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In this paper, a numerical approach for the pushover analysis of masonry towers, having hollow arbitrary sections, is proposed. Mason
nonlinear softening material in compression and brittle in tension. The tower, modeled in the framework of the Euler-Bernoulli beam t
to a predefined load distribution, but the problem is formulated as a displacement controlled analysis in order to follow the post peak d
of the structural response. Nonlinear geometric effects and nonlinear constraints (the latter due to surrounding buildings) are
Benchmarking pushover analyses are performed with the commercial code Abaqus in relation to a real case (the Gabbia Tower in Mant
the accuracy and reliability of the results obtained with the present formulation and the noteworthy reduction of computing time.
Keywords:
Masonry tower 
nstitut
Pushover analysis 
Plastic hinge length 
Computing time 
Probabilistic analysis

1. Introduction
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of a certain point (named controlling point) to the resultant of a 
predefined horizontal distributed force applied to the structure. 
This curve, representing the seismic capacity of the structure, is 
then compared with the seismic demand, expressed in terms of 
igh se

ed to withstand the effects of response spectrum, through specific procedures as the N2 or the 

equate lateral resistance capacity spectrum method [11,12].

Due to their increasingly relevant role, several seismic codes 
and ductility against horizontal loads, such as those induced by an 
earthquake [1–4].

The analysis of masonry structures is very complex in view of 
their heterogeneity and uncertainty typical of the constituent 
materials. Masonry is a non-homogeneous, non-isotropic material, 
with a mechanical behavior dominated by the nonlinear phase, 
characterized by negligible strength and brittleness in tension, and 
dissipative with softening behavior in compression [5].

For these features, the seismic vulnerability of masonry build-
ings is rarely assessed by linear elastic analysis procedures. Non-
linear dynamic analysis methods represent in principle the most 
reliable tool. Nevertheless, they are very complex and require a 
great amount of computational resources and time [6,7] and fur-
ther research efforts are still needed, before they can be con-
fidently used in standard design [8]. Therefore, nonlinear static 
(pushover) procedures have been increasingly recognized as ef-
fective tools in seismic design and vulnerability assessment: they 
provide information on both the strength and ductility of the 
structure, while preserving the simplicity of a static analysis [9,10]. 
The main outcome consists in the curve relating the displacement
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and recommendations have recently extended the application of 
pushover-based methods to existing and monumental masonry 
buildings [13,14].

Currently, several studies are available in literature dealing with 
the seismic vulnerability assessment of historical masonry 
buildings by means of pushover analyses, e.g. [15–19], and in 
particular of ancient towers [20–22]. It is well recognized that these 
pushover-based methods may be affected by inaccuracy when 
applied to structures whose failure mechanisms are influ-enced by 
the higher modes of vibration [7,23,24]. For this reason, improved 
multi-modal pushover analyses were developed, which combine 
the results obtained using the inertia force distribution related to 
different modes, see e.g. [25].

A key point, when dealing with pushover analysis of masonry 
structures, is the determination of the ultimate displacement in the 
capacity curve. In [13] it is suggested that this is achieved when, in 
the descending branch, the 85% of the maximum force is reached. 
This criterion requires the implementation of a softening branch in 
the masonry constitutive law (perfect plastic models would lead to 
unrealistic high ductility), and consequently the need to perform 
force drive pushover analyses with displacement control.
    This paper presents a simple and efficient numerical approach for 
the pushover analysis of masonry towers, having hollow
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Fig. 1. Stress-strain relationship assumed for masonry.

Fig. 2. Force-displacement curve governing the response of the generic k-th con-
strain acting on the tower.
arbitrary sections. It is assumed that masonry behaves as non-
linear material with dissipative and softening behavior and the 
structure is modeled in the framework of the Euler-Bernoulli beam 
theory. A specific topological algorithm is formulated in order to 
derive, from the three dimensional model of the tower, a bi-di-
mensional discretization of each section, which is then adopted to 
construct its moment-curvature curve. Nonlinear geometric effects 
and the presence of constraints, due to surrounding buildings and 
governed by nonlinear relationships in terms of displacement 
versus reaction force, are also considered. The load distribution is 
assigned as inverted triangular (however, the formulation can deal 
with any type of load distribution), and the problem is formulated 
in terms of monotonically increasing quantities, as primary un-
knowns, such as the section curvatures, in order to follow the post 
peak softening branch of the structural response. In classical FEM 
codes this type of analysis can be performed by means of arc-length 
type procedures, see [26]. To avoid curvature localization, induced 
by the masonry softening behavior, the concept of plastic hinge is 
introduced and the determination of its length is dealt with by 
comparison with classical 3D nonlinear finite element analyses.

