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STABILITY ANALYSIS OF ABSTRACT
SYSTEMS OF TIMOSHENKO TYPE

VALERIA DANESE, FILIPPO DELL’ORO AND VITTORINO PATA

Abstract. We consider an abstract system of Timoshenko type










ρ1ϕ̈+ aA
1

2 (A
1

2ϕ+ ψ) = 0

ρ2ψ̈ + bAψ + a(A
1

2ϕ+ ψ)− δAγθ = 0

ρ3θ̇ + cAθ + δAγ ψ̇ = 0

where the operator A is strictly positive selfadjoint. For any fixed γ ∈ R, the stability
properties of the related solution semigroup S(t) are discussed. In particular, a general
technique is introduced in order to prove the lack of exponential decay of S(t) when the
spectrum of the leading operator A is not made by eigenvalues only.

1. Introduction

Let (H, 〈·, ·〉, ‖ · ‖) be an infinite-dimensional separable real Hilbert space, and let

A : D(A) ⊂ H → H

be a strictly positive (real) selfadjoint unbounded linear operator with domain D(A), i.e.
A = A∗ > 0, where the dense embedding D(A) ⊂ H need not be compact. For t > 0, we
consider the abstract evolutionary system

(1.1)











ρ1ϕ̈+ aA
1

2 (A
1

2ϕ+ ψ) = 0,

ρ2ψ̈ + bAψ + a(A
1

2ϕ+ ψ)− δAγθ = 0,

ρ3θ̇ + cAθ + δAγψ̇ = 0,

in the unknowns ϕ = ϕ(t), ψ = ψ(t) and θ = θ(t), where the dot stands for derivative
with respect to the time variable t. Here, the coupling exponent γ is a real number,
whereas ρ1, ρ2, ρ3, as well as a, b, c and the coupling parameter δ are strictly positive fixed
constants.

Remark. For the particular choice H = L2(0, ℓ) and

A = −∂xx with domain D(A) = H2(0, ℓ) ∩H1
0 (0, ℓ),

system (1.1) can be interpreted as a nonlocal version of a thermoelastic beam model of
Timoshenko type [18], subject to the Dirichlet boundary conditions

ϕ(0, t) = ϕ(ℓ, t) = ψ(0, t) = ψ(ℓ, t) = θ(0, t) = θ(ℓ, t) = 0,
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where ϕ, ψ, θ : (x, t) ∈ [0, ℓ] × [0,∞) 7→ R represent the transverse displacement of a
beam with reference configuration [0, ℓ], the rotation angle of a filament and the relative
temperature, respectively.

For every fixed γ ∈ R, system (1.1) is shown to generate a contraction semigroup
S(t) = etL acting on the natural weak energy space H. The focus of this work is a
detailed analysis of the stability properties of S(t), which turn out to depend heavily on
the particular choice of γ. To this end, a crucial object is the so called stability number,
firstly introduced in [13, 17],

χ =
a

ρ1
− b

ρ2
,

defined as the difference between the propagation speeds of the first two hyperbolic equa-
tions.

The main result of the paper can be stated as follows:

Theorem. The semigroup S(t) is exponentially stable if and only if

χ = 0 and γ =
1

2
.

Possibly, the most interesting feature of the theorem is that we are not assuming the
compactness of the embedding D(A) ⊂ H . This translates into the fact that the spectrum
of A can be a complicated object, not simply made of an increasing sequence αn → ∞
of eigenvalues. Indeed, the usual semigroup techniques employed to prove the lack of
exponential decay of linear semigroups rely in a crucial way on the existence of such a
sequence αn. Here, we establish a general method for the exponential stability analysis
when the spectrum of A consists of approximate eigenvalues (which is always the case
for selfadjoint operators). This method allows to revisit stability results for a number
of equations or systems, already known when the leading operator has compact inverse.
For instance, a complete answer can be given on the uniform decay of the wave equation
coupled with the classical heat equation (see e.g. [1, 12])

{

ü+ Au− Aγθ = 0,

θ̇ + Aθ + Aγ u̇ = 0,

depending on the parameter γ ∈ R. In this case, exponential stability occurs if and only
if γ ∈ [1

2
, 1].

Aside from exponential (or uniform) decay, we are also interested in weaker notions of
stability (see §3 for the definitions). Indeed, we will prove the following theorem.

Theorem. For a general strictly positive selfadjoint operator A,

(i) S(t) is semiuniformly stable for γ ∈ [1
2
, 1];

(ii) S(t) is not semiuniformly stable when γ > 1.

Conclusion (ii) above follows from the fact that the infinitesimal generator L of S(t)
turns out to be invertible if and only if γ ≤ 1.

In the particular case when D(A) ⋐ H (i.e. the embedding D(A) ⊂ H is compact), we
are able to complete the picture. Namely, we have



Theorem. If in addition D(A) ⋐ H, then

(i) S(t) is semiuniformly stable if and only if γ ≤ 1;

(ii) S(t) is stable for every γ ∈ R.

It is worth noting that, in this situation, the domain of L is compactly embedded into
the phase space H if and only if γ < 1. Thus, γ = 1 can be regarded as a sort of critical
exponent for the problem.

In order to explain the difficulties encountered in the analysis, we begin to observe that
the sole dissipation present in the system is the “thermal” one, provided by the third (heat)
equation, while the first two (wave) equations alone are conservative. Accordingly, the
stabilization mechanism is based on the transfer of thermal dissipation into mechanical
dissipation, and this happens through the coupling. Roughly speaking, the coupling
should be sufficiently strong in order for the third equation to transfer enough dissipation,
but not too strong due to the first two equations. Indeed, wave equations with very strong
damping are less likely to stabilize (see e.g. [5, 7]). In addition, for systems of Timoshenko
type, the stability number χ comes into play: when the waves exhibit different speeds, the
dissipation transfer from the variable ψ to ϕ loses effectiveness, whereas χ = 0 produces
a sort of resonance, as already observed in [13, 17].

Plan of the paper. In the next §2 we introduce the functional setting of the problem.
In §3 we give a general presentation of the decay properties of bounded linear semigroups.
In §4 we rewrite system (1.1) as an ODE by introducing the linear operator L, which is
proved to be the infinitesimal generator of a contraction semigroup in the subsequent §5.
The remaining §6,7,8,9 are devoted to the statements and the proofs of the decay results.
In particular, the exponential stability and the lack of exponential stability of S(t) are
discussed in §8 and §9, respectively, whereas §6 and §7 are concerned with stability and
semiuniform stability.

2. Functional Setting

We consider the nested family of Hilbert spaces

Hr = D(A
r

2 ), r ∈ R,

with inner products and norms given by

〈u, v〉r = 〈A r

2u,A
r

2v〉 and ‖u‖r = ‖A r

2u‖.
The index r will be always omitted whenever zero. For r > 0, it is understood that H−r

denotes the completion of the domain, so that H−r is the dual space of Hr. The symbol
〈·, ·〉 will also be used to denote the duality pairing between H−r and Hr.

