
GOPRIME: A Fully Decentralized Middleware
for Utility-Aware Service Assembly

Mauro Caporuscio, Vincenzo Grassi, Moreno Marzolla,Member, IEEE, and Raffaela Mirandola

Abstract—Modern applications, e.g., for pervasive computing scenarios, are increasingly reliant on systems built from multiple distributed
components, which must be suitably composed to meet some specified functional and non-functional requirements. A key challenge is how to
efficiently and effectively manage such complex systems. The use of self-management capabilities has been suggested as a possible way to
address this challenge. To cope with the scalability and robustness issues of large distributed systems, self-management should ideally be
architected in a decentralized way, where the overall system behavior emerges from local decisions and interactions. Within this context, we
propose GOPRIME, a fully decentralized middleware solution for the adaptive self-assembly of distributed services. The GOPRIME goal is to build and
maintain an assembly of services that, besides functional requirements, fulfils also global quality-of-service and structural requirements. The key
aspect of GOPRIME is the use of a gossip protocol to achieve decentralized information dissemination and decision making. To show the validity of our
approach, we present results from the experimentation of a prototype implementation of GOPRIME in a mobile health application, and an extensive set
of simulation experiments that assess the effectiveness of GOPRIME in terms of scalability, robustness and convergence speed.

Index Terms—Service-oriented architecture, pervasive computing, runtime adaptation, quality of service, gossip protocol

1 INTRODUCTION

THE pervasive computing paradigm aims to develop
information processing infrastructures that seamlessly

integrate into everyday activities. Systems built under this
paradigm, like ambient intelligence or intelligent transpor-
tation systems, consist of several (from tens to thousands)
services that cooperatively contribute to the achievement of
some common goal [1].

How to properly architect and manage such systems is
one of the major challenges for today’s software engineer-
ing. Indeed, the high number of services and the intrinsic
dynamism of these systems (where the quality and number
of available resources can rapidly change) push scalability
and complexity issues well beyond traditional scenarios.
The use of autonomic capabilities has been suggested as a
possible solution to overcome these problems [2], [3], [4].
The autonomic computing paradigm enables the system to
automatically self-configure and self-adapt in response to
variations of operating conditions, thus guaranteeing short
reaction times and minimal or no human intervention at all.
Scalability and robustness considerations call for fully
decentralised solutions to the implementation of these auto-
nomic capabilities [5]. Indeed, for the systems we are con-
sidering, centralised control can seriously hinder scalability

and fault-tolerance, and can also be difficult or even impos-
sible to achieve.

This paper provides a contribution towards the design
and implementation of decentralised solutions for the auto-
nomic management of large and highly dynamic distributed
pervasive systems. Specifically, we propose GOPRIME,1 a fully
decentralised middleware for the adaptive self-assembly of
distributed services. Abstracting from characteristics of spe-
cific application domains, GOPRIME is intended to manage
distributed systems where a set of peers cooperatively work
to accomplish specific tasks. In general, each peer possesses
the know-how to perform some tasks (offered services), but
could require services offered by other peers to carry out
these tasks. In this context, the GOPRIME goal is to drive a self-
assembly procedure among the peers, aimed at matching
required and provided services. Moreover, we assume that
the system operates under non-functional requirements con-
cerning the quality of the offered services (QoS) (e.g., perfor-
mance, dependability, cost) and/or the structure of the
resulting assembly. Hence, GOPRIME is able to drive the sys-
tems it manages towards the selection, among the set of func-
tionally feasible assemblies, of an assembly that fulfills global
non-functional requirements.

According to decentralisation principles, GOPRIME opera-
tions are characterised by the following properties [7]:

� absence of external control, so that the self-(re)config-
uration process is initiated andmanaged internally;

� dynamic operation, so that GOPRIME is continuously
able to adapt the system to requirement or environ-
ment changes (including arrival of new peers or
failure of existing ones);

� absence of central control, where GOPRIME maintains
the assembly among peers through local decision-

� M. Caporuscio is with the Department of Computer Science, Linnaeus
University, V€axj€o, Sweden. E-mail: mauro.caporuscio@lnu.se.

� V. Grassi is with the Informatica, Sistemi e Produzione, University of
Roma “Tor Vergata,” Roma, Italy. E-mail: vgrassi@disp.uniroma2.it.

� M. Marzolla is with the Dipartimento di Informatica Scienza e Ingegneria,
University of Bologna, Bologna, Italy. E-mail: moreno.marzolla@unibo.it.

� R. Mirandola is with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, Milano, Italy.
E-mail: raffaela.mirandola@polimi.it.

1. GOPRIME stands for GOssip-based PRIME, an extension, centered
around the use of a gossip protocol, of the PRIME middleware [6].

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. To access the final edited and published work see: http://dx.doi.org/10.1109%
2FTSE.2015.2476797

making only, with dissemination of information in
order to improve the binding process.

A key element of GOPRIME is the use of a gossip protocol [8],

[9], [10] to support information dissemination and decentral-

ised decision-making. Experimental results show that this solu-

tion is able to produce a fully resolved service assembly very

quickly; also, the whole system can quickly restructure itself to

cope with node failures.

This paper extends the early results presented in [11]
with substantial new contributions along two directions: (i)
we extend the methodology proposed in [11] to deal with
the case of multiple (possibly conflicting) non-functional
requirements; (ii) we present GOPRIME, a middleware imple-
menting this methodology, and results from its experimen-
tation in a practical case study.

The paper is organised as follows. Section 2 describes the
system model and introduces the concept of compound util-
ity, a quantitative measure of the “quality” of a service
assembly. In Section 3 we illustrate the architecture of
GOPRIME, and describe the gossip-based fully decentralised
algorithm that is used to build an assembly fulfilling QoS
and structural requirements. Section 4 describes the imple-
mentation of GOPRIME. In Section 5 we show a practical case
study of GOPRIME in an e-Health scenario, and evaluate the
scalability and robustness of the proposed algorithms using
simulation. We survey related work in Section 6 and present
conclusions and future work in Section 7.

2 SYSTEM MODEL

In this section we define the model of the system managed
by GOPRIME and introduce the terminology and notation
used in the rest of the paper. As a part of the model, we
illustrate the assumptions and formalise the notion of com-
pound utility, a unified mechanism that GOPRIME uses to
enforce both functional and non-functional requirements on
the assembly to be built and maintained.

2.1 Model Definition

We consider a system containing N distributed services
S ¼ fS1; . . . ; SNg, with each service having type d 2 T ¼
f1; . . . ; Tg. Services are hosted on peer nodes, each node con-
taining one or more services. Nodes can be located anywhere
and communicate with each other through a network.

Each service S 2 S has a provided interface, through which
S provides functionalities to clients. Also, each service has a
set of required interfaces, that must be bound to the provided
interfaces of other services. Formally, a service S is a tuple
ðType;Deps; Util; In;OutÞ, where:

� S:Type 2 T denotes the type of the provided interface
(we say that S:Type is the type of S). We assume that
a function exists matches : T� T! ½0; 1� such that
matchesðd1; d2Þ ¼ 0 if type d1 does not match type d2
and matchesðd1; d2Þ > 0 if some matching exists
according to some suitable matching criterion [12].

� S:Deps � T denotes the set of dependencies of S (if
S:Deps ¼ ;, then S has no dependencies). The set
S:Deps contains the types of the required dependen-
cies of S; therefore, for each d 2 S:Deps, S must be
bound to a service S0 such that matchesðd; S0:
TypeÞ > 0, in order to be executed. Note that the

dependency set S:Deps does not contain duplicates,
meaning that a service may depend at most once on
any specific interface type. We assume that the set of
dependency types S:Deps is fixed for each service
and known in advance.

� S:Util � Rm is a vector of m real values belonging to
Rm representing QoS (e.g., reliability, cost, response
time) or structural attributes, which express the util-
ity of service S in isolation, depending only on the
internal characteristics of S. If S has a non empty set
of dependencies, then S:Util gives only a partial
view of the overall utility of S, which also depends
on the utility of the services used to resolve them;
therefore, we introduce in Section 2.2 the concept of
compound utility.

� S:In � S is the set of services S is currently bound to,
to resolve its dependencies.

� S:Out � S is the set of other services that are bound
to S, to resolve one of their dependencies.

We point out that while S:Type and S:Deps represent
static information that does not change throughout the ser-
vice lifetime, S:Util, S:In and S:Out represent dynamic state
information whose value can change because of internal
changes of S or of the services it is bound to.

A service assembly A is a graph A ¼ ðS;EÞ, where
E � S� S is the set of resolved dependencies. Specifically, a
directed edge ðSi; SjÞ 2 E denotes that Si is used by Sj to
resolve one of its dependencies.

In general, we allow multiple simultaneous bindings to
the same service S by other services that use S to resolve
one of their dependencies. The number of simultaneous
bindings to a service can be upper bounded (e.g., to avoid
service overloading).

A service S is fully resolved in a given assemblyA if either:

� S has no dependencies (S:Deps ¼ ;); or
� for all d 2 S:Deps there exists a fully resolved service

S0 2 S:In such thatmatchesðS:Type; dÞ > 0.
A service S is partially resolved in a given assembly A if it

is not fully resolved in A. A partially resolved service S has
a non empty list of dependencies, and at least one depen-
dency is either not matched, or is matched by a partially
resolved service.

As an example, in Fig. 1 we show two assemblies
involving the services fS1; S2; S3; S4; S5g using the

Fig. 1. Assembly exampleswithN ¼ 5 services and T ¼ 7 interface types.

standard UML 2.0 component diagram notation. Service
S1 in Fig. 1a is fully resolved, while service S1 in Fig. 1b
is not, since it is bound to S2 and S5 which have missing
dependencies.