Soil is not directly considered in the present model. However, its 
effect enters in the definition of the seismic demand, through 
proper coefficients depending on the soil constitution and defined 
according to seismic codes. The pounding effect, which could be 
one of the main causes of severe building damages during earth-
quake, is not considered in the present formulation.

A case study is then proposed, the Gabbia Tower in Mantua, 
and benchmarking pushover analyses are performed with the 
commercial code Abaqus [27], whose results are used to validate 
the numerical procedure. This example also allowed to point out 
the great reduction of computing time achieved with the proposed 
approach.
 

 

2. Numerical procedure

2.1. Constitutive equations

Masonry in compression is modeled by an elasto-plastic stress-
strain relationship with limited ductility and softening, already 
adopted in other studies, see [6,8,28]. The behavior under tensile 
stresses is assumed to be linear elastic up to the tensile strength, 
followed by a linear softening branch down to zero, see Eq. (1) and 
Fig. 1.
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where: Em is the Young modulus, ε = f E/mc mc m1 is the strain cor-
responding to the compressive strength fmc, ε μ ε=mc mc2 1 1 is the
strain at the end of the plateau, ε μ ε=mcu mc2 2 is the ultimate
compressive strain at the end of the softening branch, ε = f E/mt mt m1

and εmtu represent the strain at the tensile peak stress fmt and the
ultimate tensile strain, respectively. In Eq. (1) the sign � is in-
troduced since all material properties are assumed to be positive,
while stress σm and strain εm are positive if tensile and negative if
compressive.

Masonry towers are frequently surrounded by other buildings,
whose effect is here modeled, in a simplified manner consistent
with the assumption of Euler-Bernoulli beam theory, as a series of
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The above relationship depends on three parameters: the 
maximum force Rk, max  and the elastic and ultimate displacements,
vtRk,el and vtRk,ul respectively.

2.2. Curvature versus bending moment curve

   According to the above hypotheses and to the assumptions in
Fig. 3, the strain distribution along the section can be expressed as:

ε η χ( ) = − ( )y y 3m t t

where the axial deformation ηt is defined with respect to the
center of gravity G of the section.

Given the axial force NEd acting on the section (due to the self-
weight of the tower) and a curvature χ χ= ¯t t , the axial equilibrium
is imposed as:

∫ ( )η σ ε χ η( ) = ( ¯ ) = ( )N dA N, 4t t
A

m m t t Ed

supports acting along the axis of the tower. This approach may 
represent a simplification in some cases (e.g. a tower connected to 
a wall along only one of the edge of the tower) and fully 3D models 
would be needed to properly deal with these more peculiar 
situations.

The use of inverse analysis identification techniques, based on 
measurements of the dynamic behavior of the structure, has been 
shown to be a promising way to investigate the effectiveness of a 
constrain, which strictly depends on the degree of connection 
between the different structural elements, see [29–31].

In the proposed approach, the generic k-th restraint is modeled 
by an elasto-plastic curve with limited ductility, which expresses 
the force Rk transmitted by the support to the tower, as a function 
of the displacement vtRk occurring in correspondence of the re-
strained section, see Fig. 2 and Eq. (2).



Fig. 3. Section of the tower and characteristics of deformation.

Fig. 4. Representation of the discretized tower and of the quantities considered in
the numerical formulation proposed.

Fig. 5. Illustrative representation of a moment-curvature curve.
By exploiting a discretization of the section in triangular ele-
ments having three nodes each, the above equation is discretized
as follows:

∫ ( )( ) ∑ ∑η σ ε χ η σ ε χ η( ) = ( ¯ ) ≅ ( ¯ ) =
( )

N dA
A

N, ,
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where: εmej is the strain computed by means of Eq. (3) at each
Gauss point j ( )= …j 1 3 of each triangular element e, σmej is the
corresponding stress computed trough Eq. (1) and Ae is the area of
each triangular element.