Remark. If u ∈ H and r > 0, we can still write Aru to mean the element of the dual
space H−2r acting as

〈Aru, v〉 = 〈u,Arv〉, ∀v ∈ H2r.

Along the paper, we will also consider the complexification of H (and, more generally,
the one of Hr). This is the complex Hilbert space

HC = H ⊕ iH = {u+ iv : u, v ∈ H},



endowed with the inner product

〈u+ iv, u′ + iv′〉 = 〈u, u′〉+ 〈v, v′〉+ i〈v, u′〉 − i〈u, v′〉.
In a similar manner, we define the complexification A of A to be the linear operator on
HC with domain

D(A) = {u+ iv : u, v ∈ D(A)}
acting as

A(u+ iv) = Au+ iAv.

Since A is strictly positive selfadjoint, so is A, and the two spectra σ(A) and σ(A) coincide.
In particular, σ(A) ⊂ R, and the resolvent sets satisfy the equality ρ(A) = ρ(A) ∩ R.
Besides,

α0 = min{α : α ∈ σ(A)} > 0

and (as A is unbounded)

sup{α : α ∈ σ(A)} = ∞.

Being A selfadjoint, it is well known that σ(A) coincides with the approximate point
spectrum σap(A), made by approximate eigenvalues (see e.g. [10]); namely, α belongs to
the spectrum of A if and only if there is a sequence of unit vectors wn ∈ HC such that

lim
n→∞

‖(α− A)wn‖ = 0.

If D(A) ⋐ H , which is the same as saying that A−1 and A−1 are compact operators, then
σ(A) reduces to the point spectrum σp(A), consisting of an increasing sequence αn → ∞
of eigenvalues of A.

Denoting by EA the spectral measure of A (see e.g. [16]), for every complex measurable
function f on σ(A) one can define the linear operator

f(A) =

∫

σ(A)

f(t) dEA(t)

with dense domain

D(f(A)) =
{

z ∈ HC :

∫

σ(A)

|f(t)|2 dµA

z (t) <∞
}

.

Here, µA

z is the finite measure on C supported on σ(A) given by

µA

z (Σ) = ‖EA(Σ)z‖2,
for every Borel set Σ ⊂ C. Recall that f(A) is selfadjoint if and only if f is real valued.
Furthermore,

‖f(A)z‖2 =
∫

σ(A)

|f(t)|2 dµA

z (t), ∀z ∈ D(f(A)).

In particular, for every r > 0 we deduce the Poincaré type inequality

(2.1) ‖z‖ ≤ α
− r

2

0 ‖z‖r, ∀z ∈ Hr
C.



3. Decay Types of Bounded Linear Semigroups

In this section, we dwell on the possible decay types of a strongly continuous semigroup
of linear operators

S(t) = etL : H → H
acting on a real Hilbert space H, with infinitesimal generator L : D(L) ⊂ H → H. We
further assume that S(t) is bounded, i.e.

sup
t≥0

‖S(t)‖L(H) <∞,

where L(H) denotes the Banach space of bounded linear operators on H.

Remark. The complexification L of the linear operator L is the infinitesimal generator
of the bounded semigroup

SC(t)(z + iw) = S(t)z + iS(t)w

on the complex Hilbert space HC = H⊕ iH, which satisfies the equality

‖S(t)‖L(H) = ‖SC(t)‖L(HC), ∀t ≥ 0.

3.1. Stability. The semigroup S(t) is said to be stable if

lim
t→∞

‖S(t)z‖H = 0, ∀z ∈ H.

Remark. As far as stability is concerned, there is no need to require the boundedness of
S(t) in the hypotheses. Indeed, as a consequence of the Uniform Boundedness Principle,
a stable semigroup is automatically bounded.

For a contraction semigroup, the following stability criterion from [6] can be useful.

Theorem 3.1. Let S(t) be a contraction semigroup (i.e. ‖S(t)‖L(H) ≤ 1 for all t), and
let V ⊂ H be a Hilbert space with continuous and dense embedding (but not necessarily
compact). Suppose that, for every fixed z ∈ V,

(i) The set
⋃

t≥tz
S(t)z is relatively compact in H and bounded in V, for some tz ≥ 0;

(ii) ‖S(t)z‖H = ‖z‖H for all t > 0 implies that z = 0.

Then S(t) is stable.

3.2. Semiuniform stability. The semigroup S(t) is said to be semiuniformly stable if
there exists a nonnegative function h(t) vanishing at infinity such that

‖S(t)z‖H ≤ h(t)‖Lz‖H, ∀z ∈ D(L).

Remark. Semiuniform stability is a stronger notion than stability. Indeed, it ensures
the convergence S(t)z → 0 for all z ∈ D(L), and since S(t) is bounded, this immediately
yields the convergence S(t)z → 0 for all z ∈ H.

In light of the works of C.J.K. Batty and coauthors [2, 3, 4], semiuniform stability can
be given equivalent formulations, as shown in the next theorem, which also provides an
effective criterion.

Theorem 3.2. The following are equivalent:



(i) S(t) is semiuniformly stable.

(ii) The imaginary axis iR belongs to the resolvent set ρ(L).

(iii) L is invertible1 and limt→∞ ‖SC(t)L
−1‖L(HC) = 0.

(iv) limt→∞ ‖SC(t)(1− L)−1‖
L(HC)

= 0.

Proof. The equivalence (ii)⇔(iv) is proved in [4], while (ii)⇔(iii) can be found in [2, 3].
It is also apparent that (iii)⇒(i). We conclude the proof by showing the implication
(i)⇒(iv). To this end, we first observe that (i) gives at once

‖SC(t)z‖HC
≤ h(t)‖Lz‖HC

, ∀z ∈ D(L).

Since SC(t) is a bounded semigroup, 1 ∈ ρ(L). Accordingly,

‖SC(t)(1− L)−1z‖HC
≤ h(t)‖L(1 − L)−1z‖HC

, ∀z ∈ HC.

On the other hand,

L(1 − L)−1 ∈ L(HC),

and so there exists M ≥ 0 such that

‖SC(t)(1− L)−1z‖HC
≤ h(t)M‖z‖HC

, ∀z ∈ HC,

yielding the desired limit (iv).

3.3. Exponential or uniform stability. The semigroup S(t) is said to be exponentially
stable (or uniformly stable) if there exist K ≥ 1 and κ > 0 such that

‖S(t)‖L(H) ≤ Ke−κt.

Since the infinitesimal generator of an exponentially stable semigroup is always invertible,
it is apparent that exponential stability implies semiuniform stability: just take

h(t) = K‖L−1‖L(H)e
−κt.

Remark. It is well know that exponential stability occurs if and only if

lim
t→∞

‖S(t)‖L(H) = 0,

which is true if and only if

‖S(t⋆)‖L(H) < 1,

for some t⋆ > 0 (see e.g. [14]). Actually, by the Uniform Boundedness Principle, exponen-
tial stability can be inferred whenever there exists a nonnegative function k(t) vanishing
at infinity such that

‖S(t)z‖H ≤ Czk(t)‖z‖H, ∀z ∈ H,
where the positive constant Cz depends on z. In other words, lack of exponential stability
prevents the existence of a uniform decay pattern of the trajectories.

