-
terized by a configurational energy F0 that presents a discontinuous transition both in
the elasticity tensors and in the surface tensions, and that encodes the abrupt change in
materials across the film/substrate interface at the x-axis. We set

F0(u, h) :=

ˆ
Ωh

W0(y,Eu(x, y)− E0(y)) dx dy

+

ˆ
Γh

ϕ0(y) dH1 + γfsH1((a, b) \ Zh) (2.5)

for every (u, h) ∈ XLip, where the energy density ϕ0 : R → [0,+∞) forces a sharp
discontinuity at {y = 0}, namely

ϕ0(y) :=

{
γf if y > 0

γs if y = 0,

for positive constants γf and γs. The same energy functional has been considered in [23],
where it appears without the last term since in that framework γfs is considered to be
negligible. We notice that F and F0 differ only with respect to the surface energy, and
that F is extended to the set X.

Models presenting regularized discontinuities have been introduced in the Literature
because more easy to implement numerically (see, e.g., [23]). They can be considered as
an approximation of the sharp-interface functional F0 where the elastic tensors and/or
the surface densities are regularized over a thin transition region of width δ > 0 (see
Figure 2).
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Γgraph
h

δ

o

Figure 2. In the transition-layer model the elastic tensors and the sur-
face tension are regularized over a (thin) layer with thickness δ > 0.

In order to introduce the energy functional Fδ corresponding to the transition-layer
model with transition layer of width δ > 0, we consider an auxiliary smooth and increas-
ing function f such that f(0) = 0, limy→+∞ f(y) = 1, limy→−∞ f(y) = −1, and

ˆ 0

−∞
(1 + f(y))2 dy < +∞. (2.6)

We notice that the hypotheses on f are satisfied for example by the boundary-layer
function

r 7→ 2

π
arctan(r)

proposed in [20, 21] (see also [23]). The regularized mismatch strain is defined as

Eδ(y) :=
1

2
e0

(
1 + f

(y
δ

))
e1 � e1 for every y ∈ R,

whereas the regularized surface energy density takes the form

ϕδ(y) := γff
(y
δ

)
+ (γs − γfs)

(
1− f

(y
δ

))
,

for every y ∈ R (see [24]).

The transition-layer energy functional is then given by

Fδ(u, h) :=

ˆ
Ωh

Wδ(y,Eu(x, y)−Eδ(y)) dx dy

+

ˆ
Γh

ϕδ(y) dH1 + γfs(b− a)

for every (u, h) ∈ XLip, where Wδ(y,E) := 1
2E : Cδ(y)E for every y ∈ R and E ∈M2×2

sym,
with

Cδ(y) :=
1

2

(
1 + f

(y
δ

))
Cf +

1

2

(
1− f

(y
δ

))
Cs
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+
1

2

(
1 + f

(y
δ

))(
1− f

(y
δ

))
(Cs − Cf ).

Notice that Cδ(0) = Cs, and that Cδ(y) is symmetric and positive-definite for every
y ∈ R. Additionally, there exists a positive constant C such that

Cδ(y)F : F ≤ C|F |2 for every F ∈M2×2. (2.7)

2.3. Statement of the main result. The main result of the paper concerns the deriva-
tion of the energy functional F from the transition-layer functional Fδ and the sharp-
interface model F0.

Theorem 2.3 (Model derivation). The energy F is both

1. The relaxed functional of F0, i.e.,

F(u, h) := inf

{
lim inf
n→+∞

F0(un, hn) : (un, hn) ∈ XLip,

(un, hn)→ (u, h) in X, and |Ω+
hn
| = |Ω+

h |
}

for every (u, h) ∈ X.
2. The Γ-limit as δ → 0 of the transition layer energies Fδ under the volume con-

straint.

3. Derivation of the thin-film model

In this section we provide a rigorous justification of the model F defined in (1.1) by
proving Theorem 2.3.

Proof of Theorem 2.3. Assertion 1. and 2. of Theorem 2.3 follow, respectively, from
Propositions 3.2 and 3.4, which are proven in the following two subsections. �

3.1. Relaxation from the sharp-interface model. In this subsection we characterize
F as the lower-semicontinuous envelope of the energy F0 with respect to the convergence
in X, restricted to pairs in XLip. To this aim we begin with an auxiliary result that will
be fundamental in the proof of Proposition 3.2.

Lemma 3.1. Let hn ∈ L1((a, b); [0,+∞)) be such that hn → h in L1(a, b). For every
sequence {λn} converging to 0, there exist a constant µ > 0 (depending on the sequences
{λn}, {hn}, and on h) and an integer Nµ such that

|Hλn | +
1

λn

ˆ
[a,b]\Hλn

hn(x1) dx1 > µ (3.1)

for every n ≥ Nµ, where Hλn := {x1 ∈ [a, b] : hn(x1) ≥ λn}.