The above equation is nonlinear in the unknown ηt and can be
solved according to the following iterative Newton–Raphson
scheme:
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dmtej being the current tangent modulus of the masonry con-

stitutive law, and Nt
i the axial stress resultant at the i-th iteration.

Once the value of ηt has been computed, the strain distribution is 
known and through Eq. (1) the moment M̄ 

t corresponding to the 
given axial force NEd and curvature χ̄t can be derived as:

∫ ∑ ∑σ ε σ ε¯ = − ( ) ≅ − ( )
( )

M y dA y
A
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t
A

m m
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By repeating the above steps for each curvature of a given set, 
the moment-curvature curve can be built numerically for each 
section.
2.3. Structural response evaluation

In view of the nonlinear geometric effects and the softening 
nature of the masonry constitutive law, the capacity curve of the 
structure may be characterized by a descending branch. In order to 
model this part of the response, we adopted a displacement con-
trolled procedure, in which we applied a displacement δc at a 
certain section of the tower (named controlling point) and we 
formulated the problem in terms of the following unknowns:
(i) the curvatures χt = ⎡⎣ 1 .. .χ χt t ⎤⎦M of M sections used to dis-
cretize the tower along its height, see Fig. 4; and (ii) the load factor
α, which amplifies a predefined load distribution.

Given a vector of curvatures χ χχ = ⎡⎣ ⎤⎦.. .
t t tM1 , the corre-

sponding vector of bending moment χ( ) =χ χ χ⎡⎣ ⎤⎦M MM ...t t t tM1 is
derived through the moment-curvature relationships above de-
rived and the displacement = ⎡⎣ ⎤⎦v vv ...t t tM1 of each section (re-
strained or not) is computed by the principle of virtual work.
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where: ^ = ^ ^⎡⎣ ⎤⎦M MM ...ti ti tiM1
is the bending moment distribution

due to a unit force applied at the specific section i and HT is the 
height of the tower.

In order to avoid curvature localization, induced by the soft-
ening constitutive law, provisions already adopted for RC struc-
tures are here considered (see, e.g. [32]). In particular, when a
section (say j = jcrit ) reaches its ultimate bending moment Mt

ul and 
enters the softening branch of the moment-curvature curve, see 
Fig. 5, the calculation of the sections displacement is performed 
according to Eq. (9), where the contribution of the curvature de-
veloped beyond χt

ul (onset of the softening branch), is spread over 
the assumed plastic hinge length lp.
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Eq. (9) represents a practical approach to circumvent the pro-
blem of curvature localization, and it has the great advantage of 
being easily implementable in the framework of the proposed 
approach.



Fig. 6. Intersection of a tetrahedron with a plane, giving rise to a triangle or to a
quadrilateral figure, which then can be split in two triangles.
⎡⎣ ⎤⎦
As a function of the N displacements at the restrained sections, 

the corresponding reactions forces R = 1 ...R RN are derived through 
Eq. (2) and as a function of R and of the load amplification factor α, 
the corresponding vectors of bending moment

( ) = ⎡⎣ ⎤⎦M MM R ...t t tM
R R R

1 and α( ) =α α α⎡⎣ ⎤⎦M MM ...t t tM1 , respectively,
are derived by equilibrium equations. Finally, to take into account
nonlinear geometric effects, the contribution to the bending mo-
ment distribution of the tower self-weight is expressed as a
function of the displacement vt; i.e. ( ) = ⎡⎣ ⎤⎦M MM v ...t t t tM

v v v
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The final system of ( )+M 1 nonlinear equations can be written
as:
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vtc being the computed displacement of the controlling point.
The above nonlinear system is imposed in the framework of a

step by step procedure, by discretizing the assigned displacement
history into Q instants, run by index = …q Q1 ; and at each instant
q, the equations are solved by means of the following iterative
Newton-Raphson scheme, run by index k:
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are computed by differentiating

numerically the moment- curvature curves. Matrices
χ∂

∂Y
t and α∂
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are Boolean matrices made of 0 and 1.