1Since L is a closed operator, being the infinitesimal generator of a (complex) strongly continuous
semigroup, by the Closed Graph Theorem we learn that L−1 ∈ L(HC).



As shown by J. Prüss [15], the exponential stability of a semigroup, no matter if bounded
or not, is equivalent to the condition

iR ⊂ ρ(L) and sup
λ∈R

‖(iλ− L)−1‖L(HC) <∞.

When (as in the present case) S(t) is bounded, the result can be given a more convenient
formulation [8].

Theorem 3.3. The semigroup S(t) is exponentially stable if and only if there exists ε > 0
such that

inf
λ∈R

‖iλz − Lz‖HC
≥ ε‖z‖HC

, ∀z ∈ D(L).

4. The Linear Operator L

We define the phase space of our problem to be

H = H1 ×H ×H1 ×H ×H

endowed with the (equivalent) Hilbert norm

‖(ϕ, ϕ̃, ψ, ψ̃, θ)‖2H = a‖A 1

2ϕ + ψ‖2 + b‖ψ‖21 + ρ1‖ϕ̃‖2 + ρ2‖ψ̃‖2 + ρ3‖θ‖2.
Then, introducing the evolution

Z(t) = (ϕ(t), ϕ̃(t), ψ(t), ψ̃(t), θ(t)),

we rewrite system (1.1) as the ODE in H
d

dt
Z(t) = LZ(t),

where the linear operator L is given by

L













ϕ
ϕ̃
ψ

ψ̃
θ













=















ϕ̃

− a
ρ1
A

1

2 (A
1

2ϕ+ ψ)

ψ̃
1
ρ2
A(δAγ−1θ − bψ)− a

ρ2
(A

1

2ϕ+ ψ)

− 1
ρ3
A(cθ + δAγ−1ψ̃)















,

with domain

D(L) =























z ∈ H

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ̃ ∈ H1

ϕ ∈ H2

ψ̃ ∈ H1

δAγ−1θ − bψ ∈ H2

cθ + δAγ−1ψ̃ ∈ H2























.

By the very definition of D(L), some additional regularity on the components ψ̃ and θ
is obtained.2

2Actually, further regularization occurs for the remaining variables as well.



Proposition 4.1. Let z = (ϕ, ϕ̃, ψ, ψ̃, θ) ∈ D(L). Then

(4.1) ψ̃ ∈
{

H4γ−3 if 1 < γ ≤ 3
2
,

H2γ if γ > 3
2
,

and

(4.2) θ ∈











H2 if γ ≤ 1
2
,

H3−2γ if 1
2
< γ ≤ 1,

H2γ−1 if γ > 1.

In particular, θ ∈ H1 for every γ ∈ R.

Proof. If γ > 1, since ψ ∈ H1, we infer from the condition

δAγ−1θ − bψ ∈ H2

that θ ∈ H2γ−1. This observation, together with

cθ + δAγ−1ψ̃ ∈ H2,

imply (4.1). Assume next γ ≤ 1. In this case, using once more the latter relation,

ψ̃ ∈ H1 ⇒ Aγ−1ψ̃ ∈ H3−2γ ⇒ θ ∈ Hmin{2,3−2γ},

which is exactly (4.2).

Further properties of L are established here below.

Proposition 4.2. The operator L is dissipative for every γ ∈ R.

Proof. This amounts to show that

〈Lz, z〉H ≤ 0, ∀z ∈ D(L).

Indeed, given z = (ϕ, ϕ̃, ψ, ψ̃, θ) ∈ D(L), direct computations yield

(4.3) 〈Lz, z〉H = −c‖θ‖21,
where cancelations are allowed due to the regularity of the domain. In particular, we run
across the terms

〈A(δAγ−1θ − bψ), ψ̃〉 = 〈δAγ−1θ − bψ, ψ̃〉1 = δ〈Aγ− 1

2θ, A
1

2 ψ̃〉 − b〈ψ, ψ̃〉1
and

〈A(cθ + δAγ−1ψ̃), θ〉 = 〈cθ + δAγ−1ψ̃, θ〉1 = c‖θ‖21 + δ〈A 1

2 ψ̃, Aγ− 1

2 θ〉,
which make sense by virtue of (4.1)-(4.2).

The next result concerns with the invertibility of L. Observe that L is a closed operator:
this can be checked directly, or deduced by the subsequent Theorem 5.1. Hence, by the
Closed Graph Theorem, if L−1 exists, it belongs to L(H) as well.

Proposition 4.3. The operator L is invertible if and only if γ ≤ 1.



Proof. The operator L is invertible if and only if, for any f = (f1, f2, f3, f4, f5) ∈ H, the
equation

Lz = f

admits a unique solution z = (ϕ, ϕ̃, ψ, ψ̃, θ) ∈ D(L). Componentwise, this translates into


























ϕ̃ = f1,

−aA 1

2 (A
1

2ϕ+ ψ) = ρ1f2,

ψ̃ = f3,

A(δAγ−1θ − bψ)− a(A
1

2ϕ+ ψ) = ρ2f4,

−A(cθ + δAγ−1ψ̃) = ρ3f5.

Assume first γ > 1. Choosing f3 ∈ H1, but not more regular, we see at once from the
third equation of the system that ψ̃ ∈ H1 but not more, contradicting (4.1). Conversely,
if γ ≤ 1, the explicit solution z reads

ϕ = −ρ1
ab

(b+ aA−1)A−1f2 +
δ2

bc
A2γ− 5

2f3 +
ρ2
b
A− 3

2f4 +
ρ3δ

bc
Aγ− 5

2f5,

ϕ̃ = f1,

ψ =
ρ1
b
A− 3

2 f2 −
δ2

bc
A2γ−2f3 −

ρ2
b
A−1f4 −

ρ3δ

bc
Aγ−2f5,

ψ̃ = f3,

θ = −δ
c
Aγ−1f3 −

ρ3
c
A−1f5.

It is apparent that ϕ̃, ψ, ψ̃, θ ∈ H1 and ϕ ∈ H2. Besides,

δAγ−1θ − bψ = −ρ1A− 3

2 f2 + ρ2A
−1f4 ∈ H2

and
cθ + δAγ−1ψ̃ = −ρ3A−1f5 ∈ H2.

Hence, z ∈ D(L).

Remark. In fact, when γ ≤ 1, the relation L−1 ∈ L(H) can be easily deduced by the
proof above.

We end the section by discussing the compactness of the embedding D(L) ⊂ H in the
case when A−1 is a compact operator,3 i.e. D(A) ⋐ H .

Proposition 4.4. Assume that A−1 is a compact operator. Then D(L) ⋐ H if and only
if γ < 1.