Since our model adheres to Service Statelessness design
principle [13], services do not maintain the interaction state
between service invocations, i.e., a consumer’s request is
served in complete isolation, without relying on informa-
tion from previous requests. Hence, we assume that the
state of the interaction between the consumer and the ser-
vice is kept on the user’s side, and requests include all infor-
mation necessary for their processing.

Service statelessness enhances (i) decoupling of interact-
ing services, (ii) flexibility of the model, since it allows for
easily rearranging the assembly at run time and, (iii) scal-
ability, by exploiting service caching and replication. On the
other hand, since the whole state of the interaction must be
transferred at each request, a greater network capacity is
required in order to keep the quality of service acceptable.

Table 1 summarises the notation used in this paper; the
table also includes additional symbols which will be intro-
duced in the next sections.

2.2 Compound Utility

The last important part of our model is the definition of the
compound utility function that associates a utility value to
each service S 2 S. In general, the compound utility is a vec-
tor-valued function U : S! Rm [f?g, such that UðSÞ is a
vector of m compound utility values, each of them referring to
some specific QoS or structural property. Such utility values
are a function of: (i) the local utility S:Util, (ii) the compound
utilities of the services S is bound to, and, possibly,
(iii) other domain-dependent parameters that could be use-
ful to better characterise the compound utility evaluation
(for example, parameters capturing environment informa-
tion for a context-aware utility calculation).

The compound utility function UðSÞ for a service S is
recursively defined according to the following structure2:

UðSÞ ¼

S:Util if S:Deps ¼ ;
? if S is partially resolved
F S:Util;UðSd1Þ; . . . ;UðSdkÞ
� �

if S fully resolved,
S:Deps ¼ fd1; . . . ; dkg:

8
>>>><

>>>>:

(1)

If S has no dependencies (S:Deps ¼ ;), then S is by defi-
nition fully resolved, and UðSÞ coincides with its local util-
ity vector S:Util. If S has a nonempty set of dependencies
and is not fully resolved, UðSÞ is set to ?, i.e., the special
value that is guaranteed to be “worse” than the utilities of
any fully resolved instance of S. Finally, if S has a nonempty
set of dependencies and is fully resolved, UðSÞ is computed

using a function F : Rð1þjS:DepsjÞm ! Rm, which combines
S:Utilwith the compound utility of all S dependencies.

We now provide some examples to show how the gen-
eral expression (1) can be specialised to express specific QoS
or structural attributes; for simplicity, we focus on a single
attribute at a time.

Reliability-based compound utility. We can define the reli-
ability of a service S as the probability that S correctly com-
pletes its task, for a given service request. For each
dependency d 2 S:Deps, let S0:n be the average number of
times a service S0 resolving d is invoked during the execu-
tion of S. The value of S0:n can be estimated by the peer
hosting S through a monitoring task; S0:n will likely only
depend on the type d, and not on the specific identity of S0.
Let rðSÞ be the internal reliability of S, that is the probability
that no internal failure occurs when S is executed. There-
fore, the reliability-based compound utility UrðSÞ for S is
the joint probability that S experiences no internal failures,
and all S0:n invocations of each dependency S0 produce no
failure; the joint probability of these events is the product of
probabilities [14]. UrðSÞ can be defined as (we omit the argu-
ments of F ðÞ for the sake of simplicity):

UrðSÞ ¼
rðSÞ if S:Deps ¼ ;
? if S is partially resolved

F ðÞ ¼def rðSÞ �Q
S02S:In UrðS0ÞS

0:n

ifS is fully resolved

8
>><

>>:
(2)

(since each dependency S0 is executed S0:n times, its contri-
bution to the compound reliability is UrðS0Þ � � � � �
UrðS0Þ (S0:n times) ¼ UrðS0ÞS

0:n).
Cost-based compound utility. The average cost of a service S

is the overall average cost incurred for one execution of S. The
cost could be expressed inmonetary units, or some other suit-
able unit (e.g., energy consumption). Let cðSÞ denote the cost
for each invocation ofS.We distinguish two cases, depending
on how cost accumulates for multiple service invocations. In
the first case, we assume that an additive cost is incurred for
each single invocation of a service S0 2 S:In. This is reason-
able for costs referring, for example, to energy consumption.
Under this assumption, the cost-based compound utility
UcðSÞ for an assembly rooted atS can be defined as:

UcðSÞ ¼

�cðSÞ if S:Deps ¼ ;
? if S is partially resolved

F ðÞ ¼def �cðSÞ þ
X

S02S:In
UrðS0Þ � S0:n

if S is fully resolved.

8
>>>><

>>>>:

(3)

TABLE 1
Symbols Used in this Paper

N Number of services (peers)
S Set of services S ¼ fS1; . . . ; SNg
T Set of service types T ¼ f1; . . . ; Tg
A Service Assembly A ¼ ðS;EÞ
m Number of QoS and structural attributes of service S
S:Type Service type of S
S:Deps Set of dependencies of S
S:In Set of peers that S is bound to, to resolve its own

dependencies
S:Out Set of peers that have a binding with S to resolve one

of their dependencies
S:Util “Local” utility vector of service S
UðSÞ Compound utility of the assembly rooted at S (a

scalar compound utility is denoted with UðSÞ)
F Function Rð1þjS:DepsjÞm ! Rm that combines S:Utilwith

the compound utility of all dependencies of S

2. For the sake of simplicity, we omit the indication of context
parameters UðSÞ could depend on, thus showing only the dependence
on S:Util and on the utility of services S is bound to.

Note that, to force UcðSÞ to be a higher-is-better metric,
the compound utility is the negated total cost. Alternatively,
we may assume a flat cost model, where a fixed cost is paid
for the use of a service, independently of the number of
times it is actually invoked (this could be the case, for exam-
ple, of monetary cost). In this case, the flat cost-based com-
pound utility UcðSÞ can be defined as:

UcðSÞ ¼

�cðSÞ if S:Deps ¼ ;
? if S is partially resolved

F ðÞ ¼def �cðSÞ þ
X

S02S:In
UcðS0Þ

if S is fully resolved.

8
>>>><

>>>>:

(4)

Response time-based compound utility. The average
response time of a service S is the overall average time
needed to fulfill one service request addressed to S. Let sðSÞ
denote the average time spent within service S for internal
operations only. Then, we can define the response-time
compound utility UtðSÞ of service S as:

UtðSÞ ¼

�sðSÞ if S:Deps ¼ ;
? if S is partially resolved

F ðÞ ¼def �sðSÞ þ
X

S02S:In
UtðS0Þ � S0:n

if S is fully resolved.

8
>>>><

>>>>:

(5)

UtðSÞ expresses the overall average response time of S; in
this case too UðSÞ is negative so that the compound utility
UðSÞ is a higher-is-better metric. We point out that equa-
tion (5) is based on the assumption of a sequential execution
model for the dependencies of S. In the case of a parallel exe-
cution model for some of those dependencies, the definition
should bemodified accordingly (see for example [15], [16]).

Structural compound utility. Besides QoS requirements,
one could be interested also in structural requirements
about the resulting assembly of services (enforcing, for
example, some specific architectural style). These require-
ments could concern local properties (e.g., the number of
dependencies solved by a given service S should not be
greater than a given threshold, to avoid service overload-
ing), or global properties (e.g., the overall assembly should
conform to a pipeline structure, where each offered service
is bound to only one required service). Global properties
seem more difficult to be enforced in a system where each
peer has only a limited local knowledge of the whole struc-
ture. However, we give below examples showing that by
suitably defining UðSÞ, a systems that tries to maximise it
actually drives itself towards the construction of an assem-
bly that fulfills local or global structural properties, in the
latter case limited to those properties that can be recursively
defined. Let us consider first a local constraint on the maxi-
mum number of dependencies that can be resolved by S,
meaning that S can be used by at most S:Dmax other serv-
ices to resolve their dependencies, e.g., to avoid overload.
The compound utility UlðSÞ defined as:

UlðSÞ ¼
? if S is partially resolved
0 if jS:Outj > S:Dmax
1 if jS:Outj � S:Dmax

8
<

:
(6)

returns 1 if and only if the structural constraint above is sat-
isfied, i.e., at most S:Dmax other services are currently

using S. Note that recursion (i.e., definition of F ðÞ) is not
present in (6) as this utility depends on a local property
only, and thus UlðSÞ actually corresponds to S:Util.

Let us consider instead a global structural constraint
enforcing a pipeline structure on a fully resolved assembly.
We define the compound utility UpðSÞ as follows:

UpðSÞ ¼
? if S is partially resolved
0 if jS:Depsj > 1
1 if S:Deps ¼ ;
F ðÞ ¼def UpðS0Þ if jS:Depsj ¼ 1 ^ S:In ¼ fS0g:

8
>><

>>:
(7)

From (7), UpðSÞ yields 1 if and only if either S has no
dependencies, or S is fully resolved and its direct and indi-
rect dependencies are organised as a chain (pipeline struc-
ture). Hence, UpðSÞ ¼ ? denotes that no fully resolved
assembly rooted at S has been built so far (irrespective of
any structural constraint). A value UpðSÞ ¼ 0 denotes that a
fully resolved assembly has been built, but the structural
constraint has not been satisfied; a better assembly may or
may not be identified as the algorithm progresses. Finally, a
value UpðSÞ ¼ 1 denotes that a fully resolved assembly satis-
fying the pipeline constraint has been found.

2.3 Comparing Compound Utilities

GOPRIME encodes the set of QoS and structural attributes
associated with a service S in a suitably defined utility func-
tion UðSÞ, as shown in Section 2.2. In the given examples,
each UðSÞ function can be considered as an indication of
“how good” service S is with respect to a given QoS or
structural attribute. In case of a vector-valued utility UðSÞ,
the question arises of how good a service S is (including the
assembly that resolves its dependencies) with respect to the
whole set of considered and possibly conflicting attributes.
Hence, an important issue is how to compare the compound
utilities of different assemblies to determine which one is
“better” with respect to a given set of requirements.