In order to improve convergence, especially when a sudden
load drop occurs, recourse can be made to a line search algorithm
to optimize the step size in the Newton-Raphson scheme:
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2.4. Load distribution

According to [14], the seismic force Fi acting on a single discrete
mass Wi at a distance zi from the base of a structure having total
weight equal to W, can be computed as:

α=
∑ ( )

F W
z W

z W 15
i

i i

j j j

For a masonry structure with continuously and homogeneous
distributed mass, the above formula can be written in terms of
infinitesimal quantities as:

∫ ∫
α α= ⋅ = ⋅

( )
dF W

zdW
zdW

W
zdV

zdV 16V V

where the load factor α is proportional to the acceleration induced
by the earthquake and V is the volume of the tower. It follows that
the seismic body force (i.e. the force per unit volume λ ( )z ) acting
on the structure reads:

∫
λ α α γ( ) = = ⋅ = ⋅

( )
z
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dV

W
z
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z
z 17V

G

zG being the distance of the center of gravity of the tower from
the base and γ the masonry specific self-weight.

The force per unit length ( )q z acting on the tower modeled as a
beam reads:

λ α γ( ) = ( )⋅ ( ) = ⋅ ( )
( )

q z z A z
z

z
A z

18G

( )A z being the area of each section.
Following the indications contained in many international

codes, a uniform load distribution or a load distribution propor-
tional to the first (or higher) mode shape may be defined similarly.

2.5. Algorithm for section discretization

In order to analyze masonry towers, having hollow arbitrary
sections, a topological algorithm is here introduced to derive the
discretization, based on triangular elements, of the sections
starting from a three-dimensional finite element model of the
whole tower based on tetrahedrons, being the latter usually
available to perform the pushover analysis with commercial finite
element codes.

Each 2D discretization is built up by intersection of the 3D
elements with the plane of the section (of equation = ¯z z). The
intersection of a tetrahedron with a plane gives rise or to a triangle
with three nodes or to a quadrilateral figure with fours nodes,
which can be split in two triangles, as visualized in Fig. 6. From the
union of all these triangles the 2D discretization is derived.

Specifically, the proposed topological algorithm consists in the
following steps:

� All the tetrahedrons intersected by the section of equation = ¯z z
are selected;

� For each of them the equation of the plane of each of the four
faces is derived as follows:

( )+ + + = = … ( )a x b y c z d i0 1 4 19i i i i

� The intersection of these four planes with the equation = ¯z z
gives rise to four straight lines having the following equations:

( )+ + ¯ + = = … ( )a x b y c z d i0 1 4 20i i i i



 
 
 

, 
, 
 
 
 
 
 

� The intersection of these four straight lines among each other
generates six nodes (belonging to the plane = ¯z z) whose co-
ordinates ( )x y, are derived by solving the following systems:

+ + ¯ + =
+ + ¯ + =
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⎪
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⎩

a x b y c z d

a x b y c z d

k
j

0
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111223
234344 21

k k k k

j j j j

� Of these six nodes only those belonging to the tetrahedron are
considered (three or four, see Fig. 6). If the nodes are three, a 
triangular element is directly obtained; vice versa from the four 
nodes, two triangular elements are derived and added to the bi-
dimensional discretization.
Fig. 7. Three dimensional finite element discretization, based on tetrahedron elements,
triangular based discretizations of the sections for the pushover analysis performed wit
3. Validation of the numerical procedure

In order to validate the proposed procedure, a real case was
considered and benchmarking pushover analyses were performed
with the commercial code Abaqus [27], whose results were then
compared with the outcomes of the present approach.

This real case referred to the Gabbia Tower in Mantua, see [33]
overlooking the historic center of the town. Construction techniques
materials, shape and location suggest that this construction dates
back no later than the thirteenth century. The Gabbia Tower, about
54 m high, was built in solid masonry brick and has nearly square
section with the sides 7.5 m long at the base. The load-bearing walls
are about 2.4 m thick until the upper level (about 45.3 m from the
base), then masonry walls thickness decreases to about 0.7 m.
adopted in the pushover analysis performed with Abaqus; and some of the derived
h the proposed approach.
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Fig. 8. Moment-curvature curves of the sections represented in Fig. 7.

Fig. 9. Distributed load (q z) computed according to Eq. (18).

Table 2
Parameters of the Gabbia tower adopted to compute the load distributions λ ( z) and 
(q z).