Proof. By contradiction, up to passing to a (not relabeled) subsequence both for {λn}
and {hn} we have that

|Hλn | +
1

λn

ˆ
[a,b]\Hλn

hn(x1) dx1 ≤ µn (3.2)

for some sequence {µn} converging to zero. Fix η ∈ (0, ‖h‖L1(a,b)). By Vitali’s Theorem
there exists µη > 0 such that

‖hn‖L1(S) ≤ ‖h‖L1(a,b) − η



DERIVATION OF A HETEROEPITAXIAL THIN-FILM MODEL 9

for every measurable set S with |S| ≤ µη and n ∈ N. From (3.2) it follows that |Hλn | ≤ µη
for n large enough, and hence we obtain that

‖hn‖L1(Hλn ) ≤ ‖h‖L1(a,b) − η (3.3)

for n large enough. However, by (3.2) we also have that

0← µn ≥
1

λn

ˆ
[a,b]\Hλn

hn(x1) dx1 =
1

λn

(
‖hn‖L1(a,b) − ‖hn‖L1(Hλn )

)
(3.4)

≥ 1

λn

(
‖hn‖L1(a,b) − ‖h‖L1(a,b)) + η

)
where we used (3.3) in the last inequality. Since λn → 0 and hn → h in L1(a, b), there
holds

1

λn

(
‖hn‖L1(a,b) − ‖h‖L1(a,b) + η

)
→ +∞.

This contradicts (3.4) and concludes the proof of the lemma. �

We are now ready to prove the main result of this subsection.

Proposition 3.2 (Relaxation of the sharp-interface model).

F(u, h) = inf

{
lim inf
n→+∞

F0(un, hn) : (un, hn) ∈ XLip,

(un, hn)→ (u, h) in X, and |Ω+
hn
| = |Ω+

h |
}
,

for every (u, h) ∈ X.

Proof. We preliminary observe that the thesis is equivalent to showing that

F̄(u, h) := inf

{
lim inf
n→+∞

F̃0(un, hn) : (un, hn) ∈ XLip,

(un, hn)→ (u, h) in X, and |Ω+
hn
| = |Ω+

h |
}

= F̃(u, h) (3.5)

for every (u, h) ∈ X, where

F̃0(u, h) :=

ˆ
Ωh

W0(y,Eu(x, y)− E0(y)) dx dy +

ˆ
Γh

ϕ̃0(y) dH1,

with

ϕ̃0(y) :=

{
γf if y > 0

γs − γfs otherwise
,

and

F̃(u, h) := F(u, h)− γfs(b− a).

The proof of the inequality

F̄(u, h) ≥ F̃(u, h)

for every (u, h) ∈ X follows along the lines of [10, Proof of Theorem 2.8, Step 1], by
observing that

lim inf
n→+∞

ˆ
Γhn

ϕ̃0(y) dH1 ≥ lim inf
n→+∞

ˆ
Γhn

ϕ(y) dH1,
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and by applying the argument in [10, (2.22)–(2.26)] directly to the density ϕ, which
is lower-semicontinuous and hence allows to use Reshetnyak’s theorem (see [1, Theorem
2.38]).

Fix now (u, h) ∈ X. To prove that

F̄(u, h) ≤ F̃(u, h)

it is enough to construct a sequence {(un, hn)} ⊂ XLip such that

(un, hn)→ (u, h) in X, (3.6)

|Ω+
hn
| = |Ω+

h |, (3.7)

and
lim sup
n→+∞

F̃0(un, hn) ≤ F̃(u, h). (3.8)

We subdivide the argument into two steps.

Step 1. In this step we prove that there exists a sequence {(un, hn)} ⊂ XLip such that

(u, hn)→ (u, h) in X, (3.9)

|Ω+
hn
| = |Ω+

h |, (3.10)

and lim
n→+∞

F̃(un, hn) = F̃(u, h). (3.11)

We begin by observing that the construction introduced in [10, Proof of Theorem 2.8,

Steps 3–5] yields a sequence {(u, h̃n)} ⊂ XLip such that

0 ≤ h̃n(x) ≤ h(x) for every x ∈ [a, b],

h̃n → h pointwise in [a, b],

(u, h̃n)→ (u, h) in X,

and

lim
n→+∞

ˆ
Γh̃n

ϕ(y) dH1 =

ˆ
Γ̃h

ϕ(y) dH1 + 2γfH1(Γcuth ). (3.12)

The remaining part of this step is devoted to modify the sequence h̃n in order to
obtain a sequence hn not only satisfying (3.9) and (3.11), but also the volume constraint

(3.10). With this aim, let us measure how much the volume associated to each h̃n differs
from the one of h by a parameter λn defined as

λn :=
(
|Ω+
h | − |Ω

+

h̃n
|
)r
≥ 0 (3.13)

for every n ∈ N and for a fixed number r ∈ (0, 1). For every n ∈ N, let hn : (a, b)→ R+

be the function given by

hn(x) :=


h̃n(x) if h̃n(x) = 0,

h̃n(x) + εn if h̃n(x) ≥ λn,(
1 + εn

λn

)
h̃n(x) if h̃n(x) ∈ (0, λn)

(3.14)

for every x ∈ [a, b] and for

εn :=
1

µn

(
|Ω+
h | − |Ω

+

h̃n
|
)
, (3.15)
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where µn is given by

µn := |H̃λn | +
1

λn

ˆ
[a,b]\H̃λn

h̃n(x) dx

with H̃λn := {x ∈ [a, b] : h̃n(x) ≥ λn}. Note that, by contruction, |Ω+
hn
| = |Ω+

h |. Since

λn → 0, by the L1-convergence of {h̃n}, we can apply Lemma 3.1 and obtain a constant
µ > 0 and a corresponding integer Nµ such that