Towards this aim, let us denote by S1, S2 two function-
ally equivalent services, i.e., such that
matchesðS1:Type; S2:TypeÞ > 0 (actually, S1; S2 could
denote the same service with its dependencies solved by a
different assembly). GOPRIME can manage the comparison
between UðS1Þ and UðS2Þ in two different ways.

A first way is to map both UðS1Þ and UðS2Þ to a single
scalar value using, for instance, the Simple Additive
Weighting (SAW) technique [17]. According to SAWwe can
map UðSÞ ¼ ðUS;1; . . .US;mÞ to a scalar value UðSÞ by taking
the weighted sum of UðSÞ components, as follows:

UðSÞ ¼
Xm

i¼1
wiUS;i (8)

for a suitable choice of weights such that
Pm

i¼1 wi ¼ 1,
0 � wi � 1. The relative values of weights wi are intended to
specify the relative importance associated with each attri-
bute. If the structural or QoS attributes expressed by the
US;i’s take values in different domains, they should be nor-
malised in the same range (e.g., ½0; 1�) before computing the
weighted average.

Normalisation can be done by considering instead of the
attribute value US;i, 1 � i � m, the value:

Umaxi � US;i

US;i � Umini
; (9)

where Umaxi and Umini denote, respectively, the maxi-
mum and minimum value of the considered ith attribute.

However, assigning meaningful values to the weights wi

is not an easy task, and determining Umaxi and Umini

requires additional effort in a distributed environment (it
can be done using gossip-based aggregation [8], at the cost
of increased complexity). Besides, the SAW technique could
be impossible to apply when some attributes are measured
on an ordinal scale [18].

In this case, GOPRIME can compare the compound utilities
of different assembly within a Pareto optimality framework,
as suggested in [19]. Under Pareto optimality, S1 is better
than S2 if UðS1Þ dominates UðS2Þ, i.e., UðS1Þ is better than
UðS2Þ for at least one of its entries and no worse according
to all of the others.

The use of Pareto optimality actually leads to the identifi-
cation of a set of services that are non-dominated with
respect to a given compound utility definition, thus forming
a Pareto front. This raises the question of what service must
be selected to solve a dependency from a Pareto front [20].
The answer to this question is in general domain-dependent.

3 GOPRIME ARCHITECTURE

The GOPRIME goal is to drive the distributed system we are
considering towards the construction of a service assembly
that is increasingly good (in the sense discussed in Sec-
tion 2.3) with respect to a given set of attributes. In this sec-
tion we present the GOPRIME fully decentralised architecture
that allows achieving this goal. We outline in Section 3.1 the
overall architecture, in Section 3.2 we detail the algorithm
that implements its core functions and in Section 3.3 we dis-
cuss the algorithm’s properties.

3.1 Architecture

Fig. 2 shows the two GOPRIME macrocomponents, namely
Service Management and Assembly Management. Each peer
node hosts an instance of this pair of macrocomponents,
besides the services it offers. Overall, these pairs, by cooper-
ating among them as outlined below and detailed in Sec-
tion 3.2, give rise to a fully decentralised implementation of
the GOPRIME operations. In particular, the Assembly Manage-
ment macrocomponents cooperate according to a gossip
schema that allows fully decentralised information dissemi-
nation and decision-making about the assembly construction

andmaintenance. This makes the system robust and scalable
in the presence of events like arrival of new requirements,
upgrade/downgrade of service utility (including the
extreme case of service failure), or arrival/departure of new
peers (and corresponding hosted services).

Each of the macrocomponents in Fig. 2 is actually archi-
tected as a set of interacting components, as shown in Fig. 3.
We give below some details about these components and
their functions.

Service Management includes Local Utility Monitor, which
monitors the local utilities of hosted services and notifies
detected changes to the Utility Manager hosted by the same
node. Service Management could also include other compo-
nents, possibly concernedwith the implementation of internal
adaptation actions aimed at maintaining local QoS attributes,
but they are not part of the current GOPRIME implementation.

The Assembly Management macrocomponent includes
Gossip Manager, Assembly Manager, Utility Manager and
Assembly Utility Monitor.

Gossip Manager is the core component that implements
the GOPRIME decentralised information dissemination and
decision-making. We detail in Section 3.2 its operations. It
activates and manages one or more gossip algorithm instan-
ces, based on directives received from Utility Manager,
building a suitable S:In set for a local S service. Moreover,
it notifies the current value of S:In to Assembly Manager
and Assembly Utility Monitor.

Utility Manager receives requirements—expressed in
terms of utility definition and related metrics—from the
above Goal Manager, and sends to Gossip Manager direc-
tives about corresponding “gossips” to be started (one new
gossip is possibly activated for each newly received require-
ment), to build and maintain an assembly able to fulfill the
requirement. For each maintained assembly, Utility Man-
ager receives from the Local Utility Monitor and the Assem-
bly Utility Monitor information about the utilities of local
and remote services, respectively, which are used to build
the assembly. Based on this information, Utility Manager
keeps updated the value of the compound utility for the
locally hosted services, and notifies it to Goal Manager. Note
that Goal Manager is an abstract architectural entity whose
definition and implementation are strongly tied with the
service it refers to. Therefore, it is not part of GOPRIME and
its specific implementation is left to the service developer.

Fig. 2. Reference architecture.

Fig. 3. GOPRIME high-level architecture.

Assembly Manager receives from Gossip Manager the cur-
rent composition of the set S:In that specifies which services
should currently be used to solve the dependencies of a
local service S, and manages the corresponding bindings.
Moreover, it receives notifications of incoming binding
requests for each local service S, and keeps updated the cor-
responding set S:Out.

Assembly Utility Monitor receives from Gossip Manager
the current composition of the set S:In, for each local service
S, and monitors the QoS of services in S:In, sending to Util-
ity Manager notifications about observed changes.

3.2 Core Algorithm

In this section we describe in detail how GOPRIME operates
to dynamically build and maintain in a fully decentralised
way a suitable assembly of services.

To achieve this goal, the various instances of the Gossip
Manager, located on the different nodes, implement a decen-
tralised algorithm, based on a gossip communication
model [8], [10] for the dissemination of local information
about the system state. Gossip communication builds upon
epidemic protocols to achieve reliable information exchange
among large sets of interconnected peers, also in presence of
network instability (e.g., peers join/leave the system sud-
denly). Specifically, in a gossip communication model, each
peer in the system periodically exchanges information with
a dynamically built peer set, and spreads information epi-
demically, similar to a virus in biological communities.

Algorithm 1 describes the core of the gossip algorithm for
service assemblies cooperatively executed by the Gossip
Managers hosted by peer nodes. This algorithm iteratively
resolves the dependencies of each service, thus leading to
the construction of an assembly where each service S 2 S is
(possibly) fully resolved and the value of UðSÞ is monotoni-
cally increased until it reaches its maximum value or, at
least, a given threshold is exceeded (see Section 3.3).

Algorithm 1. Algorithm Executed by the Agent
Responsible for Service S

// Input parameters
1: S;UðÞ; SelectFromBestdðÞ;UpdateBestdðÞ; ðfor all d 2

S:DepsÞ
// Local variables

2: S:In ;
3: BestS;d ;; for all d 2 S:Deps

4: procedureACTIVETHREAD

5: loop
6: Wait Dt
7: for all Sj 2 GetPeersðÞ do
8: Send hS:In [fSgi to Sj

9: procedure PASSIVETHREAD

10: loop
11: Wait for message hBi from Sj

12: for all Sk 2 B do
13: if there exists d 2 S:Deps s.t.

matchesðd; Sk:TypeÞ > 0 then
14: BestS;d UpdateBestdðBestS;d;Sk;UðÞÞ
15: S:In SelectFromBestdðBestS;d;S:In;UðÞÞ

Besides service S, the algorithm takes as input parame-
ters the functions UðÞ, UpdateBestdðÞ, SelectFromBestdðÞ,
for each d 2 S:Deps. We gave in Section 2 the general defini-
tion and examples of possible instantiations of function UðÞ,
while functions UpdateBestdðÞ and SelectFromBestdðÞ are
described below.

Function UpdateBestdðÞ keeps the set BestS;d; d 2 S:Deps
updated, where BestS;d collects the currently known H (or
less) “best” services with respect to UðSÞ that can be used to
solve dependency d. The upper bound H on the cardinality
of BestS;d is a system parameter. As a consequence, the spe-
cific definition of UpdateBestdðÞ depends on the definition
of UðÞ and of a suitable metric for it, as discussed in Sec-
tion 2.3. Algorithms 2 and 3 show possible definitions of
UpdateBestdðÞ in case of a scalar or Pareto-based metric for
UðÞ, respectively.