Proof. First, we provide a counterexample to compactness when γ ≥ 1. Choose an or-
thonormal basis un of H1 and any two bounded sequences ϕn ∈ H2 and ϕ̃n ∈ H1. Then,
define the sequence zn = (ϕn, ϕ̃n, ψn, ψ̃n, θn), where

ψn =
δ

b
un, ψ̃n = −c

δ
A2−2γun, θn = A1−γun.

3Clearly, if the embedding D(A) ⊂ H is not compact, the same is true for D(L) ⊂ H.



Since γ ≥ 1, it is readily seen that ψ̃n, θn ∈ H1. Moreover, by construction,

δAγ−1θn − bψn = 0, cθn + δAγ−1ψ̃n = 0.

Thus zn is a bounded -in the norm of D(L)- sequence in D(L), whose component ψn has
no convergent subsequence in H1.

Assume next γ < 1, and let zn = (ϕn, ϕ̃n, ψn, ψ̃n, θn) be bounded in D(L). In particular,

ϕn is bounded in H2 ⋐ H1, whereas ϕ̃n, ψ̃n, θn are bounded in H1 ⋐ H . Accordingly,
there exist ϕ ∈ H1 and ϕ̃, ψ̃, θ ∈ H such that, up to a subsequence,

ϕn → ϕ in H1

and
ϕ̃n → ϕ̃ in H, ψ̃n → ψ̃ in H, θn → θ in H.

We are left to prove the convergence ψn → ψ in H1, for some ψ ∈ H1. Indeed, knowing
that

δAγ−1θn − bψn is bounded in H2,

we get the convergence, up to a subsequence,

δAγ−1θn − bψn → η in H1,

for some η ∈ H1. At the same time, since γ < 1,

Aγ−1θn → Aγ−1θ in H1,

so implying the desired convergence.

Remark. It is clear that all the results above remain valid for the complexification L

acting on HC as well, the only difference being the dissipative estimate (4.3), which
becomes

(4.4) Re 〈Lz, z〉HC
= −c‖θ‖21, ∀z ∈ D(L).

5. The Contraction Semigroup

The next step is showing that L generates a semigroup.

Theorem 5.1. For every fixed γ ∈ R, the linear operator L is the infinitesimal generator
of a strongly continuous semigroup

S(t) = etL : H → H
of linear contractions.

The proof is carried out via an application of the classical Lumer-Phillips Theorem (see
[14]).

Theorem 5.2 (Lumer-Phillips). The operator L is the infinitesimal generator of a con-
traction semigroup S(t) = etL on H if and only if

(i) L is dissipative; and

(ii) ran(1− L) = H.

Indeed, point (i) is exactly the content of Proposition 4.2. Accordingly, Theorem 5.1
follows from the next lemma, establishing (ii).



Lemma 5.3. The operator 1− L : D(L) ⊂ H → H is onto.

Proof. For f = (f1, f2, f3, f4, f5) ∈ H, we look for a solution z = (ϕ, ϕ̃, ψ, ψ̃, θ) ∈ D(L) to
the equation

z − Lz = f,

which, componentwise, reads

ϕ− ϕ̃ = f1,

ρ1ϕ̃+ aA
1

2 (A
1

2ϕ+ ψ) = ρ1f2,

ψ − ψ̃ = f3,

ρ2ψ̃ + A(bψ − δAγ−1θ) + a(A
1

2ϕ+ ψ) = ρ2f4,

ρ3θ + A(cθ + δAγ−1ψ̃) = ρ3f5.

Substituting the first and the third equation of the system above into the second and the
fourth one, respectively, we obtain

(ρ1 + aA)ϕ̃+ aA
1

2 ψ̃ = h1,(5.1)

aA
1

2 ϕ̃+ (ρ2 + a+ bA)ψ̃ − δAγθ = h2,(5.2)

δAγψ̃ + (ρ3 + cA)θ = h3,(5.3)

where

h1 = −aAf1 + ρ1f2 − aA
1

2f3 ∈ H−1,

h2 = −aA 1

2f1 − (a+ bA)f3 + ρ2f4 ∈ H−1,

h3 = ρ3f5 ∈ H.

Collecting equations (5.1) and (5.3), we learn that

ϕ̃ = (ρ1 + aA)−1(h1 − aA
1

2 ψ̃),(5.4)

θ = (ρ3 + cA)−1(h3 − δAγψ̃).(5.5)

Substituting (5.4)-(5.5) into (5.2), and exploiting the Functional Calculus of A, we obtain

(5.6) ψ̃ =

∫

σ(A)

1

w(t)
dEA(t) h,

where

w(t) = ρ2 + a + bt− a2t

ρ1 + at
+

δ2t2γ

ρ3 + ct

and

h = h2 − aA
1

2 (ρ1 + aA)−1h1 + δAγ(ρ3 + cA)−1h3.

Thus,

h ∈
{

H2−2γ if γ > 3
2
,

H−1 if γ ≤ 3
2
.



Observing that w(t) ≥ ρ2 for every t ∈ σ(A) and, in the limit t→ ∞,

w(t) ≈
{

t2γ−1 if γ > 1,

t if γ ≤ 1,

we infer that ψ̃ ∈ H1, and fulfills (4.1) as well. As a byproduct, ψ = ψ̃ + f3 ∈ H1. At
this point, we learn from (5.4)-(5.5) that ϕ̃ ∈ H1, and θ ∈ H1 at least.4 In order to show
that ϕ = ϕ̃ + f1 ∈ H2, we collect (5.4) and (5.6). This entails the explicit expression

ϕ =

∫

σ(A)

p1(t)

v(t)
dEA(t) f1 +

∫

σ(A)

p2(t)

v(t)
dEA(t) f2 +

∫

σ(A)

p3(t)

v(t)
dEA(t) f3

+

∫

σ(A)

p4(t)

v(t)
dEA(t) f4 +

∫

σ(A)

p5(t)

v(t)
dEA(t) f5,

where

v(t) = (ρ1 + at)(ρ2 + bt)(ρ3 + ct) + aρ1(ρ3 + ct) + δ2t2γ(ρ1 + at),

and

p1(t) = ρ1[(ρ2 + bt)(ρ3 + ct) + a(ρ3 + ct) + δ2t2γ ],

p2(t) = ρ1[(ρ2 + a+ bt)(ρ3 + ct) + δ2t2γ ],

p3(t) = −at 12 [ρ2(ρ3 + ct) + δ2t2γ ],

p4(t) = −at 12ρ2(ρ3 + ct),

p5(t) = −ρ3δatγ+
1

2 .

Note that v(t) is away from zero for t ∈ σ(A) and, as t→ ∞,

v(t) ≈
{

t2γ+1 if γ > 1,

t3 if γ ≤ 1.

It is then readily seen that, for every γ ∈ R,

lim sup
t→∞

t
pı(t)

v(t)
<∞, for ı = 1, 2, 4, 5,

and

lim sup
t→∞

t
1

2

p3(t)

v(t)
<∞.

Recalling in particular that f3 ∈ H1, we draw the desired conclusion ϕ ∈ H2. To finish
the proof we are left to verify the relations

δAγ−1θ − bψ ∈ H2 and cθ + δAγ−1ψ̃ ∈ H2.