µn > µ

for every n ≥ Nµ. Then, from (3.15) we obtain

0 ≤ εn ≤
1

µ

(
|Ω+
h | − |Ω

+

h̃n
|)
)
→ 0, (3.16)

and

0 ≤ εn
λn
≤ 1

µ

(
|Ω+
h | − |Ω

+

h̃n
|
)1−r

→ 0 (3.17)

since r ∈ (0, 1). Note that (3.9) together with (3.16) and the fact that h̃n ≤ hn ≤ h̃n+εn
implies that

R2 \ Ωhn → R2 \ Ωh (3.18)

with respect to the Hausdorff-distance. Furthermore, by also employing Bolzano’s The-
orem we deduce

|hn(x)− hn(x′)| ≤ Cn
(

1 +
εn
λn

)
|x− x′|

for every x, x′ ∈ [a, b], where Cn > 0 denotes the Lipschitz constant associated to h̃n.
Hence, the maps hn are also Lipschitz. We now prove thatˆ

Γhn

ϕ(y) dH1 →
ˆ

Γ̃h

ϕ(y) dH1 + 2γfH1(Γcuth ). (3.19)

By the definition of hn we have that∣∣∣ˆ
Γh̃n

ϕ(y) dH1 −
ˆ

Γhn

ϕ(y) dH1
∣∣∣

= γf
∣∣H1(Γh̃n ∩ {λn + εn > y > 0})−H1(Γhn ∩ {λn > y > 0})

∣∣
= γf

∑
i∈In

ˆ bni

ani

∣∣∣∣√1 + (h̃′n)2 −
√

1 + (h′n)2

∣∣∣∣ dx (3.20)

for some index set In, and for points ani < bni with (ani , b
n
i ) ∩ (anj , b

n
j ) = ∅ for all i, j ∈

In, i 6= j such that ⋃
i∈In

(ani , b
n
i ) = {x ∈ [a, b] : 0 < h̃n(x) < λn}.

We now observe that on each interval (ani , b
n
i ) there holds∣∣∣∣√1 + (h̃′n)2 −

√
1 + (h′n)2

∣∣∣∣ ≤ σn(h̃′n)2√
1 + (h̃′n)2 +

√
1 + (h′n)2

≤ σn(h̃′n)2

2
√

1 + (h′n)2

≤ σn
2

√
1 + (h′n)2 (3.21)
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where the parameter

σn :=

[(
εn
λn

)2

+ 2
εn
λn

]
is such that

σn → 0 (3.22)

by (3.17). Therefore, by combining (3.20) with (3.21) we obtain∣∣∣ˆ
Γh̃n

ϕ(y) dH1 −
ˆ

Γhn

ϕ(y) dH1
∣∣∣

≤ γfσn
2

∑
i∈In

ˆ bni

ani

√
1 + (h′n)2 dx1

≤ γfσn
2
H1(Γhn)→ 0 (3.23)

where we used (3.22) and the fact that by (3.12) there exists a constant C > 0 for which

H1(Γn) ≤ C (3.24)

for every n ∈ N. From (3.12) and (3.23) we deduce (3.19).

Let us now define un : Ωhn → R2 by

un(x, y) :=


u(x, y − εn) if y > y0 + εn,

u(x, y0) if y0 + εn ≥ y > y0,

u(x, y) if y0 ≥ y,

(3.25)

where y0 < −εn is chosen in such a way that u(·, y0) ∈ H1((a, b);R2). Note that the

maps un are well defined in Ωhn since hn ≤ h̃n + εn ≤ h + εn. Furthermore, by (3.16)
and (3.25) we have that un ⇀ u in H1

loc(Ω′;R2) for every Ω′ ⊂⊂ Ωh as n→ +∞, which
together with (3.18) and (3.24) yields (3.9).

In the remaining part of this step we prove thatˆ
Ωhn

W0(y,Eun(x, y)− E0(y)) dx dy →
ˆ

Ωh

W0(y,Eu(x, y)− E0(y)) dx dy (3.26)

which together with (3.19) implies (3.11). We begin by observing thatˆ
Ωh̃n

W0(y,Eu(x, y)− E0(y)) dx dy →
ˆ

Ωh

W0(y,Eu(x, y)− E0(y)) dx dy (3.27)

by the Monotone Convergence Theorem. Furthermore, by (3.25) there holds∣∣∣ˆ
Ωhn

W0(y,Eun(x, y)− E0(y)) dx dy −
ˆ

Ωh̃n

W0(y,Eu(x, y)− E0(y)) dx dy
∣∣∣

≤C
[ ˆ

[a,b]×[y0,y0+εn]

(W0(y,Eu(x, y0)) +W0(y,Eu(x, y))) dx dy +

ˆ
{h̃n>0}×[0,εn]

|E0(y)|2 dx dy

+

ˆ
{h̃n=0}×[−εn,0]

W0(y,Eu(x, y)) dx dy +

ˆ
En

W0(y,Eu(x, y)− E0(y)) dx dy
]

≤ C
[
εn

ˆ
[a,b]

|Eu(x, y0)|2 dx+

ˆ
[a,b]×[0,εn]

|E0(y)|2 dx dy
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+

ˆ
[a,b]×([−εn,0]∪[y0,y0+εn])

|Eu|2 dx dy +

ˆ
En

(|Eu|2 + |E0(y)|2) dx dy
]

(3.28)

where {h̃n = 0} := {x ∈ [a, b] : h̃n(x) = 0}, {h̃n > 0} := [a, b] \ {h̃n = 0}, {λn > h̃n >

0} := {x ∈ [a, b] : λn > h̃n(x) > 0}, and

En :=
(
Ωh̃n \ (Ωhn − εne2)

)
∩
(
{λn > h̃n > 0} × (0,+∞)

)
.