Algorithm 2. UpdateBestdðÞ for Scalar UðÞ
// Input parameters

1: BestS;d � S;Si 2 S;UðÞ
// Algorithm

2: BestS;d BestS;d [fSig
3: if jBestS;dj � H then
4: continue
5: else /* drop the worst service to keep jBestS;dj � H */
6: jmin argminjfUðSjÞ j Sj 2 BestS;dg
7: BestS;d BestS;d n fSjming
return BestS;d

Algorithm 3. UpdateBestdðÞ for Pareto-Based UðÞ
// Input parameters

1: BestS;d � S;Si 2 S;UðÞ
// Algorithm

2: BestS;d BestS;d [fSig
3: for all Sj 2 BestS;d do
4: if UðSiÞ dominates UðSjÞ then
5: Bestd BestS;d n fSjg
6: if UðSjÞ dominates UðSiÞ then
7: Bestd BestS;d n fSig
8: break
9: if jBestS;dj � H then
10: continue
11: else
12: /* remove a service from BestS;d according to some

domain dependent criterion, to keep jBestS;dj � H */
return BestS;d

On the other hand, each function SelectFromBestdðÞ
takes as input the set BestS;d and the set S:In, and selects
from BestS;d (according to some suitable criterion) the ser-
vice that must actually be used to solve the dependency d.
This service is added to S:In, possibly substituting a previ-
ously selected service. Algorithm 4 gives a possible defini-
tion of SelectFromBestdðÞ in case of a scalar metric for the
compound utility U(). In case of Pareto-based compound
utility U() the definition of SelectFromBestdðÞ is domain
dependent.

Finally, Algorithm 1 describes the general gossip-based
scheme implemented by each Gossip Manager. It includes

an initialisation phase and two concurrent threads: an active
thread that starts an interaction by sending a message to a
peer, and a passive thread that responds to messages
received from other peers. The set of peers is provided by
the underlying gossip communication protocol (more
details will be given in Section 4). During initialisation
(lines 2-3) the sets S:In of services bound to S and
BestS;d; d 2 S:Deps are set to empty.

Algorithm 4. SelectFromBestdðÞ for Scalar UðÞ
// Input parameters

1: BestS;d � S;S:In 2 S;UðÞ
// Algorithm

2: jmax argmaxjfUðSjÞ j Sj 2 BestS;dg
3: ifthere exists Sk 2 S:In s.t.matchesðSk:Type; dÞ > 0 then
4: if UðSkÞ < UðSjmaxÞ then
5: S:In S:In n fSkg [fSjmaxg
6: else
7: S:In S:In [fSjmaxg
return S:In

The active thread is extremely simple: every Dt time
units, Gossip Manager sends a message to its peer set. The
message payload is a set of services, containing the list of
currently bound dependencies S:In plus S itself.

The passive thread listens for messages coming from
other peers. Upon receiving a message containing the set B,
Gossip Manager checks all services Sk 2 B to see whether
some of them can be used to fill its own dependencies. If
Sk:Type is required as a dependency, then Sk is considered
as a candidate to be added to BestS;d (line 13). The decision
whether to include Sk in BestS;d is taken by function
UPDATEBEST() (line 4), possibly dropping from BestS;d some
other service whose utility is worse than Sk (see examples
given in Algorithms 2 and 3). The update of the sets BestS;d
can lead to a substitution of the service currently used to
solve dependency d (as specified in the set S:In) with a new
“better” service taken from BestS;d. The decision about
this possible substitution is taken by function
SelectFromBestdðÞ (line 1).

As is typical with gossip-based protocols, a new instance
of Algorithm 1 is created at each node for each query
entered into the system, where a query essentially specifies
a service S and one or more requirements that the assembly
rooted at S needs to fulfill. Each node can define its own
policies for deciding if and when a new instance of some of
the hosted services can be created in response to the arriv-
ing stream of queries.

It is worth noting that, by maintaining a set BestS;d with
jBestS;dj > 1, GOPRIME allows for a quick local recovery
from the loss of the binding with the service currently used
by S to solve dependency d (e.g., because of a failure, or the
hosting peer leaving the system). Indeed, in this case, a new
service can be locally selected from BestS;d. This recovery
action can at least keep S fully resolved, even if some non-
functional requirement could no longer be fulfilled.

Fig. 4 shows an example of algorithm execution over a set
of eight services S1; . . . ; S8. UML 2.0 component diagrams
represent the services, with provided and required interfa-
ces labeled with the interface type. For simplicity, the com-
pound utility is a single scalar value (m ¼ 1), so that the

scalar versions of functions UpdateBestdðÞ and
SelectFromBestdðÞ can be used (see Algorithms 2 and 3).

The compound utility of some of the services is shown
inside each block, and is assumed to be simply the maxi-
mum of the compound utilities of each dependency; note
that S3 and S8 are not fully resolved, therefore
UðS3Þ ¼ UðS8Þ ¼ ?. The initial situation is shown in Fig. 4a;
we assume that S2 executes the active thread, and S1 and S3

are in its peer set. First, S2 sends the list S2:In [fS2g ¼
fS2; S5; S6g to its first peer S1. S1 observes that it can replace
its dependency S4 with S2 (both have type 2), since S2 pro-
vides a higher compound utility than S4. Therefore, the
services are rewired according to Fig. 4b. Now S2 sends the
same list fS2; S5; S6g to the other peer S3. S3 then discovers
that it can replace its dependency S7 with S6, since it pro-
vides higher compound utility than the existing depen-
dency. Fig. 4c shows the final wiring of the services.

3.3 Algorithm Properties

In this section we argue that, thanks to Algorithm 1,
GOPRIME is able to guarantee the construction and mainte-
nance of an assembly fulfilling functional and non-func-
tional requirements, defined as follows:

� functional requirement: service S must be fully
resolved;

Fig. 4. Example of execution of Algorithm 1. At the beginning, service S2

has fS1; S3g as neighbours.

� non-functional requirement: the value of aS must be
maximised (or, also, it must hold aS 	 amin), where
aS is a given QoS or structural attribute of S and amin

is some suitable threshold value for that attribute.
Let us denote by UðSÞk and UðSÞkþ1 the compound util-

ity of a service S 2 S at two consecutive rounds of Algo-
rithm 1. The central element of our argument is that UðSÞkþ1
is possibly better and in any case no worse than UðSÞk,
under the hypothesis that:

1) no service leaves the system;
2) the local utility of each service does not change;
3) function FðÞ in equation 1 is non decreasing with

respect to any of its arguments.
Actually, hypotheses (1) and (2) above could be too

strong in the dynamic environment we are considering.
Hence, after discussing the case when they hold, we gener-
alise our argument to the case where they are released.

To prove the non-decreasing monotonicity of UðSÞk with
respect to k when all the three hypotheses above hold, let us
consider first the case where S does not change any of its
bindings from round k to round kþ 1. In this case, hypothe-
ses (1) and (2) guarantee that UðSÞkþ1 ¼ UðSÞk.

Let us consider instead the case where S does change
from round k to round kþ 1 its binding to solve a depen-
dency d 2 S:Deps, and let us denote by S0 and S00 the old
and new service S is bound to solve d. The non-decreasing
monotonicity of UðSÞk is immediately evident in the case of
a scalar metric. Indeed, looking at Algorithms 2 and 4, we
see that S changes its current binding from S0 to S00 only if
UðS00Þ > UðS0Þ. This, together with hypothesis (3) above,
guarantees that in case of change of binding, we have
UðSÞkþ1 	 UðSÞk.

In case of a Pareto-based metric, we can see from Algo-
rithm 3 that a new service Si is added to the set BestS;d at
round kþ 1 only if UðSiÞ is not dominated by UðSjÞ for any
other service Sj 2 BestS;d at round k, and possibly UðSiÞ
dominates UðShÞ for some service Sh 2 BestS;d. As a conse-
quence, UðS00Þ can never be dominated by UðS0Þ, however
function SelectFromBestdðÞ is defined. This, together with
hypothesis (3), guarantees that, in case of change of binding,
UðSÞkþ1 cannot be dominated by UðSÞk.

The arguments above show that the algorithm imple-
mented by the Gossip Manager makes UðSÞk a monotonic
non-decreasing function, with respect to k. We now discuss
how, thanks to this property, GOPRIME guarantees the fulfil-
ment of functional and non-functional requirements.

Let us consider functional requirements first. We know
from equation (1) that UðSÞk takes the lowest value when S
is not resolved, for any service S 2 S. Hence, if services exist
in S able to fully solve the dependencies of S, then the
monotonicity of UðSÞk together with the properties of a gos-
siping scheme, guarantee that the system will be eventually
driven towards the construction of an assembly where all S
dependencies are resolved, for any definition of function F()
in equation (1).

For non-functional requirements, we have presented in
Section 2.2 example definitions of function F() for specific
QoS or structural attributes. By instantiating the general defi-
nition ofUðSÞ according to these definitions, the monotonic-
ity of UðSÞk together with the properties of a gossiping

scheme, guarantee that an assembly will be eventually built
for a service S where maximisation or threshold-based non-
functional requirements are fulfilled (in the latter case, pro-
vided that the specified threshold is below the achievable
maximum). For requirements involving the maximisation of
the compound utility value, the gossip protocol actually only
guarantees that the compound utility value of the assembly
will be non-decreasing, so that some user-defined criteria
must be set to stop the protocol when the utility is considered
“good enough”. The simulation experiments, which will be
presented in Section 5.2, suggest that, as the rate of improve-
ments of the compound utility value slows down, the assem-
bly is approaching its optimal configuration.

It remains to be discussed the case where hypotheses (1)
or (2) above do not hold. Let us consider hypothesis (1). If a
service that is currently part of an assembly rooted at a ser-
vice S leaves the system, then UðSÞ suddenly drops to the
lowermost value ?, since the S dependencies are no longer
fully resolved. GOPRIME will recover from this situation
thanks to its continuous effort in monotonically increasing
the UðÞ value, as discussed above. Let us consider now
hypothesis (2). If the local utility of some service belonging
to an assembly rooted at S increases, thenUðSÞwill increase
by hypothesis (3), thus having no negative impact, as
expected. If the local utility of some service decreases, then
UðSÞ could decrease too, by hypothesis (3). In this case, the
situation is similar (even if less extreme) to the case where a
service leaves the system, and GOPRIME recovers in an analo-
gous way from this situation.

