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Purpose: To assess the feasibility of grading soft tissue sarcomas (STSs) using MRI features (radiomics).
Materials and Methods: MRI (echo planar SE, 1.5T) from 19 patients with STSs and a known histological grading, were 
retrospectively analyzed. The apparent diffusion coefficient (ADC) maps, obtained by diffusion-weighted imaging 
acquisitions, were analyzed through 65 radiomic features, intensity-based (first order statistics, FOS) and texture (gray 
level co-occurrence matrix, GLCM; and gray level run length matrix, GLRLM) features. Feature selection (sequential for-
ward floating search) and classification (k-nearest neighbor classifier) were performed to distinguish intermediate- from 
high-grade STSs. Classification was performed using the three different sub-groups of features separately as well as all 
the features together. The entire dataset was divided in three subsets: the training, validation and test set, containing, 
respectively, 60, 30, and 10% of the data.
Results: Intermediate-grade lesions had a higher and less disperse ADC values compared with high-grade ones: most 
of FOS related to intensity are higher for the intermediate-grade STSs, while FOS related to signal variability were 
higher in the high grade (e.g., the feature variance is 2.6*105 6 0.9*105 versus 3.3*105 6 1.6*105, P 5 0.3). The GLCM 
features related to entropy and dissimilarity were higher in the high-grade. When performing classification, the best 
accuracy is obtained with a maximum of three features for each subgroup, FOS features being those leading to the 
best classification (validation set: FOS accuracy 0.90 6 0.11, area under the curve [AUC] 0.85 6 0.16; test set: FOS accu-
racy 0.88 6 0.25, AUC 0.87 6 0.34).
Conclusion: Good accuracy and AUC could be obtained using only few Radiomic features, belonging to the FOS class. 
Level of Evidence: 4
Technical Efficacy: Stage 2

Introduction

Soft tissue sarcomas (STSs) are a rare and heterogeneous

group of tumors representing less than 1% of all malig-

nant tumors, with only several tens of-thousands of new

diagnoses annually in the United States.1,2 They pose signif-

icant diagnostic and therapeutic challenges.3

The pathologic classification of sarcomas is histoge-

netic.4 Then, STSs are assigned to a low, intermediate, or

high malignancy grade, based on characteristics such as

mitotic count, differentiation, and necrosis.5 According to

the histological type and grade of STSs, pre- or postsurgery

addition of chemotherapy and/or radiation therapy might

be useful.6,7

STSs are highly heterogeneous from the spatial point

of view.8 This heterogeneity could provide useful informa-

tion on tumor aggressiveness and/or its response to treat-

ment. However, it also may suggest that, for example, core

needle biopsies can underestimate the malignancy grade. In

addition, grading has been a controversial topic in STSs

even because the whole group of STSs is considered as a
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single entity, thus underestimating the interplay between

grade and histological type.5 Clearly, a major distinction is

made between low-grade STS and the others, but, say, adju-

vant chemotherapy is likely to be especially active when

malignancy grade is high rather than intermediate, with spe-

cial regard to some histological types.

Diffusion-weighted imaging (DWI) MRI can capture

changes at the cellular level thanks to differences in move-

ment of water protons in the different tissue regions. The

apparent diffusion coefficient (ADC) map, derived from dif-

ferent diffusion-weighted MRIs, has been shown to be pre-

dictive of treatment response.9,10 Moreover, advantages of

the ADC maps are that they have been shown to be power-

ful biomarker for assessing tumor cellularity11–13 and to cor-

relate with malignancy grading of STSs,14 even when

different vendor scanners are used.

Radiomics has applied to oncology recently. Radiomics

extracts a large number of image characteristics, or features,

in a noninvasive way.15 The assumption is that image fea-

tures quantify crucial information regarding the entire

tumor phenotype and thus they can highlight intra-tumor

heterogeneity.15 Many studies reported that this heterogene-

ity could have profound implications on tumor

prognosis.16,17

The aim of this work was to assess the capability of

Radiomic features to characterize and/or differentiate STSs

of different malignancy grades, paying attention not just to

the distinction between low- and high-grade STSs, but also

to the intermediate-grade subset.