Notice that |En| ≤ Cεn for some constant C > 0, since 0 < h̃n− (hn−εn) ≤ εn for every

x ∈ {λn > h̃n > 0} by (3.14). Therefore, from (3.16) and (3.28) we conclude that∣∣∣ ˆ
Ωhn

W0(y,Eun(x, y)− E0(y)) dx dy −
ˆ

Ωh̃n

W0(y,Eu(x, y)− E0(y)) dx dy
∣∣∣→ 0

as n→ +∞, and hence, also in view of (3.27), we obtain (3.26).

Step 2. In the case in which γs − γfs ≤ γf , there holds

F̃(un, hn) = F̃0(un, hn)

and hence, (3.8) directly follows from (3.11). Therefore, the sequence constructed in Step
1 realizes (3.6), (3.7), and (3.8) for the case γs − γfs ≤ γf . It remains to treat the case
γf < γs − γfs. In view of the previous step, and by a diagonal argument, the thesis
reduces to show that for every (ū, h̄) ∈ XLip there exists a sequence {(ūn, h̄n)} ⊂ XLip

such that

(ūn, h̄n)→ (ū, h̄) in X,

|Ω+
h̄n
| = |Ω+

h |,

and

lim
n→+∞

F̃0(ūn, h̄n) = F̃(ū, h̄) (3.29)

Fix (ū, h̄) ∈ XLip. We define h̄n by

h̄n(x) := min{h̄(x) + εn, tn}
for every x ∈ [a, b], where {εn} is a vanishing sequence of positive numbers, and {tn} is
chosen so that tn > 0 and |Ω+

h̄n
| = |Ω+

h̄
| for every n ∈ N. Choosing y0 < 0 such that

u(·, y0) ∈ H1((a, b);R2) (the existence of y0 follows by a slicing argument), we set,

ūn(x, y) :=


ū(x, y − εn) if y > y0 + εn,

ū(x, y0) if y0 − εn ≤ y ≤ y0 + εn,

ū(x, y) if y < y0 − εn,

for every (x, y) ∈ Ωh̄n . By definition,

lim
n→+∞

ˆ
Ωh̄n

W0(y,Eūn(x, y)− E0(y)) dx dy =

ˆ
Ωh̄

W0(y,Eu(x, y)− E0(y)) dx dy,

and

ϕ0(min{y + εn, tn}) = γf = ϕ(y) (3.30)

for every y ≥ 0. Property (3.29) follows then by the observation that

lim sup
n→+∞

ˆ
Γh̄n

ϕ0(y) dH1 ≤ lim
n→+∞

ˆ
Γh

ϕ0(min{y + εn, tn}) dH1 =

ˆ
Γh

ϕ(y) dH1,
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where in the last equality we used (3.30). �

3.2. Γ-convergence from the transition-layer model. In this subsection we charac-
terize F defined in (1.1) as the Γ-limit of the transition-layer functionals Fδ. The proof
of this result is a modification of the arguments in [10, Theorems 2.8 and 2.9] to the
situation with possibly Cf 6= Cs and γfs 6= 0, therefore we here highlight only the main
changes for convenience of the reader.

We begin by characterizing the lower-semicontinuous envelope of Fδ with respect to
the convergence in X, restricted to pairs in XLip, with the integral formula (3.32).

Proposition 3.3 (Relaxation of the transition-layer functionals). For every δ > 0, let
F̄δ be the relaxed functional of Fδ, namely

F̄δ(u, h) := inf

{
lim inf
n→+∞

Fδ(un, hn) : (un, hn) ∈ XLip,

(un, hn)→ (u, h) in X, and |Ω+
hn
| = |Ω+

h |
}

(3.31)

for every (u, h) ∈ X. Then

F̄δ(u, h) =

ˆ
Ωh

Wδ(y,Eu(x, y)− E0(y)) dx dy +

ˆ
Γ̃h

ϕδ(y) dH1

+ 2
∑
x∈S

ˆ h−(x)

h(x)

ϕδ(y) dy + γfs(b− a), (3.32)

for every (u, h) ∈ X.

Proof. Denote by F̂δ the right-hand side of (3.31). The proof of the inequality

F̄δ(u, h) ≥ F̂δ(u, h)

for every (u, h) ∈ X is analogous to [10, Proof of Theorem 2.8, Step 1]. To prove the
opposite inequality, we argue as in [10, Proof of Theorem 2.8, Steps 3–5], and we construct
a sequence {hn} of Lipschitz maps such that

0 ≤ hn(x) ≤ h(x) for every x ∈ [a, b], (3.33)

(u, hn)→ (u, h) in X,

lim
n→+∞

Fδ(u, hn) = F̂δ(u, h).