Hence, in general, UðSÞk will present a piecewise mono-
tonic non-decreasing behaviour, as a result of services leav-
ing the system or decreasing their local utility (e.g., because
of some internal failure), and the parallel continuous opera-
tion of GOPRIME. We will present in Section 5 experiments
providing evidence of this behaviour.

4 GOPRIME IMPLEMENTATION

GOPRIME is implemented as an extension of PRIME, a support
middleware for developing pervasive applications that
adhere to the Pervasive-REST (P-REST) architectural
style [6]. We give first a quick overview of PRIME, then we
present its GOPRIME extension.3

PRIME exploits a two-layer software architecture to pro-
vide engineers with a set of enhanced functionalities (white
boxes in Fig. 5) facilitating the design and development of
P-RESTful applications—i.e., applications adhering to the
P-REST style [6]. Specifically:

Communication layer – To deal with the inherent instabil-
ity of pervasive environments, PRIME arranges devices in an
overlay network built on top of low-level network tech-
nologies (e.g., Bluetooth, Wi-Fi). Such an overlay is
exploited to provide two basic communication facilities,
namely point-to-point and point-to-multipoint.
Point-to-point communication grants a given node direct
communication with a remote node, whereas point-to-mul-
tipoint communication allows communication with many
different nodes at the same time. Furthermore, PRIME imple-
ments a DNS facility for managing device mobility [21].

3. GOPRIME is available at http://github.com/maurocaporuscio/
prime-middleware-extensions

API programming layer – PRIME provides the programming
abstractions to implement P-RESTful applications. Pri-

meApplication acts as container for exposed Resour-

ces—i.e., it handles both resource life-cycle and
provision—and provides the set of operations allowed on
resources: (i) Access, which gathers the set of operations to
access and manipulate resources according to the REST uni-
form interface, (ii) Observe/Notify, which allows resour-
ces to declare interest in a given resource and to be notified
whenever changes occur, and (iii) Lookup, which supports
resource discovery.

These functionalities grant PrimeApplication a set of
key characteristics, such as: (i) loose coupling: resources
are deployed and executed independently of other resour-
ces, (ii) flexibility: resources can be added and removed
into the running application, (iii) dynamism resources of
interests are discovered and bound into the running appli-
cation, and (iv) serendipity: unforeseen resources are
accommodated into the running application.

GOPRIME exploits such characteristics and extends PRIME

with the set of capabilities discussed in previous sections,
namely Gossip communication, Assembly Management,
and Service Management. Indeed, the GOPrimeAppli-

cation (light-grey boxes in Fig. 5) uses the extended commu-
nication layer and API programming layer to provide up-level
Services with the Utility-Aware Service Assembly function-
ality. Specifically, referring to the high-level architecture
described in Section 3, GOPRIME includes three macrocompo-
nents, namelyGossip communication (Section 4.1), Assem-
bly Management (Section 4.2), and Service Management

(Section 4.3).

4.1 Gossip Communication

Gossip macrocomponent extends the PRIME communication
layer by providing GOPrimeApplication with the ability
of gossiping information of interest.

To optimise information dissemination, Gossip builds
and maintains the peer set over which information of interest
is disseminated. To this end, Gossip implements the NEWS-

CAST epidemic protocol [9], and maintains a local view of a set
of peers it can exchangemessageswith. The local view is con-
stantly updated, so that a node is always provided with
“fresh” list of peers. Updating the local views is also neces-
sary to maintain an updated peer set in presence of node and
link failures. Specifically, each peer maintains a set of K
peers, where K is a predefined constant; periodically, each
peer merges its list with that of a randomly chosen peer,
keeping themostK recently added links and dropping older
ones. This protocol exhibits useful features: (i) the peer set it
produces is a good approximation of a true random sample
among all peers, and (ii) the protocol is highly resilient and
canmaintain a full peer set in presence of node or link faults.

4.2 Assembly Management

Assembly Management implements assembly construction
and maintenance functionalities.

Referring to Fig. 6, the GOPrimeApplication class
makes use of Assembly Management, which in turn
includes AssemblyManager, UtilityManager, Assem-
blyUtilityMonitor, and GossipManager.

AssemblyManager is in charge of managing the assem-
bly specified by the local service by satisfying the set of
dependencies and resolving the corresponding bindings. To
this end, AssemblyManager interacts with GossipMan-

ager, which in turn provides gossip communication facility:
(i) sending/receiving messages to/from the underlying net-
work, and (ii) implementing Algorithm 1, as well as the
UpdateBestdðÞ and SelectFromBestdðÞ functions (see Sec-
tion 3.2), to keep the Assembly Management updated.

Finally, UtilityManager is implemented as a support-
ing abstract class used to map the set of high-level require-
ments, specified by Service Management, to low-level
directives needed to instruct GossipManager. Specifically,
UtilityManager is extended by the AssemblyUtili-

tyMonitor to combine local and remote utility and keep
the compound utility updated.

Fig. 5. GOPRIME software architecture.

Fig. 6. An excerpt of the GOPRIME class diagram.

4.3 Service Management

Service Management monitors the utility of the local ser-
vice through LocalUtilityMonitor, and forwards
detected changes to UtilityManager, which in turn re-
computes the compound utility and notifies the
GossipManager.

It is worth noting that LocalUtilityMonitor exploits
the semantic-aware PRIME Resource Description mechanism for
implementing thematching functionmatches : T� T! ½0; 1�
(defined in Section 2). Specifically, following the P-REST
architectural style imposed by the PRIMEmiddleware, a Service
is implemented as a GOPrimeApplication, which exposes
information of interest through the instantiation of Resources.
In turn, Resources are provided/consumed through the P-
REST uniform interface, and must be described by means of
the PRIME Resource Description Ontology, which specifies the
set of concepts needed to properly advertise/retrieve resour-
ces of interest to/from the networking environment. In partic-
ular, a Description is composed of (i) aURI and cURI,
which define the Service Type implemented by the resource
and its concrete identifier, respectively; (ii) the functional
description, which describes the set of functionalities offered
by the resource, and (iii) the contextual properties of the
resource (e.g., the geographic coordinates).

Exploiting such a mechanism, the matching function is
redefined as matches : aURI� aURI! ½0; 1� and exploits
the signature matching algorithm [12] to check whether pro-
vided and required Service Type satisfy one of the following
subsumption relationships: (i) if no subsumption relation
exists between the two types (fail matching) then matches
returns 0, (ii) if the required type subsumes the provided
one (subsume matching) then matches returns 1=3, (iii) if the
provided type subsumes the required one (plugin matching)
matches returns 2=3, and (iv) if the types are equivalent
(exactmatching) thenmatches returns 1.

GOPRIME extends the PRIME Resource Description Ontol-
ogy by defining the set of concepts needed to specify the
Utility of the local service, as well as the set of its dependen-
cies. For instance, referring to the example presented in
Fig. 4c, Fig. 7 shows the semantic-aware description for the
Resource implementing S2. In particular, the Description
defines a service identified as S2 (the cURI attribute) of type
Type2 (the aURI attribute), which implements a GET

method. Further, S2 declares the current compound utility
(hasQoS attribute), and its dependence on two service
types, Type3 and Type7 respectively. Each dependency

declares a times attribute that specifies the number of
times such a dependency is resolved during the execution
of the local service (see Section 2.2).

5 EXPERIMENTAL RESULTS

The GOPRIME assessment carried out in this section is two-
fold and concerns (i) its suitability when dealing with a real
world application (Section 5.1), and (ii) its scalability, con-
vergence speed and robustness (Section 5.2).

5.1 GOPRIME in Action: eHealth Application

The experiment presented in this section aims to validate
the utility-aware decentralised service assembly approach
implemented by GOPRIME through a real world case study,
namely the eHealth application.

The eHealth application aims at (i) monitoring elder peo-
ple’s health parameters (e.g., weight, blood pressure, heart
rate, etc . . .), as well as their daily activity (e.g., sleeping, eat-
ing, walking, etc . . .), and (ii) raising health alarms whenever
either the health parameters or the activity deviate from
usual (e.g., the patient is sleeping too much and/or the
blood pressure is too low). To this end, the eHealth applica-
tion is built as composition of a set of services. Fig. 8 depicts
the eHealth scenario by highlighting the set of involved ser-
vice types (the labeled boxes) and service instances (the
icons within each box). For each service type, arrows point
to other service types it depends on. Specifically:

1) Wearable Things sense health parameters and pro-
vide them to Patient.

2) Ambient Things monitor daily activities and provide
them to Patient.

3) Patient analyses sensed data and, in case of anomaly
detection, issues a query for a (medical or technical)
Health Service, specifying its non-functional require-
ment. In this experiment, we assume that it is
“minimise the Response Time”, which corresponds
tomaxðUtðHealthServiceÞÞ according to Equation (5).

4) Health Service receives the alarm and, depending on
its type (i.e., medical or technical), alerts First Aid or
Technical Assistance, accordingly.

5) Technical Assistance, upon receiving a Technical
alarm, sends a Technician to the patient’s home.

Fig. 7. Resource description.

Fig. 8. Case study: the eHealth scenario.

6) First Aid contacts the Ambulance Service, and makes a
reservation at the Hospital.

7) Hospital reserves Analysis Laboratory and Operating
Rooms to efficiently manage the alarm.

8) Ambulance Service selects an Ambulance according
to the requirements for the ongoing emergency.

Fig. 9 describes the eHealth system model, which is
defined according to a three layer schema composed of
Service Layer, GOPRIME Layer, and PRIME Layer.

In general, the Service layer specifies the set of Service
Types (defined as aURI) involved in the running applica-
tion. Referring to the eHealth scenario, Service layer in Fig. 9
describes (i) the set of services composing the eHealth sys-
tem (i.e., Wearable Thing, Ambient Things, Patient, etc.), and
(ii) the non-functional requirement maxðUtðHealthServiceÞÞ
and the dependencies declared by Patient, i.e., the service
initiating the interaction.