4Indeed, one can deduce at this stage the regularity (4.2) only for γ ≤ 3

2
, whereas for γ > 3

2
equation

(5.5) merely gives θ ∈ H2, which is not optimal.



Again, by explicit calculations we obtain

δAγ−1θ − bψ =

∫

σ(A)

q1(t)

v(t)
dEA(t) (f1 + f2) +

∫

σ(A)

q2(t)

v(t)
dEA(t) f3

+

∫

σ(A)

q3(t)

v(t)
dEA(t) f4 +

∫

σ(A)

q4(t)

v(t)
dEA(t) f5,

and

cθ + δAγ−1ψ̃ =

∫

σ(A)

r1(t)

v(t)
dEA(t) (f1 + f2) +

∫

σ(A)

r2(t)

v(t)
dEA(t) f3

+

∫

σ(A)

r3(t)

v(t)
dEA(t) f4 +

∫

σ(A)

r4(t)

v(t)
dEA(t) f5,

with v(t) as above,

q1(t) = ρ1a[δ
2t2γ−

1

2 + bt
1

2 (ρ3 + ct)],

q2(t) = ρ1aδ
2t2γ−1 − bρ2(ρ1 + at)(ρ3 + ct),

q3(t) = −ρ2(ρ1 + at)[δ2t2γ−1 + b(ρ3 + ct)],

q4(t) = ρ3δt
γ−1[aρ1 + ρ2(ρ1 + at)],

and

r1(t) = −ρ1ρ3aδtγ−
1

2 ,

r2(t) = −ρ3δtγ−1(ρ1a+ ρ1bt + abt2),

r3(t) = ρ2ρ3δt
γ−1(ρ1 + at),

r4(t) = cρ3[aρ1 + (ρ1 + at)(ρ2 + bt)] + ρ3δ
2t2γ−1(ρ1 + at).

At this point, checking as before the growth orders of the ratios qı(t)/v(t) and rı(t)/v(t)
as t→ ∞, the claim follows. The details are left to the reader.

Remark. Actually, when γ ≤ 1, Theorem 5.1 can be given a more direct proof. Indeed,
we already know from Proposition 4.3 that L−1 ∈ L(H). Hence, L is a closed dissipative
operator with 0 ∈ ρ(L), and the conclusion follows from a slightly modified version of the
Lumer-Phillips Theorem (see e.g. [12]).

6. Stability

We provide the result within the assumption D(A) ⋐ H.

Theorem 6.1. If A−1 is compact, then the semigroup S(t) is stable for every γ ∈ R.

Proof. Aiming to apply Theorem 3.1, we introduce the Hilbert space V ⋐ H defined as

V = Hp+1 ×Hp ×Hp+1 ×Hp ×Hp,

with p = p(γ) > 0 large enough such that V ⊂ D(L), endowed with the norm

‖(ϕ, ϕ̃, ψ, ψ̃, θ)‖2V = a‖A 1

2ϕ+ ψ‖2p + b‖ψ‖2p+1 + ρ1‖ϕ̃‖2p + ρ2‖ψ̃‖2p + ρ3‖θ‖2p.



Let then z = (ϕ0, ϕ̃0, ψ0, ψ̃0, θ0) ∈ V be arbitrarily fixed. It is a standard matter to prove
that the restriction of S(t) to V is a contraction semigroup with respect to the norm of V
as well. Therefore,

‖S(t)z‖V ≤ ‖z‖V , ∀t ≥ 0,

showing that the entire orbit of z is bounded in V, hence relatively compact in H thanks
to the compactness of the embedding. Assume next

‖S(t)z‖H = ‖z‖H, ∀t > 0.

Exploiting (4.3), we get

0 =
d

dt
‖S(t)z‖2H = 2〈LS(t)z, S(t)z〉H = −2c‖θ(t)‖21,

and so θ(t) ≡ 0. In turn, from the third equation of system (1.1) we infer that ψ(t) ≡ ψ0.
Accordingly, (1.1) reduces to

{

ρ1ϕ̈+ aA
1

2 (A
1

2ϕ+ ψ0) = 0,

bAψ0 + a(A
1

2ϕ+ ψ0) = 0.

The second equation above yields

ϕ(t) ≡ −1

a
A− 1

2 (bA + a)ψ0,

and substituting into the first equation we obtain

A
3

2ψ0 = 0 ⇒ ψ0 = 0 ⇒ ϕ(t) ≡ 0.

Summarizing, we proved that z = 0, and the claim follows.

If the embedding D(A) ⊂ H is not compact, the picture becomes less clear, and a
comprehensive result seems out of reach. What we can say in general (see the proof of
Theorem 7.2 of the next section) is that

σp(L) ∩ iR = ∅, ∀γ ∈ R,

no matter whether or not D(L) ⋐ HC. This is not enough (albeit necessary) to ensure
stability, which would follow if in addition one knew that σap(L)∩ iR is countable (see [2]).
Nevertheless, for γ ∈ [1

2
, 1], the stability of S(t) is obtained as a byproduct of Theorem 7.1

below.

7. Semiuniform Stability

We begin by observing that, on account of Theorem 3.2, S(t) cannot be semiuniformly
stable when γ > 1, for its infinitesimal generator L (and so its complexification L) is not
invertible by Proposition 4.3. The situation is different for γ ≤ 1.

Theorem 7.1. If γ ∈ [1
2
, 1], the semigroup S(t) is semiuniformly stable.



Proof. In light of Theorem 3.2, it is sufficient to show that iR ⊂ ρ(L). To this end,
we appeal to [2, Proposition 2.2], which says that if the complexified semigroup SC(t) is
bounded (as it is the case), then

σ(L) ∩ iR = σap(L) ∩ iR.

In other words, it is enough to show that no approximate eigenvalues of the operator
L lie on the imaginary axis. Indeed, suppose by contradiction that iλ ∈ σap(L), for
some λ ∈ R. Note that λ 6= 0, for L is invertible. In this case, there exists a sequence
zn = (ϕn, ϕ̃n, ψn, ψ̃n, θn) ∈ D(L) with

‖zn‖2HC
= a‖A 1

2ϕn + ψn‖
2
+ b‖ψn‖21 + ρ1‖ϕ̃n‖2 + ρ2‖ψ̃n‖

2
+ ρ3‖θn‖2 = 1,

satisfying the relation
iλzn − Lzn → 0 in HC.

Componentwise, we draw the relations

iλϕn − ϕ̃n → 0 in H1
C
,(7.1)

iλρ1ϕ̃n + aA
1

2 (A
1

2ϕn + ψn) → 0 in HC,(7.2)

iλψn − ψ̃n → 0 in H1
C,(7.3)

iλρ2ψ̃n + A(bψn − δAγ−1θn) + a(A
1

2ϕn + ψn) → 0 in HC,(7.4)

iλρ3θn + A(cθn + δAγ−1ψ̃n) → 0 in HC.(7.5)

By means of (4.4),

Re 〈iλzn − Lzn, zn〉HC
= −Re 〈Lzn, zn〉HC

= c‖θn‖21,
and since the left-hand side tends to zero as n→ ∞, we infer that

(7.6) θn → 0 in H1
C
.