With a slicing argument we identify y0 < 0 such that u(·, y0) ∈ H1((a, b);R2), and we
define the maps

un(x, y) :=


u(x, y − εn) if y > y0 + εn,

u(x, y0) if y0 < y ≤ y0 + εn,

u(x, y) if y ≤ y0

for a.e. (x, y) ∈ Ωh̃n , where h̃n(x) := hn(x) + εn for every x ∈ [a, b], and

εn :=
1

b− a

(
|Ω+
h | −

ˆ b

a

hn(x) dx
)
.
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It is immediate to see that |Ω+

h̃n
| = |Ω+

h |, and that (un, h̃n)→ (u, h) in X. Additionally,

lim
n→+∞

ˆ
Γhn

ϕδ(y) dH1 = lim
n→+∞

ˆ
Γh̃n

ϕδ(y) dH1. (3.34)

Regarding the bulk energies, we have
ˆ

Ωh̃n

Wδ(y,Eun(x, y)− Eδ(y)) dx dy =

ˆ b

a

ˆ y0

−∞
Wδ(y,Eu(x, y)− Eδ(y)) dy dx

+

ˆ b

a

ˆ y0+εn

y0

Wδ(y,Eu(x, y0)− Eδ(y)) dy dx

+

ˆ b

a

ˆ hn(x)+εn

y0+εn

Wδ(y,Eu(x, y − εn)− Eδ(y)) dy dx.

Thus, by (2.7) there holds∣∣∣ˆ
Ωh̃n

Wδ(y,Eun(x, y)− Eδ(y)) dx dy −
ˆ

Ωhn

Wδ(y,Eu(x, y)− Eδ(y)) dx dy
∣∣∣ (3.35)

≤ C
ˆ b

a

ˆ y0+εn

y0

|Eu(x, y)− Eδ(y)|2 dy dx

+

ˆ b

a

ˆ hn(x)

y0

|Wδ(y + εn, Eu(x, y)− Eδ(y + εn))−Wδ(y,Eu(x, y)− Eδ(y))| dx dy

≤ C
ˆ b

a

ˆ y0+εn

y0

|Eu(x, y)− Eδ(y)|2 dy dx+ C

ˆ b

a

ˆ hn(x)

y0

|Eδ(y + εn)− Eδ(y)|2 dy dx

+ C

ˆ b

a

ˆ hn(x)

y0

(Cδ(y + εn)− Cδ(y))(Eu(x, y)− Eδ(y)) : (Eu(x, y)− Eδ(y)) dy dx,

which converges to zero due to the Dominated Convergence Theorem. By combining
(3.33), (3.34), and (3.35) we deduce that

lim
n→+∞

Fδ(un, h̃n) = lim
n→+∞

Fδ(u, hn) = F̂δ(u, h),

which in turn yields

F̄δ(u, h) ≤ F̂δ(u, h)

and completes the proof of the proposition. �

Proposition 3.3 is instrumental for the proof of the Γ-convergence result.

Proposition 3.4 (Γ-convergence). The functional F is the Γ-limit as δ → 0 of {Fδ}δ
under volume constraint. Namely, if (uδ, hδ)→ (u, h) in X, and |Ω+

hδ
| = |Ω+

h | for every
δ, then

F(u, h) ≤ lim inf
δ→0

Fδ(uδ, hδ).

Additionally, for every (u, h) ∈ X, there exists a sequence {(uδ, hδ)} ⊂ X such that
|Ω+
hδ
| = |Ω+

h | for every δ, and

F(u, h) ≥ lim sup
δ→0

Fδ(uδ, hδ).
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Proof. We subdivide the proof into two steps.

Step 1. We first show that for all sequences {δn}, and {(un, hn)} ⊂ XLip, with δn → 0,
(un, hn)→ (u, h) in X, and such that |Ω+

hn
| = |Ω+

h | for every n ∈ N, there holds

lim
n→+∞

Fδn(un, hn) ≥ F(u, h). (3.36)

The liminf inequality for the surface energies follows arguing as in [10, Proof of Theorem
2.9, Step 1]. To study the elastic energies fix D ⊂⊂ Ωh and let η > 0. Let ε > 0 be small
enough so that ˆ

D∩{|y|≤ε}
W0(y,Eu(x, y)− E0(y)) dx dy ≤ η. (3.37)

We have

lim inf
n→+∞

ˆ
Ωhn

Wδn(y,Eun(x, y)− Eδn(y)) dx dy

≥ lim inf
n→+∞

ˆ
D

Wδn(y,Eun(x, y)− Eδn(y)) dx dy

≥ lim inf
n→+∞

ˆ
D∩{|y|>ε}

Wδn(y,Eun(x, y)− Eδn(y)) dx dy

+ lim inf
n→+∞

ˆ
D∩{|y|≤ε}

Wδn(y,Eun(x, y)− Eδn(y)) dx dy.

Now,ˆ
D∩{|y|>ε}

Wδn(y,Eun(x, y)− Eδn(y)) dx dy (3.38)

=

ˆ
D∩{|y|>ε}

(Cδn(y)− C(y))(Eun(x, y)− Eδn(y)) : (Eun(x, y)− Eδn(y)) dx dy

+

ˆ
D∩{|y|>ε}

W0(y,Eun(x, y)− Eδn(y)) dx dy.