TheGOPRIME layermanages the selection of actual services
satisfying the non-functional requirement. GOPRIME encapsu-
lates the descriptions of those services that match each type.
GOPRIME layer provides a vitalisation layer used to introduce
a further degree of indirection, enabling for loose binding
between Service Types and their implementing PRIME instan-
ces. Indeed, the Service types are not directly bound to their
concrete implementations. Besides, decoupling the Service
Types from their concrete implementations, achieves the
flexibility degree required for supporting run-time adapta-
tion. Once specified the Service types and the set of descrip-
tions, services are bound to instances at run time bymeans of
the PRIME binding mechanisms. Still referring to the eHealth
scenario, GOPRIME layer in Fig. 9 maps the abstract set of Ser-
vice Types defining the eHealth system to the set of Service
Descriptions matching such types. For example, theWearable
Thing type is matched by two different Service Descriptions
(e.g., d1 and d2), whereas the Patient type is matched by one
Service Description (e.g., d7).

The PRIME layer manages the life-cycle of components
implementing the service descriptions. PRIME layer contains
the set of all possible component instances implementing
the Service Types specified within the Service layer, as well
as other companion components that might be used to sup-
port the computation. Each Service Type might be imple-
mented by several components that vary from each other in
terms of QoS properties (e.g., availability and reliability).
Note that the GOPRIME layer plays the role of filtering layer:
(i) a description specifies both functional and non-

functional requirements for the service, and (ii) the PRIME

binding mechanism makes use of such descriptions for
selecting the component instance, among all the available
ones, which provides the needed functionality and satisfy
QoS requirements. For example, referring to Fig. 9 the
Service Descriptions d1 and d2 refer to, respectively, compo-
nent c14 and c11, whereas the description d7 refers to the
component c8.

Since the underlying components are implemented by
means of PRIME, services must be designed and imple-
mented by adhering to the P-REST architectural style. To
this end, Fig. 10 presents an excerpt of the eHealth Applica-
tion software architecture, specified according to the P-
REST metamodel [6], which shows the architectural design
of the patient service: let /patient be the GOPRIME

Resource representing the Patient service in Fig. 8.
/patient includes a /list resource, which can be
accessed by following the link labeled as store. Indeed,
/list is defined as a Resource Set of resources
{res_id}. Moreover, /patient makes use of three
abstract resources, namely #WearableThing, #Ambient-
Thing and #HealthService.

At run-time, data will be actually read from concrete
resources belonging to the classes #WearableThing, and
#AmbientalThing, and stored as a list of values: the
actual URIs of the resources identified by {res_id}, are
derived in two steps: (1) considering the include relation
from /list/{res_id} to /patient, then obtaining the
/list/{res_id} URI Template, and (2) substituting the
res_id variable with actual values. This results in a set of
n distinct resources identified by /patient/list/1,
/patient/list/2, . . ./patient/list/n URIs, respec-
tively. Patient keeps analysing data in list and, in case of
anomaly detection, sends an alarm to the actual concrete
resource belonging to #HealthService and matching the
non-functional requirementmaxðUtðHealthServiceÞÞ.

Fig. 11 shows the service assembly made by GOPRIME

from the Patient perspective, with response time-based
compound utility defined in equation (5). Specifically, once
the Patient has declared the maxðUtðHealthServiceÞÞ
requirement for the final assembly, GOPRIME gossips com-
pound utilities until all dependencies are iteratively
resolved and the response time of the resulting assembly is
minimised.

Fig. 9. The eHealth system model.

Fig. 10. PRIME-based eHealth software architecture.

Initially (at step s0), the compound utilities (expressed in
units of time ut) are: Truck Ambulance ¼ �100ut, Ambulance
Service ¼?, Hospital ¼ �25ut, First Aid ¼?, and Technical
Assistance ¼ �10ut. Hence, applying the above equation it
results Health Service ¼?, as some dependencies are still not
resolved. From step s0 to step s6 (see
1), GOPRIME gossips local
utilities and resolves the dependencies by recursively calcu-
lating compound utilities. At step s6, the compound utilities
are: Truck Ambulance ¼ �100ut, Ambulance Service
¼ �100� 10 ¼ �110ut, Hospital ¼ �25ut, First Aid
¼ �10� 25� 110 ¼ �145ut, Technical Assistance ¼ �10ut,
andHealth Service¼ �10� 10� 145 ¼ �165ut. Hence, at step
s7 (see
2) the dependencies for Patient are resolved, and its
compound utility isUt ¼ �10� 165 ¼ �175ut.

Fig. 11 also shows how the Patient’s compound utility
changes as soon as a faster ambulance, namely Air Ambu-
lance with Ut ¼ �30ut, becomes available (see
3). When Air
Ambulance appears, GOPRIME gossips its response time-based
utility, and reassembles the service, accordingly (see
4).
Specifically, Air Ambulance ¼ �30ut, Ambulance Service
¼ �10� 30 ¼ �40ut, Hospital ¼ �25ut, First Aid
¼ �10� 25� 40 ¼ �75ut, Technical Assistance ¼ �10ut, and
Health Service ¼ �10� 10� 75 ¼ �95ut. Hence, at step s7
(see
5) the new compound utility for Patient is
Ut ¼ �10� 95 ¼ �105ut.

It is worth noting that, for the sake of simplicity, such
experimentation has been carried out by considering a single
attribute for the compound utility, namely Ut as defined in
equation (5). Alternatively, Patient can specify a multi-attri-
bute requirement that aims to balance response time and
some other quality attribute (e.g., cost). For example, to avoid
using the costly Air Ambulance when not needed, Patient
can combine Ut and Uc (i.e., the cost-based compound utility
defined in Equation (3)) by means of either SAW or Pareto
technique (as defined in Section 2.3), to specify a non-func-
tional requirement that balances cost and response time.

5.2 Scalability and Robustness Analysis

In order to test the effectiveness of GOPRIME on a larger
scale than our case study allows, we implemented a

simulation model using the cycle-based engine of the Peer-
Sim [22] simulator. PeerSim is a free Java package
designed for efficient simulation of Peer-to-Peer protocols;
the cycle-based engine it provides implements the time-
stepped simulation model, in which all interactions hap-
pen at specific time steps. The cycle-based engine is well
suited to evaluate Peer-to-Peer protocols, where the most
important metric is the convergence speed measured as
the number of rounds (message exchanges) that are
needed to reach a desired configuration. Such a perfor-
mance metric (number of interactions) has the advantage
of being independent from the details of the underlying
hardware and network infrastructure.

Model parameters. Using the same notation from Table 1,
we consider a system with T interface types and C 	 1 serv-
ices of each type, so that N ¼ C � T . Moreover, to perform
the experiments in the least favourable conditions, we
assume that each peer hosts a single service. This implies
that N is also equal to the number of peers; hence, in the fol-
lowing we will refer toN as the “system size”.

For each service we define D random dependencies.
Abstracting from specific utility definitions (like those
described in Section 2.2), each service S is assigned a scalar
utility S:Util that is uniformly distributed in ð0; 1Þ, and we
compute the compound utility of a fully resolved assembly
as the product of utilities of individual services. For each
type d 2 T we randomly choose Nopt 	 1 services of type t

and set their utility to 1; this ensures that a maximum com-
pound utility value of 1 can always be achieved, by binding
together those services.

We point out that, even if we adopt a scalar utility in our
experiments, the obtained indications extend also to the
case of a non-scalar utility compared according to Pareto
dominance. Indeed in this case GOPRIME would drive the
system towards the construction of an assembly whose util-
ity belongs to the corresponding Pareto front. Hence, the
Pareto front would play the role of the maximum achievable
utility value of 1 in the scalar setting of our experiments,
and the cardinality of the Pareto front would correspond to
theNopt value.

Fig. 11. GOPRIME-based patient assembly.

Performance measures. We consider two metrics: the frac-
tion Rt of fully resolved services at simulation step t,
0 � Rt � 1, and the average utility Ut of fully resolved serv-
ices at step t, 0 � Ut � 1. Both are higher-is-better metrics.
Rt is computed by counting the fraction of fully resolved
assemblies at the end of each simulation step; the optimal
value of Rt is 1 (all services are fully resolved). Ut is com-
puted as the average utility of all fully resolved services at
step t (there are NRt such services). As already explained
above, the maximum value of Ut is 1. Unless stated other-
wise, all results are computed by taking the average of ten
independent simulation runs.

Table 2 summarises the simulation parameters. We now
report the results in different scenarios.

System size. We first evaluate the mean number of itera-
tions that are necessary to produce fully resolved assem-
blies, for increasing values of the system size N ,
1;000 � N � 15;000. This is important for understanding
the scalability of the proposed gossiping scheme. We per-
formed a simulation with T ¼ 50 different service types,
each service having D ¼ 10 dependencies. 25 percent of the
instances of each type have maximum utility 1. At each iter-
ation, each node exchanges state information with K ¼ 20
other nodes.

Fig. 12 shows the average number of iterations that are
required to resolve all dependencies and achieve a com-
pound utility greater than 0:99 (out of the maximum value
1), for each service in the system. As it can be expected,
more iterations are required to achieve the desired maxi-
mum utility for increasing system size. However, the num-
ber of iterations increases quite slowly, suggesting the
logarithmic growth typical of gossip protocols [8].

Besides the number of iterations to fulfill the system
requirements, another important factor that can affect scal-
ability is the amount of exchanged information among
nodes in the network. From line 8 of Algorithm 1, we see
that each node sends a message whose size is propor-
tional to K � ð1þ jS:DepsjÞ � K � ð1þ T Þ, independent of
the system size N . Hence, the overall amount of informa-
tion exchanged at each round grows linearly with the sys-
tem size.