V (m3) γ (kN/m3) W (kN) zG (m)

2172 18 39,096 23.4
Fig. 7 visualizes the three dimensional finite element dis-
cretization of the tower, adopted to perform the benchmarking 
pushover analysis with the commercial code Abaqus, and the bi-
dimensional discretization of some sections, obtained with the 
algorithm described in Section 2.5.

The compressive strength of the material was defined on the 
basis of what suggested by the Italian Code [13] in Annex C8A.2 for 
a knowledge level of 1. Based on table C8A.2.1 a compressive 
strength and modulus of elasticity equal to 2.4 MPa and 1500 MPa, 
respectively, were assumed for solid brick and lime mortar. Ap-
plying then a confidence factor CF equal to 1.35 and the additional 
correction factor, according to the table C8A.2.2 in [13], of 1.5 for a 
mortar of good quality, we obtained a final design compressive 
strength equal to fmc¼2.67 MPa. The tensile strength of the ma-
sonry was assumed equal to fmt¼0.09 MPa.

The three dimensional CAD geometrical model (.sat format) of 
the tower was imported into the finite element program Abaqus 
[27]. As a compromise between the conflicting requirements of 
reasonable computing time and accuracy of the solution, a finite 
element discretization of 99,108 four nodes elements, for a total 
number of 20,443 � 3¼61,329 degrees of freedom, was adopted. 
Perfect connection was assumed between perpendicular walls.

In Abaqus, the concrete damage plasticity model (CDP) was 
adopted for masonry. This is characterized by: (1) linear and iso-
tropic behavior in the elastic regime and (2) plastic damageable 
behavior in the nonlinear range, taking into account the difference 
of compressive and tensile strengths and the softening once the 
strength of the material is reached. The plasticity-based damage 
model adopted assumes that the main failure mechanisms are 
tensile cracking and compressive crushing. For more details about 
the adopted constitutive law, see [6,8,27].

Abaqus analysis was performed in two steps: the self-weight 
was initially applied and then the body force λ ( z), defined in Eq.
(17), was applied along the height of the tower.

Table 1, in relation to Fig. 1, reports the uniaxial stress-strain 
relationship properties adopted for the analyses with Abaqus and 
the present formulation.

Fig. 8 visualizes the moment-curvature curves of the sections 
represented in Fig. 7, obtained according to the procedure de-
scribed in Section 2.2. Obviously, the more the section is close to 
the base of the tower, the larger the axial force induced by the self-
weight, the higher the ultimate bending moment and the smaller 
the ultimate curvature.

The load distribution, applied in the proposed procedure, is 
visualized in Fig. 9. This was computed according to Eq. (18), as-
suming the parameters reported in Table 2. The piecewise linear 
aspect is due to a non-uniform cross section and to the influence of 
the openings along the height of the tower.
A first parametric study was performed, in which lp was kept equal 

to 4.0 m and different along the height discretizations
M = 50 100 )− − −150 200 were adopted to show the efficiency of the 

provision adopted to avoid curvature localization, see Fig. 10. The 
effect of large displacement is also shown in this parametric study, 
which caused a 6% decrease of the maximum shear base force and a 
very small variation in the maximum displacement.

While different expressions, characterized by large variations, 
are proposed in literature to estimate plastic hinge length for
Table 1
Uniaxial stress-strain relationship properties adopted for both the analyses with Abaqu

Em fmc fmt ε = f E/mc mc m1

1500 MPa 2.67 MPa 0.09 MPa 0.001778
reinforced concrete elements (see e.g. [32,34–37]), similar for
mulations do not exist, to the best of the authors' knowledge, fo
unreinforced masonry structures. A preliminary guidance about it
value can be derived by adopting the same approaches proposed
for reinforced concrete, but without considering the contribution
of the reinforcement. According to [32] and references therein, l
can be estimated either as l 0.5Hp S= = 3.75 m or
0.08HT = 4.32 m. Applying the proposal in [36], it follows that

l 0.25Hp S= = 1.875 m; while following [37], 0.15 1.125H m( )= <S pl

<0.25HS ( =1.875 m). However, differently from classical ap
proaches for RC structures, the assumed plastic hinge length lp is
here multiplied by the curvature developed beyond χt

ul (i.e. the onse
of the softening branch, which has a more objective definition than
the elastic limit used for RC structures, see [35]). Therefore large
values of lp have to be expected.
    In order to investigate the influence of the plastic hinge length on
the response of the structure and to define a reliable value for
s and the present formulation.