Since (un, hn)→ (u, h) in X, by Definition 2.1 the right-hand side of (3.38) satisfies

lim inf
n→+∞

ˆ
D∩{|y|>ε}

W0(y,Eun(x, y)−Eδn(y)) dx dy ≥
ˆ
D∩{|y|>ε}

W0(y,Eu(x, y)−E0(y)) dx dy,

whereas the first term in the right-hand side of (3.38) can be estimated as∣∣∣ˆ
D∩{|y|>ε}

(Cδn(y)− C(y))(Eun(x, y)− Eδn(y)) : (Eun(x, y)− Eδn(y)) dx dy
∣∣∣

≤ C
∥∥∥1− f

( y
δn

)∥∥∥
L∞(D∩{y>ε})

+ C
∥∥∥1 + f

( y
δn

)∥∥∥
L∞(D∩{y<−ε})

,

which converges to zero as n→ +∞ due to the properties of f . Hence, by (3.37),

lim inf
n→+∞

ˆ
Ωhn

Wδn(y,Eun(x, y)− Eδn(y)) dx dy

≥ lim inf
n→+∞

ˆ
D∩{|y|>ε}

Wδn(y,Eun(x, y)− Eδn(y)) dx dy

≥
ˆ
D∩{|y|>ε}

W0(y,Eu(x, y)− E0(y)) dx dy
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≥
ˆ
D

W0(y,Eu(x, y)− E0(y)) dx dy − η.

By the arbitrariness of η and D we conclude that

lim inf
n→+∞

ˆ
Ωhn

Wδn(y,Eun(x, y)− Eδn(y)) dx dy

≥
ˆ

Ωh

W0(y,Eu(x, y)− E0(y)) dx dy.

Step 2. By Proposition 3.3 to prove the limsup inequality it is enough to show that for
all sequences {δn} of nonnegative numbers, with δn → 0, and for every (u, h) ∈ X there
exists {(un, hn)} ⊂ X such that (un, hn)→ (u, h) in X, and

lim sup
n→+∞

Fδn(un, hn) ≤ F(u, h). (3.39)

Fix {δn}. If γf ≥ γs−γfs, take un = u and hn = h. Then (3.39) follows by the pointwise
convergences

ϕδn(y)→ ϕ0(y) for every y ∈ [0,+∞),

and

Cδn(y)→ C(y) for every y ∈ R. (3.40)

If γf < γs − γfs, construct εn → 0 such that

ϕδn(y + εn)→ ϕ0(y) = γf for all y ∈ [0,+∞).

Let y0 < 0 be such that u(·, y0) ∈ H1((a, b);R2). We define

un(x) :=


u(x, y − εn) if y > y0 + εn,

u(x, y0) if y0 < y ≤ y0 + εn,

u(x, y) if y ≤ y0,

and hn(x) := min{h(x) + εn, tn}, where tn > 0 is such that |Ω+
hn
| = d. The convergence

of surface energies follows as in [10, Proof of theorem 2.9, Step 2]. Regarding the bulk
energies, we haveˆ

Ωhn

Wδn(y,Eun(x, y)− Eδn(y)) dx dy =

ˆ b

a

ˆ y0

−∞
Wδn(y,Eu(x, y)− Eδn(y)) dx dy

(3.41)

+

ˆ b

a

ˆ y0+εn

y0

Wδn(y,Eu(x, y0)− Eδn(y)) dx dy

+

ˆ b

a

ˆ hn(x)

y0+εn

Wδn(y,Eu(x, y − εn)− Eδn(y)) dx dy.

The first term in the right-hand side of (3.41) satisfies

lim
n→+∞

ˆ b

a

ˆ y0

−∞
Wδn(y,Eu(x, y)− Eδn(y)) dx dy (3.42)

=

ˆ b

a

ˆ y0

−∞
W0(y,Eu(x, y)− E0(y)) dx dy,

owing to (3.40) and the fact that

Eδn → E0 strongly in L2
loc(R;M2×2

sym). (3.43)
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By (2.7) the second term in the right-hand side of (3.41) can be bounded from above as

ˆ b

a

ˆ y0+εn

y0

Wδn(y,Eu(x, y0)− Eδn(y)) dx dy (3.44)

≤ C
ˆ b

a

ˆ y0+εn

y0

|Eu(x, y0)− Eδn(y)|2 dy dx

and hence vanishes, as n→ +∞. Finally, there holds

ˆ b

a

ˆ hn(x)

y0+εn

Wδn(y,Eu(x, y − εn)− Eδn(y)) dx dy

≤
ˆ

Ωh

Wδn(y + εn, Eu(x, y)− Eδn(y + εn)) dx dy

=

ˆ
Ωh

(Cδn(y+εn)−C(y))(Eu(x, y)−Eδn(y+εn)):(Eu(x, y)−Eδn(y+εn)) dx dy

+

ˆ
Ωh

W0(y,Eu(x, y)− Eδn(y + εn)) dx dy.

By the Dominated Convergence Theorem, (3.40), and (3.43), we conclude that

lim sup
n→+∞

ˆ b

a

ˆ hn(x)

y0+εn

Wδn(y,Eu(x, y − εn)− Eδn(y)) dx dy (3.45)

≤
ˆ

Ωh

W0(y,Eu(x, y)− E0(y)) dx dy.