Therefore, an application of the operator A− 1

2 to (7.5) gives

A
γ− 1

2 ψ̃n → 0 in HC,

and since γ ≥ 1
2
this readily implies

(7.7) ψ̃n → 0 in HC.

In turn, from (7.3),

(7.8) ψn → 0 in HC,

and we deduce from (7.4) that

bA
1

2ψn + aϕn − δAγ− 1

2 θn → 0 in HC.

Exploiting (7.6) and the assumption γ ≤ 1, the relation above reduces to

(7.9) bA
1

2ψn + aϕn → 0 in HC

which, by means of (7.8), entails

A
− 1

2 ϕn → 0 in HC.



At this point, we make use of (7.1) to get

A
− 1

2 ϕ̃n → 0 in HC.

Hence, by applying A
− 1

2 to (7.2) we find

(7.10) A
1

2 ϕn + ψn → 0 in HC,

and by virtue of (7.8) we establish the convergence

ϕn → 0 in H1
C
.

As a consequence, (7.9) turns into

(7.11) ψn → 0 in H1
C
.

Finally, from (7.1) we conclude that

(7.12) ϕ̃n → 0 in HC.

Collecting (7.6)-(7.7) and (7.10)-(7.12), the sought contradiction is attained.

The limitation γ ≥ 1
2
plays an essential role in the proof. Indeed, as seen in the previous

section, if γ < 1
2
we cannot even ensure the stability of S(t). But again, if D(A) ⋐ H we

do have a complete answer.

Theorem 7.2. If A−1 is compact, then S(t) is semiuniformly stable when γ < 1
2
as well.

Proof. As in the previous proof, we must show that iR ⊂ ρ(L). The difference is that in
this case we take advantage of the compact embedding D(L) ⋐ HC ensured by Proposi-
tion 4.4. This allows us to apply a famous result of T. Kato [11, Theorem 6.29], stating
that

σ(L) = σp(L),

whenever L−1 is a compact operator. Therefore, we only have to show that

σp(L) ∩ iR = ∅.
By contradiction, suppose that iλ ∈ σp(L) for some λ ∈ R. As before, the invertibility of

L forces λ 6= 0. Then, there exists a nonnull vector z = (ϕ, ϕ̃, ψ, ψ̃, θ) ∈ D(L) satisfying

iλz − Lz = 0.

In components,

iλϕ− ϕ̃ = 0,(7.13)

iλρ1ϕ̃+ aA
1

2 (A
1

2ϕ+ ψ) = 0,(7.14)

iλψ − ψ̃ = 0,(7.15)

iλρ2ψ̃ + A(bψ − δAγ−1θ) + a(A
1

2ϕ+ ψ) = 0,(7.16)

iλρ3θ + A(cθ + δAγ−1ψ̃) = 0.(7.17)

By means of equality (4.4), we have the identity

0 = Re 〈iλz − Lz, z〉HC
= c‖θ‖21,



and thus θ = 0. Hence, equation (7.17) entails ψ̃ = 0 and then from (7.15) we also obtain
ψ = 0. At this point, from (7.16) we infer that ϕ = 0, and therefore exploiting (7.13) (or
(7.14)) we get ϕ̃ = 0. The proof is finished. �

8. Exponential Stability

We now turn our attention to the stronger (and certainly more interesting) notion of
exponential stability. We begin by stating the positive result. We point out that no
compactness assumption on A−1 is made.

Theorem 8.1. Assume that

χ = 0 and γ =
1

2
.

Then the semigroup S(t) is exponentially stable.

Theorem 8.1 can be proved via linear semigroup techniques. For instance, a possibility
is to exploit Theorem 3.3. However, revisiting the arguments of [13], a direct proof can
be given, based on the existence of suitable energy functionals. This is the approach we
will follow, which has also the advantage to be exportable to deal with nonlinear versions
of the problem (e.g. to prove the existence of bounded absorbing sets).

Proof of Theorem 8.1. By density, it is enough to show that

E(t) ≤ KE(0)e−κt,

where

E(t) =
1

2
‖S(t)z‖2H

is the energy at time t corresponding to the initial datum z = (ϕ, ϕ̃, ψ, ψ̃, θ) ∈ D(L).
Exploiting (4.3), we deduce the energy equality

(8.1)
d

dt
E + c‖θ‖21 = 0.

We now define three auxiliary energy functionals:

Λ1(t) = 2ρ2〈ψ̇(t), ψ(t)〉 − 2ρ1〈ϕ̇(t), ϕ(t)〉,

Λ2(t) =
2ρ2ρ3
δ

〈A− 1

2 θ(t), ψ̇(t)〉,

Λ3(t) = 2ρ2〈ψ̇(t), A
1

2ϕ(t) + ψ(t)〉 − 2ρ2〈A
1

2ψ(t), ϕ̇(t)〉.
Along this proof, C > 0 will denote a generic constant depending only on the structural
parameters of the problem. We will also make use, without explicit mention, of the
Poincaré inequality (2.1), as well as of the Hölder and Young inequalities. The following
lemmas hold.

Lemma 8.2. There exists C1 > 0 such that

d

dt
Λ1 + ρ1‖ϕ̇‖2 + b‖ψ‖21 ≤ C1

[

‖ψ̇‖2 + ‖A 1

2ϕ+ ψ‖2 + ‖θ‖21
]

.



Proof. By direct computations, the functional Λ1 fulfills the identity

d

dt
Λ1 + 2ρ1‖ϕ̇‖2 + 2b‖ψ‖21 = 2ρ2‖ψ̇‖2 + 2a‖A 1

2ϕ+ ψ‖2 + 2δ〈θ, A 1

2ψ〉 − 4a〈A 1

2ϕ+ ψ, ψ〉.

Estimating

2δ〈θ, A 1

2ψ〉 − 4a〈A 1

2ϕ+ ψ, ψ〉 ≤ b‖ψ‖21 + C
[

‖A 1

2ϕ+ ψ‖2 + ‖θ‖21
]

,

we are done.

Lemma 8.3. There exists C2 > 0 such that, for every ν > 0 small,

d

dt
Λ2 + ρ2‖ψ̇‖2 ≤ ν

[

‖ψ‖21 + ‖A 1

2ϕ+ ψ‖2
]

+
C2

ν
‖θ‖21.

Proof. The functional Λ2 satisfies the differential equality

d

dt
Λ2 + 2ρ2‖ψ̇‖2 = 2ρ3‖θ‖2 −

2cρ2
δ

〈A 1

2 θ, ψ̇〉 − 2bρ3
δ

〈θ, A 1

2ψ〉 − 2aρ3
δ

〈A− 1

2 θ, A
1

2ϕ + ψ〉.

It is immediate to see that

−2cρ2
δ

〈A 1

2θ, ψ̇〉 ≤ ρ2‖ψ̇‖2 + C‖θ‖21.