εmc2 εmcu ε = f E/mt mt m1 εmtu

0.0035 0.0100 0.000025 0.00150



Fig. 10. Pushover curves computed, without and with large displacement effects,
assuming =l 4.0 mp and different tower discretizations
( )= − − −M 50 100 150 200 .

Fig. 11. Pushover curves computed, with geometric nonlinear effects, with Abaqus 
and with the present approach assuming different plastic hinge lengths.

 

 
 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 

Fig. 12. Results of the pushover analysis, at the ultimate displacement, performed
with Abaqus in terms of: (a) displacement along the loaded direction (scale factor
x20); (b) maximum inelastic principal strain distribution.

Fig. 13. (a) Pushover curves obtained considering different degrees of constrain of a 
support acting on the tower; (b) bending moment distributions computed in cor-
respondence of the final load achieved in the pushover curves represented in (a).
this parameter, a second parametric study was performed with
respect to lp, whose results are visualized in Fig. 11, in terms of load-
displacement curves, computed with the proposed procedure and
with Abaqus. For each lp assumed, the results are in good agreement
in terms of maximum force and failure mechanism, the latter
consisting in a flexural hinge at the base of the tower, see Fig. 12.
Plastic hinge length exerts its influence on the softening portion of
the curve only, i.e. on the maximum displacement. By comparison
with the 3D finite element analysis, it seems that lp = 4.0 m can be
taken here as the most reliable value of this parameter in this initial
presentation of the methodology.

This example also pointed out the great reduction of computing
time achieved with the proposed approach with respect to the
commercial code. Specifically, the computing time for one push-
over analysis required by Abaqus and the proposed approach are
about 5 h and 20 min, respectively, of CPU time by a computer
i7-2600 with 3.40 GHz processor and 16 GB of RAM.

In order to model the effect of the buildings surrounding the
tower, without the aim of performing an exhaustive vulnerability
analysis, the structure is now modeled imposing a restraint acting
on the tower at a distance of z̄1 = 18.9m from the base, see Fig. 4,
representing the effect of the floors and vaults supported by the
tower.

On the basis of the geometry and material properties of the
surrounding buildings, elastic and ultimate displacements of the
constrain were estimated equal to vtR1,el = 0.05 m and
vtR1,ul = 0.10 m, respectively, and the maximum force equal to
R1, max = 1600 kN. The cases of no and perfect constrain are also
considered for comparison purposes.
As expected, the presence of a support induced in the pushover 
curve an increase of both the initial stiffness and the maximum 
force achieved, see Fig. 13(a); and caused the plastic hinge to occur 
at the constrain position instead of the base, see Fig. 13(b). While 
in case of damaging constrain the bending moment distribution is 
only slightly different from the case of no constrain; a perfect 
constrain induced also a sign reversal in the bending moment 
distribution.



3.1. Probabilistic analysis

It is well known that material properties of existing masonry
are characterized by a large variability. For this reason, the pro-
posed procedure is here adopted to perform a probabilistic in-
vestigation of the influence of the material properties
Table 3
Probabilistic characterization of the parameters involved in the Monte Carlo si-
mulation, and of the results achieved.

Input data Output data

Em [MPa] fmc [MPa] μ μ=1 2 lp [m] Fmax [kN] dmax [mm]

Mean value 1500 2.67 2.50 4.0 3155 579
Stand. Deviat 300 0.53 0.50 0.8 270 (9%) 231 (40%)
Correlation 0.80 0.50 0.54

Fig. 14. Results of the stochastic pushover analysis, with identification of the curves
based on mean and mean7standard deviation parameter values.

Fig. 15. Probability density and cumulative distributions computed by Monte Carlo simul
and dmax , respectively.
uncertainties on the tower structural response. The parameters 
involved in this Monte Carlo study are reported in Table 3 with the 
assumed probabilistic characterization (see, e.g. [19,38,39]), while 
the other parameters are kept constant and equal to the values 
reported in Table 1. Three thousand combinations were then 
randomly extracted assuming a frequency normal distribution for 
each parameter. Monte Carlo simulation was split over 7 pro-
cessors of a computer i7-2600 with 3.40 GHz processor and 16 GB 
of RAM and the total computing time was equal to about 6 days.