Inequalities (3.42)–(3.45) imply the convergence of the elastic energies and complete the
proof of (3.39). �

4. Properties of local minimizers

In this section we present a first regularity result for µ-local minimizers (u, h) of (1.1).
Employing an argument first introduced in [6], we prove that optimal profiles h satisfy
the internal-ball condition.

In what follows, denote by β the quantity

β :=
min{γf , γs − γfs}

γf
. (4.1)

In order to prove the internal-ball condition we need to perform local variations.
Therefore, we first show that the area constraint in the minimization problem of Defini-
tion 2.2 can be replaced with a suitable penalization in the energy functional.

Proposition 4.1. Let (u, h) ∈ X be a µ-local minimizer for the functional F . Then
there exists λ0 > 0 such that

F(u, h) = min
{
F(v, g) + λ||Ω+

h | − |Ω
+
g || : (v, g) ∈ X, |Ωg∆Ωh| ≤

µ

2

}
(4.2)

for all λ ≥ λ0.
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Proof. The proof strategy is analogous to [10, Proof of Proposition 3.1], and consists in
first establishing the existence of a solution (uλ, hλ) of the minimum problem (Mλ) in
the right side of (4.2) for every fixed λ > 0, then in observing that

F(u, h) ≥ F(uλ, hλ) (4.3)

since (u, h) is admissible for (Mλ), and finally in showing that there exists λ0 > 0 such
that the reverse inequality

F(u, h) ≤ F(uλ, hλ) (4.4)

holds true for every λ ≥ λ0. Since (u, h) is a µ-local minimizer of the functional F , to
prove (4.4) it is enough to show that |Ω+

gλ
| = |Ω+

h | for all λ ≥ λ0 .

The key modification in our setting consists in observing that any sequence
{(uk, hk)} ⊂ X, for which there exists a constant C such that

sup
k∈N
F(uk, hk) < C,

satisfies the uniform bound
H1(Γhk) ≤M(C), (4.5)

where the constant M(C) > 0 is given by

M(C) :=

{
C
βγf

if β 6= 0,
C

min{γf ,γfs} if β = 0,

and where β is the quantity defined in (4.1). Note that, by (1.2), when β = 0 then
γfs = γs > 0. The bound (4.5) is used a first time to prove the sequential compactness
of any minimizing sequence for the problem (Mλ), and to deduce the existence of a
minimizer (uλ, hλ). In view of (4.3), an application of (4.5) to the sequence {(uλ, hλ)}
with C = F(u, h) allows to check that {(uλ, hλ)} satisfies the assumptions of [10, Lemma
3.2], and to complete the proof of (4.4).

�

We are now ready to establish the internal-ball condition for optimal profiles.

Proposition 4.2 (Internal-ball condition). Let (u, h) ∈ X be a µ-local minimizer for
the functional F . Then, there exists ρ0 > 0 such that for every z ∈ Γh we can choose a
point Pz for which B(Pz, ρ0) ∩ ((a, b)× R) ⊂ Ωh, and

∂B(Pz, ρ0) ∩ Γh = {z}.

Proof. Let λ0 be as in Proposition 4.1 and let β be the quantity defined in (4.1). The
case in which β = 1 can be treated as in [10, Proposition 3.3], despite the fact that in
our setting the two elasticity tensors Cf and Cs are allowed to be different. Also in the
case β < 1 the argument of [10, Proposition 3.3] can be implemented. We highlight the
main differences with respect to the case β = 1 for convenience of the reader.

We begin by proving the following claim: there exists ρ0 > 0 such that, for any P ∈ R2

for which B(P, ρ0)∩((a, b)×R) ⊂ Ωh, the intersection between ∂B(P, ρ0) and Γh contains
at most one point. Once this claim is proved, the uniform internal-ball condition of the
assert follows then by the argument of [6, Lemma 2].

By contradiction, assume that for every r > 0 there exists ρr <
r
2 for which three

points P r1 , P r2 , and Pr can be chosen so that

B(Pr, ρr) ∩ ((a, b)× R) ⊂ Ωh
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and
∂B(Pr, ρr) ∩ Γh ⊃ {P r1 , P r2 }.

Denote by [P r1 , P
r
2 ] the segment

[P r1 , P
r
2 ] := {P r1 + t(P r2 − P r1 ) : 0 ≤ t ≤ 1}

and by ΓP r1 ,P r2 the set

ΓP r1 ,P r2 :=
(

Γ̃h ∩ ([xr1, x
r
2]× R)

)
∪

2⋃
i=1

{
(xri , y) : yri ≤ y ≤ h+(xri )

}
where P r1 =: (xr1, y

r
1) and P r2 =: (xr2, y

r
2). The case in which either yr1 6= 0 or yr2 6= 0

follows exactly as in [10, Proposition 3.3], thus we assume that yr1 = yr2 = 0. Consider
the pair (u, hr) ∈ X with hr defined by

hr :=

{
0 if xr1 < x < xr2,

h(x) otherwise.

Note that Ωh \Ωhr ⊂ D
r

where Dr is the portion of R+ enclosed by the curve ΓP r1 ,P r2 ∪
[P r1 , P

r
2 ].