The ability of GOPRIME to resolve dependencies quickly
depends on the number of instances of the service types in
the system: if there are only a few instances of each service
type, the gossip protocol requires more iterations to build
fully resolved assemblies. This is shown in Fig. 13 where we
consider a system with N ¼ 5;000 services and a variable
number of instances C for each type, C 2 f2; 5; 10; 50; 100g.
The number of iterations required to produce a (not neces-
sarily optimal) fully resolved assembly steeply increase as
the number of instances of each type decreases. This can be

improved by tuning the value of parameter K (number of
peers of each node) as described next.

Number of neighbours. We now examine the impact of the
value of K (number of neighbour peers returned by the
GetPeersðÞ function) on Rt and Ut; specifically we consider
K 2 f10; 20; 50g. We consider N ¼ 1;000 services of T ¼ 50
different types; each service has D ¼ 10 randomly chosen
dependencies. For each type t 2 T, there is a single service
with maximum utility (Nopt ¼ 1).

Fig. 14 shows the average utility (top part) and fraction of
resolved services (bottom part) after each simulation step,
for the different values of K. If each peer communicates
with K ¼ 10 peers, we observe that all dependencies are
resolved in about 10 interactions (bottom part of the figure).
The average utility grows monotonically, as expected (recall
the discussion in Section 3.3); however, the growth is slow,
and the utility tends to stabilise around a value that is below
the maximum, which, by construction, is 1. This can be
explained by observing that, in order to build an assembly
with maximum utility, the algorithm needs to locate the
(unique) service of each needed type with utility set to 1.
Since only interactions with peers are allowed, this process
is very slow over networks with limited degree. The situa-
tion improves by increasing the number K of peers to com-
municate with at each iteration, or if multiple services with
maximum utility are available. To prove the latter point, we
examine again the scenario with K ¼ 10 with increasing
values ofNopt.

Larger values of Nopt imply that there exist multiple dif-
ferent ways to build an assembly with maximum utility.
Fig. 15 shows the results with Nopt 2 f1; 10; 20g. Increasing

Fig. 12. Mean number of iterations required to produce fully resolved
assemblies with utility at least 0:99. There are T ¼ 50 service types Each
data point is the average of 50 independent simulation runs. Lower is
better.

TABLE 2
Simulation Parameters

D Number of dependencies per node
K Number of neighbours returned by GetPeersðÞ function
C Number of instances of each service type
Nopt Number of services of each type with utility 1

Rt Fraction of fully resolved services at step t
Ut Average utility of fully resolved services at step t

Fig. 13. Mean number of iterations required to produce fully resolved
assemblies with N ¼ 5;000 services and variable number of instances
per type C. Lower is better.

Nopt values allow the algorithm to produce service assem-
blies more quickly with higher utility; on the other hand,
note that the value of Nopt has basically no impact on the
speed at which fully resolved services are produced (bottom
part of Fig. 15).

Number of dependencies. In this experiment we study how
the number of dependencies D influences the algorithm
convergence speed. We set N ¼ 1; 000, T ¼ 50, K ¼ 20 and
Nopt ¼ 1. We set D 2 f5; 10; 20g random dependencies on
each service.

The results are shown in Fig. 16. We observe that, as the
number of dependencies increase, so does the convergence
speed towards the maximum utility of the service assembly.
This may appear counterintuitive at first, but can be
explained by considering that each peer sends its list of
resolved (immediate) dependencies to its peer set during
interactions. Since the goal of each peer is to maximise its

compound utility, it will likely bind to services with high
utilities as well. Therefore, if peers have larger lists of depen-
dencies to exchange, then the gossip protocol has a better
chance to faster locate dependencies with higher utility.

Handling failures. Every large collection of distributed
services is necessarily prone to failures: individual peers
may crash at any time, and new peers may join the system.
Many gossip-based algorithms exhibit the ability to handle
massive failures gracefully [8]. We study the resilience of
Algorithm 1 by considering again a set ofN ¼ 1;000 services
of T ¼ 50 different types. Each service has D ¼ 10 random
dependencies. For each service type, we assign utility 1 to
Nopt ¼ 10 different peers. Every ten simulation steps we
remove 40 randomly selected services.

Fig. 17 shows the average utility and fraction of fully
resolved services for different values of K, the number of
neighbours of each peer returned by GetPeersðÞ function.
After each failure, we clearly see a sharp reduction of both
the average utility and the fraction of resolved services.
However, the algorithm quickly works around failed nodes
and stabilises itself near a new optimal configuration within
a few steps. This gives rise to a piecewise monotonic non-
decreasing behaviour, as discussed in Section 3.3. Again,
we see that for the smallest considered value of K (K ¼ 10)
the algorithm provides assembly with utility below the
maximum, within the considered time window. As we dis-
cussed above, when each node has a limited number of
peers to talk with, then information diffusion slows down
and the system tends to stabilise around a suboptimal con-
figuration (with respect to the maximum achievable utility).
Despite that, almost all services become quickly fully
resolved, as shown in the bottom part of Fig. 17.

6 RELATED WORK

6.1 Architectures for Self-Adaptation

It has been widely recognised that the architecture of self-
adaptive software systems should include one or more con-
trol loops to perform self-adaptation tasks [4]. A notable
example of a general approach based on this idea is the

Fig. 15. Average utility (top) and fraction of resolved services (bottom) for
different values of the number of services with maximum utility Nopt;
N ¼ 1;000, T ¼ 50,K ¼ 10. Higher is better.

Fig. 16. Average utility (top) and fraction of resolved services (bottom) for
N ¼ 1;000, T ¼ 50, K ¼ 20, Nopt ¼ 1 and different values of the number
of dependenciesD. Higher is better.

Fig. 14. Average utility (top) and fraction of resolved services (bottom) for
different values of the number of peers K; N ¼ 1;000, D ¼ 10, Nopt ¼ 1.
Higher is better.

autonomic computing framework and the related MAPE-K
(Monitor, Analyse, Plan, Execute, and Knowledge) refer-
ence model of an autonomic system [2], [3]. The MAPE-K
architecture proposed in [2] adopts a centralised hierarchi-
cal organisation. However, the work in [5] clearly contrasts
decentralised self-adaptive systems with their centralised
counterparts, and highlights the importance of decentral-
ised control to achieve quality requirements such as resil-
ience, robustness and scalability in large distributed
systems. That work also discusses some key research chal-
lenges for the realisation of decentralised self-adaptation. A
deep investigation of possible architectural patterns for
decentralised management of MAPE-K loops in self-adap-
tive systems has been presented in [23]. In this respect,
GOPRIME follows the information sharing pattern presented
in [23], where the MAPE-K loops executed at each node
interact through their Monitor components for information
sharing, while the Analyse, Plan and Execute components
operate independently of corresponding components at
other peers, for local analysis, planning, and execution of
adaptations. In particular, Algorithm 1, which implements
the gossip-based information dissemination, corresponds to
a decentralised implementation of the Monitor operations,
while functions SelectFromBestdðÞ and UpdateBestS;dðÞ
locally implement the operations of the Analyse and Plan
components (see Algorithms 2, 3 and 4).

Another general reference model for the architecture of a
self-adaptive software system has been presented in [24].
This paper suggests to architect the system along three dif-
ferent layers, which interact with each other by reporting
status information to the above layer and issuing adaptation
directives to the layer below. The bottom layer (component
control) is concerned with adaptation at the level of single
components (i.e., services in the SOA domain). The middle
layer (change management) reactively uses a pre-specified set
of plans to adapt the system consisting of components at the
lower layer. When these plans are no longer able to meet
the system goals, or when new goals are introduced, the
upper layer (goal management) determines new adaptation

plans. From the viewpoint of this three-layer reference
model, GOPRIME basically corresponds to a decentralised
implementation of the middle layer, which interacts on the
one side with the bottom layer consisting of the managed
services and on the other side with the upper layer that, in
the GOPRIME architecture described in Section 3.1, is imple-
mented by the Goal Manager component.

6.2 Dynamic Service Assembly

The problem of managing a dynamic service composition
has been dealt with in literature by proposing approaches
mainly based on dynamic service assembly (e.g., [25], [26])
or on dynamic service planning (e.g., [27], [28]). In this sec-
tion we briefly review papers based on dynamic service
assembly, which are the ones closest to our approach. In
particular, since our focus is on the development of a fully
decentralised solution, we only consider papers adopting a
similar approach.

The work in [25] presents an approach where a dynamic
set of agents cooperate to preserve some architectural con-
straints. All agents rely on a group membership service and
reliable broadcast to achieve a consistent view of the accu-
mulated knowledge. Moreover, adaptation actions are glob-
ally coordinated by means of a totally ordered broadcast
that implements a distributed locking scheme. This global
coordination mechanism requires explicit interaction
among all agents. The resulting overhead thus limits the
scalability of the proposed control architecture.

FlashMob [26] overcomes some of the limits of [25]. This
work is also the closest to GOPRIME as it adopts a gossip-
based adaptive decentralised self-assembly procedure.
However, FlashMob requires that each peer maintains and
disseminates global state information consisting of the
whole assembly of offered and required services. FlashMob
also does not explicitly deal with global QoS goals, and
requires a backtracking phase to explore alternative solu-
tions in case the assembly does not fulfill some requirement.
Differently from [26], our decentralised self-assembly proce-
dure does not maintain an explicit knowledge of the whole
assembly at each peer. This reduces the size of messages
and of local state. Moreover, the achievement of global QoS
goals is one of the drivers of the procedure we propose.