Fig. 14, which visualizes all the pushover curves obtained by the 
3 � 103 combinations, shows a large variability of the tower struc-
tural response, particularly in terms of ultimate displacement.

Fig. 15 visualizes the probability density and cumulative dis-
tribution functions of both the maximum force Fmax and dis-
placement dmax, which were taken as most representative para-
meters of the structural response and whose mean value and 
standard deviation are reported in Table 3. Bars represent the 
numerical results of the Monte Carlo simulation while continuous 
lines represent the theoretical values based on a Weibull and 
Lognormal distributions assumed for Fmax and dmax, respectively. In 
particular, from these results it is possible to observe a rather large 
variability of the maximum displacement (characterized by a 
standard deviation equal to 40% of the mean value), which re-
presents a crucial parameter in the seismic vulnerability assess-
ment of the structure. This result underlines, as in previous studies 
(see, e.g [38,39] and references therein), the necessity to take into 
account the statistical variability of masonry parameters, for 
seismic vulnerability assessment purposes.

Fig. 16 visualizes the convergence curves, with respect to the 
number of Monte Carlo extractions, of mean and standard deviation 
values of Fmax and dmax, respectively. From this figure it is possible to 
observe that in this case 103 combinations were enough in order to 
guarantee convergence of the probabilistic analysis.
ation and their analytical representations by Weibull and Lognormal curves for Fmax



Fig. 16. Convergence of mean and standard deviation values of Fmax and dmax, respectively.
4. Closing remarks

In this paper a numerical procedure is proposed in order to
perform force driven pushover analyses of masonry towers with
displacement control.

The proposed procedure presents the following advantages: i)
it takes into account geometrical and material nonlinear effects
and it is robust with respect to sudden or gradual load drops,
which permit to follow easily the post peak softening branch of
the structural response; ii) the concept of plastic hinge, necessary
to avoid curvature localization arising in view of the adopted
softening constitutive law, can be easily implemented; iii) the real
geometry of the tower, characterized by hollow arbitrary sections
(including openings and changes of section) can be considered.

Benchmarking pushover analyses were performed with the
commercial code Abaqus in relation to a real case (the Gabbia
Tower in Mantua) which proved the accuracy and reliability of the
results obtained with the present formulation and the noteworthy
reduction of computing time.

It was pointed out the great influence of the assumed plastic
hinge length on the ultimate displacement achieved, which in turn
plays a crucial role when the capacity curve has to be compared with
the seismic demand, for seismic vulnerability assessment purposes.
Since to the best of the authors’ knowledge, formulations for plastic
hinge length do not exist for unreinforced masonry structures, an
estimation of this parameter was done by comparison with 3D finite
element analyses, but its effect on the final response of the structure
requires further explanation and validation.

The influence of the uncertainty of the plastic hinge length and
other material parameters, on the tower structural response, was
investigated by performing a probabilistic analysis, which was made
possible by the considerable saving of computing time achieved by
the proposed approach, with respect to standard 3D finite element
analyses. Indeed, the efficiency of the proposed numerical proce-
dure turned out to be particularly relevant in this probabilistic
study, which required results from a large number of simulations, to
reach conclusions valid from a statistical point of view.

This numerical model is not intended to provide an exhaustive
seismic vulnerability analysis of a masonry tower. Local failure
mechanisms induced by peculiar crack patterns or the presence of 
vaults and large openings, which often characterize the collapse 
mechanisms in masonry towers, see [40], have still to be checked 
by proper methods. However, this numerical model is able, as long 
as the assumption of plane section is valid, to consider the main 
features influencing the global structural behavior of a masonry 
tower, as material nonlinear and softening behavior, large dis-
placements, hollow generic section. This numerical approach has to 
be considered complementary to more sophisticated and time 
consuming 3D finite element analyses, able to deal in principle 
with the whole complexity of a structure. This approach may be 
adopted when the computing time represents a crucial item, such 
as in a probabilistic analysis or when, following a procedure sug-
gested in [14], a quick initial vulnerability assessment of the col-
lapse mechanisms induced by the first modes of vibration is re-
quired, in order to figure out the possible need for deeper 
investigations.
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