Fix

0 < ε0 <
µ

4(b− a)
, (4.6)

and

0 < ε <
ε0

2
, (4.7)

and consider the finite set A ⊂ (a, b) such that∑
x∈J(h)\A

(h+(x)− h−(x)) +
∑

x∈C(h)\A

(h−(x)− h(x)) <
ε

2

(see [10, (3.33) and (3.34)]). Let r0 > 0 be such that

r0 < min{|x− x′| : x 6= x′ for any x, x′ ∈ A}
and

sup{M (I \A) : I ∈ I} < ε

2
where I is the family of intervals I ⊂ (a, b) with |I| ≤ r0, and M is the measure obtained
by projecting H1

|Γh
on the x-axis. By choosing

r := min
{ε0

4
,
r0

2

}
, (4.8)

it follows that the set [P r1 , P
r
2 ] ∩A contains at most one point. Arguing as in [10, Proof

of (3.37)] we deduce the estimate

H1(ΓP r1 ,P r2 ) ≤ 2ε+ r. (4.9)

In view of (4.7), (4.8), and (4.9), there holds

h+(x)− hr(x) ≤ H1(ΓP r1 ,P r2 ) +H1([P r1 , P
r
2 ])

≤ 2ε+ r + 2ρ ≤ 2ε+ 2r ≤ 2ε0

for every x ∈ (xr1, x
r
2), and hence

|Dr| =
ˆ xr2

xr1

(h+(x)− hr(x)) dx ≤ 2ε0(b− a), (4.10)
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and by (4.6),

|Ω+
h∆Ω+

hr | ≤
µ

2
,

namely (u, hr) is an admissible competitor for the minimum problem (4.2) with λ = λ0.
The minimality of (u, h) yields the estimate

F(u, h) ≤ F(u, hr) + λ0||Ω+
hr | − |Ω

+
h ||. (4.11)

On the other hand,

F(u, hr) =

ˆ
Ωhr

W0(y,Eu(x, y)− E0(y)) dx dy +

ˆ
Γ̃hr

ϕ(y) dH1 (4.12)

+ 2γfH1(Γcuthr ) + γfs(b− a)

≤
ˆ

Ωh

W0(y,Eu(x, y)− E0(y)) dx dy+γf
(
H1(Γ̃h ∩ {y > 0})−H1(ΓP r1 ,P r2 )

)
,

+ min{γf , γs − γfs}
(
H1(Γ̃h ∩ {y = 0}) +H1([P r1 , P

r
2 ])
)

+ 2γfH1(Γcuth ) + γfs(b− a)

= F(u, h)− γf
(
H1(ΓP r1 ,P r2 )− βH1([P r1 , P

r
2 ])
)
,

where β is the quantity defined in (4.1). By combining (4.11) and (4.12) we deduce that

H1(ΓP r1 ,P r2 )− βH1([P r1 , P
r
2 ]) ≤ λ0

γf
|Dr|. (4.13)

Arguing as in the proof of [6, Lemma 1], the isoperimetric inequality in the plane (see
[1]) yields √

|Dr| ≤ H
1(∂Dr)

2
√
π

=
(θr + 1)H1([P r1 , P

r
2 ])

2
√
π

(4.14)

where

θr :=
H1(ΓP r1 ,P r2 )

H1([P r1 , P
r
2 ])

> 1. (4.15)

Substituting (4.13) in (4.14) we obtain the estimate

|Dr| ≤ λ2
0

4πγ2
f

(θr + 1)2

(θr − β)2
|Dr|2.

In view of (4.10),

|Dr| ≤ 2λ2
0ε0(b− a)

4πγ2
f

(θr + 1)2

(θr − β)2
|Dr|,

which in turn implies

2λ2
0ε0(b− a)

4πγ2
f

(θr + 1)2

(θr − β)2
≥ 1.

By the previous inequality, as ε0 vanishes, then θr must approach β. Since β < 1, we have
a contradiction with (4.15). This completes the proof of the claim and of the proposition.

�

We notice that in view of Proposition 4.2 the upper-end point of each cut is a cusp point
(see Figure 1).

The following proposition is a consequence of the internal-ball condition.
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Proposition 4.3. Let (u, h) ∈ X be a µ-local minimizer for the functional F . Then for
any z0 ∈ Γh there exist an orthonormal basis v1,v2 ∈ R2, and a rectangle

Q := {z0 + sv1 + tv2 : −a′ < s < a′, −b′ < t < b′} ,

a′, b′ > 0, such that Ωh ∩Q has one of the following two representations:

1. There exists a Lipschitz function g : (−a′, a′)→ (−b′, b′) such that g(0) = 0 and

Ωh ∩Q := {z0 + sv1 + tv2 : −a′ < s < a′, −b′ < t < g(s)} ∩ ((a, b)× R).

In addition, the function g admits left and right derivatives at all points that are,
respectively, left and right continuous.

2. There exist two Lipschitz functions g1, g2 : [0, a′) → (−b′, b′) such that gi(0) =
(gi)
′
+(0) = 0 for i = 1, 2, g1 ≤ g2, and

Ωh ∩Q := {z0 + sv1 + tv2 : 0 < s < a′, −b′ < t < g1(s) or g2(s) < t < b′} .

In addition, the functions g1, g2 admit left and right derivatives at all points that
are, respectively, left and right continuous.

For the proof of Proposition 4.3 we refer the reader to [6, Lemma 3] and [10, Propo-
sition 3.5]. In particular Proposition 4.3 entails that the set

Γregh = Γh \ (Γcusph ∪ Γcuth )

is locally Lipschitz.
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