Moreover, for every ν > 0,

−2bρ3
δ

〈θ, A 1

2ψ〉 − 2aρ3
δ

〈A− 1

2 θ, A
1

2ϕ+ ψ〉 ≤ ν[‖ψ‖21 + ‖A 1

2ϕ+ ψ‖2] + C

ν
‖θ‖21,

which proves the claim.

Lemma 8.4. There exists C3 > 0 such that

d

dt
Λ3 + a‖A 1

2ϕ + ψ‖2 ≤ C3

[

‖ψ̇‖2 + ‖θ‖21
]

.

Proof. Taking advantage of the assumption χ = 0, we infer that

d

dt
Λ3 + 2a‖A 1

2ϕ+ ψ‖2 = 2ρ2‖ψ̇‖2 + 2δ〈A 1

2 θ, A
1

2ϕ+ ψ〉.

Estimating the second term of the right-hand side as

2δ〈A 1

2 θ, A
1

2ϕ+ ψ〉 ≤ a‖A 1

2ϕ+ ψ‖2 + C‖θ‖21,
we are finished.

We are now in a position to conclude the proof of the theorem. For ε > 0 small, we
define the energy functional

Λ(t) = E(t) + εM

[

a

2C1
Λ1(t) + Λ3(t)

]

+
√
εΛ2(t),

having set

M = 1 +max

{

4C2

ac
,
4C1C2

abc

}

.



Collecting Lemmas 8.2, 8.3 and 8.4, together with the energy equality (8.1), we obtain

d

dt
Λ +

(Mεa

2
− ν

√
ε
)

‖A 1

2ϕ + ψ‖2 +
(Mεba

2C1
− ν

√
ε
)

‖ψ‖21 +
Mεaρ1
2C1

‖ϕ̇‖2

+
(√

ερ2 −
Mεa

2
− εMC3

)

‖ψ̇‖2 +
(

c− Mεa

2
− εMC3 −

√
εC2

ν

)

‖θ‖21 ≤ 0.

Therefore, choosing

ν =
2
√
εC2

c
,

and possibly fixing a smaller ε > 0, we end up with

d

dt
Λ+ ε2E ≤ 0.

It is also clear that, for all ε > 0 small,

1

2
E(t) ≤ Λ(t) ≤ 2E(t).

Hence, the proof follows by an application of the standard Gronwall lemma.

9. Lack of Exponential Stability

We finally show that the sufficient condition for the exponential stability of S(t) estab-
lished in Theorem 8.1 is necessary as well. Again, the compactness of A−1 is not assumed.

Theorem 9.1. If χ 6= 0 or γ 6= 1
2
, then S(t) fails to be exponentially stable.

The remaining part of the section is devoted to the proof of Theorem 9.1. First, we
need a technical operator-theoretical lemma.

Lemma 9.2. Let α ∈ σ(A) be fixed, and let Q ⊂ R be a given bounded set. Then, for
every ε > 0 small enough, there exists a unit vector wε ∈ HC such that the vector

ξq,ε = A
qwε − αqwε

satisfies the relation

‖ξq,ε‖ ≤ ε, ∀q ∈ Q.
Proof. For ε > 0 small enough, let us consider the interval

Iε = (α− ε, α+ ε) ⊂ R
+.

Since EA(Iε) is a nonnull projection (for α belongs to the spectrum), we can select a vector

wε ∈ EA(Iε)HC with ‖wε‖ = 1.

By the functional calculus of A,

‖ξq,ε‖2 =
∫

σ(A)

|tq − αq|2 dµA

wε

(t),

where, for every Borel set Σ ⊂ C,

µA

wε

(Σ) = ‖EA(Σ)wε‖2 = ‖EA(Σ)EA(Iε)wε‖2 = ‖EA(Σ ∩ Iε)wε‖2.



Hence µA
wε

is supported on Iε, and

µA

wε

(Iε) = ‖EA(Iε)wε‖2 = ‖wε‖2 = 1.

We conclude that

‖ξq,ε‖ ≤ sup
t∈Iε

|tq − αq| =











(α + ε)q − αq if q ≥ 1,

αq − (α− ε)q if q ∈ [0, 1),

(α− ε)q − αq if q < 0.

Thus, for ε small enough (depending only on α and Q),

‖ξq,ε‖ ≤ Kε,

having set

K = sup
q∈Q

2|q|αq−1.

Up to redefining ε properly, the proof is finished.

Select αn ∈ σ(A) with αn → ∞ (this is possible since A is unbounded). By Lemma 9.2,
given a positive sequence νn → 0, there exist wn ∈ HC such that the vectors

ξq,n = A
qwn − αq

nwn

fulfill the inequality

(9.1) ‖ξq,n‖ ≤ νn, for q = γ, 1
2
, 1.

Next, we set

ẑn = (0, c1wn, 0, c2wn, 0) ∈ HC,

where the constants c1, c2 will be properly chosen in a later moment in such a way that

‖ẑn‖HC
= 1.

Assume now by contradiction that the semigroup S(t) is exponentially stable. Then, for
any given sequence λn ∈ R the resolvent equation

iλnzn − Lzn = ẑn

has a unique solution

zn = (ϕn, ϕ̃n, ψn, ψ̃n, θn) ∈ D(L).

Besides, by Theorem 3.3 there is ε > 0 such that

(9.2) ‖zn‖HC
≤ 1

ε
‖ẑn‖HC

=
1

ε
.

Namely, the sequence zn is bounded. We will reach a contradiction by showing it is not
so. To this end, we begin to reformulate the resolvent equation above componentwise.



This leads to the system

iλnϕn − ϕ̃n = 0,

iλnρ1ϕ̃n + aA
1

2 (A
1

2ϕn + ψn) = ρ1c1wn,

iλnψn − ψ̃n = 0,

iλnρ2ψ̃n − A(δAγ−1θn − bψn) + a(A
1

2ϕn + ψn) = ρ2c2wn,

iλnρ3θn + A(cθn + δAγ−1ψ̃n) = 0,

which, after straightforward calculations, reduces to

−ρ1λ2nϕ̃n + aA
1

2 (A
1

2 ϕ̃n + ψ̃n) = iλnρ1c1wn,(9.3)

−ρ2λ2nψ̃n − A(iλnδA
γ−1θn − bψ̃n) + a(A

1

2 ϕ̃n + ψ̃n) = iλnρ2c2wn,(9.4)

iλnρ3θn + A(cθn + δAγ−1ψ̃n) = 0.(9.5)

For every n, the solution (ϕ̃n, ψ̃n, θn) to (9.3)-(9.5) can be written in the form

ϕ̃n = Bnwn + q1n,

ψ̃n = Cnwn + q2n,

θn = Dnwn + q3n,

for some Bn, Cn, Dn ∈ C and some vectors qın such that

qın ⊥ wn, for ı = 1, 2, 3.