While FlashMob employs a top-down approach to
resolve dependencies, GOPRIME uses a bottom-up strategy to
build fully resolved assemblies satisfying structural
and QoS requirements. To do so, some extra work is done
by each peer, also those that will not be part of the final
“best” assembly. This extra work is, however, paid back by
the ability to operate without global knowledge, and the
robustness properties that can be obtained.

Some works [1], [7], [29], [30] deal with the problem of
managing dynamic organisations of agents in a decentral-
ised way, i.e., agents that may dynamically form specific
subsets (organisations) to cooperate towards some common
goal. The problem considered in these papers has thus a
wider scope than managing a dynamic assembly of services.
However, this latter problem is part of the more general
problem they consider. The MACODO organisation model
and the related middleware for the management of dynamic
organisations of agents adopts an architecture that is only
partially decentralised [29], [30]. Indeed, each agent

Fig. 17. Average utility (top) and fraction of resolved services (bottom)
when 40 random services are removed every 10 simulation steps;
Nopt ¼ 10. Higher is better.

organisation is based on a master-slave schema, where the
master has complete knowledge of the organisation state
and controls the organisation dynamics in a centralised
way. The masters of different organisations can then coop-
erate to achieve some common goal (for example by merg-
ing their respective set of agents into a single organisation),
exchanging to this end some reduced state information.
Kota et al. [7] presents a decentralised approach where each
agent periodically contacts a subset of its peers to determine
the composition of the organisation it should refer to for the
accomplishment of some specific task. In principle, the sub-
set to be contacted could include the whole set of peers but,
for scalability reasons, [7] suggests to randomly select a lim-
ited subset. This guarantees that, eventually, all peers will
be contacted. Schuhmann et al. [1] deals with distributed
pervasive applications and proposes configuration algo-
rithms for homogeneous and heterogeneous environments.
The goal of these algorithms is to choose the most efficient
configuration method for a given environment while mini-
mising the configuration latency.

7 CONCLUSIONS

In this paper we have presented GOPRIME, a fully decentral-
ised middleware solution for the adaptive self-assembly of
distributed services. The core element of GOPRIME is a gos-
sip-based protocol for information dissemination and deci-
sion making. Thanks to this, the system is able to build and
maintain in a fully decentralised way an assembly of serv-
ices that, besides functional requirements, is able to fulfill
global quality of service and structural requirements. The
system operations require a bounded amount of informa-
tion to be exchanged and maintained at each peer, indepen-
dently of the overall number of peers in the system, thus
guaranteeing the scalability of the proposed approach.

GOPRIME relies on a suitably defined, application-specific
utility function to steer the system towards a state where all
dependencies are resolved, and the utility of the whole
assembly (compound utility) is maximised. The utility func-
tion must be defined recursively: the utility of a non-leaf
instance depends on its local utility, and the utilities of its
dependencies. We therefore do not allow a service instance
to be part of a cycle, since in that case the assembly would
never be resolved. Note that we do allow different instances
of the same service type to appear in a fully resolved assem-
bly; we do not, however, support the possibility for the
same service instance to be part of a cycle. How this limita-
tion can be relaxed is subject of ongoing research.

We have shown the validity of our approach presenting
results from the experimentation of a prototype implemen-
tation of GOPRIME in a real world e-health application, and
an extensive set of simulation experiments that assess the
effectiveness of GOPRIME in terms of scalability, robustness
and convergence speed towards the optimal assembly.

Future work includes a validation of the approach in a
real industrial setting. We plan also to extend GOPRIME with
the introduction of load balancing mechanisms to make it
able to deal with load-dependent utility. Another direction
of research includes the extension of GOPRIME with the con-
text-aware adaptation capabilities, e.g., based on physical
proximity of nodes used in the assembly.

REFERENCES

[1] S. Schuhmann, K. Herrmann, K. Rothermel, and Y. Boshmaf,
“Adaptive composition of distributed pervasive applications in
heterogeneous environments,” ACM Trans. Auto. Adaptive Syst.,
vol. 8, no. 2, pp. 10:1–10:21, Jul. 2013.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” IEEE Comput. vol. 36, no. 1, pp. 41–50, Jan. 2003.

[3] M. C. Huebscher and J. A. McCann, “A survey of autonomic com-
puting—degrees, models, and applications,” ACM Comput. Surv.,
vol. 40, no. 3, pp. 7:1–7:28, 2008.

[4] B. H. C. Cheng, et al., “08031—software engineering for self-adap-
tive systems: A research road map,” in Software Engineering for
Self-Adaptive Systems, series. Dagstuhl Seminar Proceedings, vol.
08031. Berlin, Germany: Springer-Verlag, 2008, pp. 1–26.

[5] D. Weyns, S. Malek, and J. Andersson, “On decentralized self-
adaptation: Lessons from the trenches and challenges for the
future,” in Proc. Workshop Softw. Eng. Adaptive Self-Manag. Syst.,
2010, pp. 84–93.

[6] M. Caporuscio and C. Ghezzi, “Engineering future internet appli-
cations: The PRIME approach,” J. Syst. Soft., vol. 106, pp. 9–27,
2015.

[7] R. Kota, N. Gibbins, and N. R. Jennings, “Decentralized
approaches for self-adaptation in agent organizations,” ACM
Trans. Auton. Adapt. Syst., vol. 7, no. 1, pp. 1:1–1:28, May 2012.

[8] M. Jelasity, A. Montresor, and €O. Babaoglu, “Gossip-based aggre-
gation in large dynamic networks,” ACM Trans. Comput. Syst.,
vol. 23, no. 3, pp. 219–252, 2005.

[9] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M.
van Steen, “Gossip-based peer sampling,” ACM Trans. Comput.
Syst., vol. 25, no. 3, pp. 8:1–8:36, Aug. 2007.

[10] D. Shah, Gossip Algorithms, series. Foundations and trends in net-
working. Delft , The Netherlands: Now Publishers, 2009.

[11] V. Grassi, M. Marzolla, and R. Mirandola, “QoS-aware fully
decentralized service assembly,” in Proc. 8th Int. Symp. Softw. Eng.
Adaptive Self-Manage. Syst., 2013, pp. 53–62.

[12] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic
matching of web services capabilities,” in Proc. 1st Int. Semantic
Web Conf., 2002, pp. 333–347.

[13] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design. Upper Saddle River, NJ, USA: Prentice-Hall, 2005.

[14] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications, 2nd ed. Chichester, U.K.: Wiley,
2002.

[15] J. Cardoso, “Complexity analysis of BPEL web processes,” Softw.
Process: Improvement Practice, vol. 12, no. 1, pp. 35–49, 2007.

[16] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti,
and R. Mirandola, “Moses: A framework for QoS driven runtime
adaptation of service-oriented systems,” IEEE Trans. Softw. Eng.,
vol. 38, no. 5, pp. 1138–1159, Sep./Oct. 2012.

[17] C. Hwang and K. Yoon, Multiple Criteria Decision Making. Lecture
Notes in Economics and Mathematical Systems. New York, NY,
USA: Springer, 1981.

[18] M. J. Shepperd, Foundations of Software Measurement. Englewood
Cliffs, NJ, USA: Prentice-Hall, 1995.

[19] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based soft-
ware engineering: Trends, techniques and applications,” ACM
Comput. Surv., vol. 45, no. 1, pp. 11:1–11:61, Dec. 2012.

[20] M. Ehrgott,Multicriteria Optimization, series. Lecture Notes in Eco-
nomics and Mathematical Systems. New York, NY, USA:
Springer-Verlag, 2000.

[21] G.-C. Roman, G. P. Picco, and A. L. Murphy, “Software engineer-
ing for mobility: A roadmap,” in Proc.Conf. Future Softw. Eng.,
2000, pp. 241–258.

[22] A. Montresor and M. Jelasity, “PeerSim: A scalable P2P simu-
lator,” in Proc. 9th Int. Conf. Peer-to-Peer Comput., Seattle, WA,
USA, Sep. 2009, pp. 99–100.

[23] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Pre-
hofer, J. Wuttke, J. Andersson, H. Giese, and K. Goeschka, “On
patterns for decentralized control in self-adaptive systems,” in
Proc. Int. Seminar Softw. Eng. Sel-Adaptive Syst., 2012, pp. 76–107.

[24] J. Kramer and J. Magee, “Self-managed systems: An architectural
challenge,” in Proc. Future Softw. Eng., 2007, pp. 259–268.

[25] I. Georgiadis, J. Magee, and J. Kramer, “Self-organising software
architectures for distributed systems,” in Proc. 1st Workshop Self-
Healing Syst., 2002, pp. 33–38.

[26] D. Sykes, J. Magee, and J. Kramer, “Flashmob: Distributed adap-
tive self-assembly,” in Proc. 6th Int. Symp. Softw. Eng. Adaptive Self-
Manage. Syst. 2011, pp. 100–109.

[27] M. E. Falou, M. Bouzid, A.-I. Mouaddib, and T. Vidal, “A distrib-
uted planning approach for web services composition,” in Proc.
IEEE 19th Int. Conf. Web Serv., 2010, pp. 337–344.

[28] S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic service compo-
sition in pervasive computing,” IEEE Trans. Parallel Distrib. Syst.,
vol. 18, no. 7, pp. 907–918, Jul. 2007.

[29] D. Weyns, R. Haesevoets, A. Helleboogh, T. Holvoet, and W.
Joosen, “The MACODO middleware for context-driven dynamic
agent organizations,” ACM Trans. Auton. Adaptive Syst., vol. 5,
no. 1, pp. 3:1–3:28, 2010.

[30] D. Weyns, R. Haesevoets, and A. Helleboogh, “The MACODO
organization model for context-driven dynamic agent organ-
izations,” ACM Trans. Auton. Adaptive Syst., vol. 5, no. 4, p. 16,
2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