It is then apparent from (9.2) that

(9.6) ‖qın‖ ≤ C,

where, here and till the end of the proof, C ≥ 0 stands for a generic constant depending
only on the structural parameters of the problem (in particular, independent of n). By
the same token,

(9.7) |Bn| ≤ C, |Cn| ≤ C, |Dn| ≤ C.

Taking the inner product in HC of (9.3)-(9.5) and wn, we obtain the system

−ρ1λ2nBn + a[αnBn +
√
αnCn] = fn + iλnρ1c1,(9.8)

−ρ2λ2nCn + bαnCn + a[
√
αnBn + Cn]− iλnδα

γ
nDn = gn + iλnρ2c2,(9.9)

iλnρ3Dn + cαnDn + δαγ
nCn = hn,(9.10)

having set

fn = −a[Bn〈ξ1,n, wn〉+ 〈q1n, ξ1,n〉+ Cn〈ξ 1

2
,n, wn〉+ 〈q2n, ξ 1

2
,n〉],

gn = −b[Cn〈ξ1,n, wn〉+ 〈q2n, ξ1,n〉]− a[Bn〈ξ 1

2
,n, wn〉+ 〈q1n, ξ 1

2
,n〉]

+ iλnδ[Dn〈ξγ,n, wn〉+ 〈q3n, ξγ,n〉],
hn = −c[Dn〈ξ1,n, wn〉+ 〈q3n, ξ1,n〉]− δ[Cn〈ξγ,n, wn〉+ 〈q2n, ξγ,n〉].



By means of (9.1) and (9.6)-(9.7), it is readily seen that

(9.11) |fn| ≤ Cνn, |gn| ≤ C(1 + |λn|)νn, |hn| ≤ Cνn.

At this point, we shall distinguish three cases:

(i) γ > 1
2
.

(ii) γ ≤ 1
2
and χ 6= 0.

(iii) γ < 1
2
and χ = 0.

• Cases (i) and (ii). Choosing

c1 =
1√
ρ1
, c2 = 0, λn =

√

aαn

ρ1
,

equation (9.8) simply becomes

(9.12) Cn =
fn

a
√
αn

+
i√
a
.

Substituting (9.12) into (9.10), we find

(9.13) Dn = −
√

ρ1
a

iα
γ− 1

2

n δ

[c
√
ρ1αn + i

√
aρ3]

+ pn,

where

pn =

√
ρ1√

αn[c
√
ρ1αn + i

√
aρ3]

[

hn −
α
γ− 1

2

n δfn
a

]

.

Observe that, by (9.11),

(9.14) |pn| ≤ C|hn|α−1
n + C|fn|αγ− 3

2

n ≤ Cνn
(

α−1
n + α

γ− 3

2

n

)

.

Finally, plugging (9.12)-(9.13) into (9.9), and recalling the definition of χ, we infer that

Bn =

[

χρ2
√
αn

a
− 1√

αn

]

Cn +
iδαγ

nDn√
aρ1

+
gn

a
√
αn

(9.15)

=
α2γ
n δ

2c
√
ρ1

a[c2ρ1αn + aρ23]
− iα

2γ− 1

2

n δ2
√
aρ3

a[c2ρ1αn + aρ23]
+

i√
a

[

χρ2
√
αn

a
− 1√

αn

]

+ rn,

where

rn =
fn
a

[

χρ2
a

− 1

αn

]

+
iδαγ

npn√
aρ1

+
gn

a
√
αn

.

In light of (9.11) and (9.14),

|rn| ≤
C(1 + αn)|fn|

αn

+ Cαγ
n|pn|+

C|gn|√
αn

≤ Cνn
(

1 + αγ−1
n + α

2γ− 3

2

n

)

.

If γ > 1
2
, then

|rn| = o
(

α2γ−1
n

)

,



and (9.15) yields

|ReBn| =
∣

∣

∣

∣

α2γ
n δ

2c
√
ρ1

a[c2ρ1αn + aρ23]
+Re rn

∣

∣

∣

∣

≥ α2γ
n δ

2c
√
ρ1

a[c2ρ1αn + aρ23]
− |Re rn| ∼

α2γ−1
n δ2

ac
√
ρ1

→ ∞.

Conversely, if γ ≤ 1
2
,

|rn| = o(
√
αn),

and since χ 6= 0 we learn from (9.15) that

|ImBn| =
∣

∣

∣

∣

− α
2γ− 1

2

n δ2
√
aρ3

a[c2ρ1αn + aρ23]
+

1√
a

[

χρ2
√
αn

a
− 1√

αn

]

+ Im rn

∣

∣

∣

∣

≥
∣

∣

∣

∣

1√
a

[

χρ2
√
αn

a
− 1√

αn

]

− α
2γ− 1

2

n δ2
√
aρ3

a[c2ρ1αn + aρ23]

∣

∣

∣

∣

− |Im rn| ∼
√
αnχρ2
a
√
a

→ ∞.

In both cases, we reach the conclusion

‖zn‖HC
≥ √

ρ1 ‖ϕ̃n‖ ≥ √
ρ1|Bn| → ∞,

in contradiction with (9.2).

Case (iii). We choose

c1 = 0, c2 =
1√
ρ2
, λn =

√

βn,

where

βn =
2ρ2aαn + aρ1 + a

√

ρ21 + 4ρ1ρ2αn

2ρ1ρ2
> 0.

In particular,

(9.16) λn ∼
√

aαn

ρ1

and

(9.17) ρ1λ
2
n − aαn = ρ1βn − aαn ∼ a

√

ρ1αn

ρ2
.

Accordingly, from (9.8) we get

Bn =
fn

aαn − ρ1βn
− a

√
αnCn

aαn − ρ1βn
.

Moreover, exploiting (9.10),

Dn =
hn

i
√
βnρ3 + cαn

− δαγ
nCn

i
√
βnρ3 + cαn

.



Hence, substituting the two expressions above into (9.9) and exploiting the assumption
χ = 0, we infer that

(9.18) Cn =
α1−2γ
n

√
ρ2c

δ2
+

i
√
βnρ2ρ3

δ2α2γ
n

+ tn,

having set

tn =
gn[i

√
βnρ3 + cαn]

i
√
βnδ2α

2γ
n

+
a
√
αnfn[i

√
βnρ3 + cαn]

i
√
βnδ2α

2γ
n [ρ1βn − aαn]

+
hn
δαγ

n

.

By means of (9.11), (9.16) and (9.17),

|tn| ≤ Cνn
(

α1−2γ
n + α−γ

n

)

.

As γ < 1
2
, we learn that

|tn| = o
(

α1−2γ
n

)

.

Therefore, from (9.18), we arrive at

|ReCn| =
∣

∣

∣

∣

α1−2γ
n

√
ρ2c

δ2
+Re tn

∣

∣

∣

∣

≥ α1−2γ
n

√
ρ2c

δ2
− |Re tn| ∼

α1−2γ
n

√
ρ2c

δ2
→ ∞.

As before, we end up with

‖zn‖HC
≥ √

ρ2 ‖ψ̃n‖ ≥ √
ρ2|Cn| → ∞,

contradicting (9.2).
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