Material and Methods

Study Population
Nineteen arbitrarily selected patients with STSs were retrospectively

analyzed. The entire dataset was divided in three groups: (i) the

training set containing the data used to train the models (60% of

the data); (ii) the validation set containing the data used to validate

the model and to choose the best one (30% of the data); and (iii)

the test set containing the data used to test the model and examine

its behavior with never-seen data (10% of the data), see the Statis-

tical Analysis section. They had a histological diagnosis of STS of

intermediate (5 patients) or high (14 patients) malignancy grade

according to the FNCLCC (French F�ed�eration Nationale des

Centres de Lutte Contre le Cancer) system.18 The FNCLCC sys-

tem is based on tumor differentiation, mitotic rate, and amount of

tumor necrosis. A score is attributed independently to each param-

eter, and the grade is obtained by adding the three attributed scores

(Grading of Soft Tissue Sarcomas). Patient and tumor characteris-

tics are shown in Table 1; age and gender were not statistically dif-

ferent in the two groups. All patients underwent to a DWI MRI

acquisition before starting the treatment. The study was approved

by the ethical committee of Fondazione IRCCS (Istituto Nazionale

dei Tumori of Milan, Italy). At the time of the acquisition, all

patients filled out a generic consent to the use of data, including

TABLE 1. Characteristics of Patients and Tumors

Patients characteristics

All Intermediate grade High grade

No. of patients 19 5 14

Age (years) 56 6 18 (22-77) 57 6 25 (22-77) 55 6 16 (28-75)

Gender (male/female) 6/13 3/2 3/11

Tumor characteristics

All Intermediate grade High grade

Size (cm) 11.3 6 3.4 9.4 6 3.7 11.9 6 3.1

Location of tumors

Limb 14 2 12

Torso 5 3 2

Histology

Leiomyosarcoma 2 1 1

Pleomorphic sarcoma 11 3 8

Synovial sarcoma 2 - 2

Myxofibrosarcoma 2 - 2

MPNST 1 - 1

Chondrosarcoma 1 1 -



the acquired images, and biological material for research. All

patients’ data were anonymized before the analysis.

Image Acquisition
DWI MRI images were acquired using Achieva 1.5T system (Phi-

lips Medical system Achieva, Nederlands) (6 patients) or a Magne-

tom Avanto 1.5T system (Siemens Medical Solutions, Erlangen,

Germany) (13 patients), both with a body-matrix coil and spine

array coil for signal reception. The data were acquired axially by

means of echo planar imaging, the sequences’ parameters (for both

equipment) are reported in Table 2. DWI images were acquired

using four b-values (namely, 50, 400, 800, and 1000 s/mm2)

Preprocessing of MRI Images
ADC maps creation: For each acquisition, the ADC was computed

as the slope of the linear regression of the logarithm of the DWI

exponential signal decay on the four b-values.8 The calculation was

performed pixel-wise using ITK 4.8.9 An expert radiologist manu-

ally segmented the lesion (region of interest, ROI). The

segmentation was performed using three-dimensional (3D) slicer.19

Contouring of the ROI was performed on images acquired with

the b-value 50 s/mm2, on which the anatomical details are main-

tained and the heterogeneity of the tumor is more visible.20

Radiomic Features Extraction
We assessed 65 radiomic features, pertaining to two main classes:

(i) intensity-based features and (ii) texture features. The list of fea-

tures is reported in Table 3. Features belonging to the intensity-

based (first order statistics, FOS) group were computed on the

ROI volume and/or on the intensity histogram, evaluated between

0 and the maximum of the image (mm2/s) using 32 bins. Texture

features were based on the gray level co-occurrence matrix

(GLCM)21 and the gray level run length matrix (GLRLM).22

Before matrix computation, the discretization of gray levels was

reduced to 32 to avoid sparseness of matrix. For a given direction

a, the GLCM is a N 3 N matrix (where N is the number of bins

used to discretize the gray values (N 5 32 in this study)), whose (i,

j) element is the counting of pixels of gray intensity level i which

TABLE 2. MRI Sequence Parameters by MRI Scanner

Sequence parameter Siemens Avanto MRI (n 5 13) Philips Achieva (n 5 6)

Sequence Echo planar SE Single-shot echo planar SE

Matrix (pixels) 192 3 192 255 3 255

Resolution (voxel/mm) 1.98 3 1.98 1.37 3 1.37

Field of View (mm) 380 3 380 350 3 350

TR (msec) 5400 7410

TE (msec) 78 63

Slice thikness (mm) 4 (no gap) 5 (no gap)

NEX 4 3

NEX 5 number of excitations.

TABLE 3. Features Used in the Analysis

FOS features Energy, Kurtosis, Mad, Max, Mean, Median, Min, Range, RMS, Skewness, SD, Vari-
ance, Quantile 0.01, Quantile 0.1, Quantile 0.2, Quantile 0.3, Quantile 0.4, Quantile
0.5, Quantile 0.6, Quantile 0.7, Quantile 0.8, Quantile 0.9, Quantile 0.99, Histogram
Entropy, Histogram Kurtosis, Histogram Mad, Histogram Max, Histogram Mean, His-
togram Median, Histogram Min, Histogram Range, Histogram RMS, Histogram Skew-
ness, Histogram SD, Histogram Variance, Histogram Uniformity, Histogram Total
Frequency,

Texture features – GLCM Autocorrelation, Cluster Prominence, Cluster Shade, Cluster Tendency, Contrast, Cor-
relation, Difference Entropy, Dissimilarity, Energy, Entropy, Homogeneity, Homogene-
ity2, IMOC1, IMOC2, Inverse Difference moment, Inverse Difference moment2,
Inverse Variance, Max Probability, Sum Average, Sum Entropy, Inertia

Texture features – GLRLM Short Run Emphasis, Long Run Emphasis, Gray Level Non Uniformity, Run Length
Non Uniformity, Run Percentage, Low Gray Level Run Emphasis, high Gray Level
Run Emphasis, Short Run Low Gray Level Emphasis, Short Run High Gray Level
Emphasis, Long Run Low Gray Level Emphasis, Long Run High Gray Level
Emphasis



are adjacent (within a distance q 5 1, in our case) to pixels of the

gray intensity level j. We computed GLCM for the 26 directions

in the three dimensions, obtaining globally 26 matrices. The

GLRLM is a NxN matrix whose (i, j) element counts the number

of runs of pixels of gray level i (run step 1) and run length j in a

given direction. As before, we computed GLRLM for the 26 direc-

tions in the three dimensions, obtaining globally 26 matrices. On

each matrix (GLCMs or GLRLM), the texture features of Table 3

were computed and the results averaged on all angles, thus obtain-

ing two sets of features, one for the GLCM and one form the

GLRLM. All the algorithms were implemented in Insight Segmen-

tation and Registration Toolkit (ITK 4.8).9,23

Statistical Analysis
Based on the computed radiomic features, we aimed at distinguish-

ing intermediate grade STS from high grade STS. First, we

observed that our dataset is imbalanced as the classes (intermediate

and high-grade STS) are not equally represented, this imbalance

may produce classifiers with poor predictive accuracy for the

minority class, tending to classify most new samples in the major-

ity class. As the classification accuracy would be influenced by the

imbalanced classes, a way to overcome this problem is to re-sample

the original dataset, by oversampling the minority class.24 To this

purpose, the Synthetic Minority Over-sampling Technique

(SMOTE) is used. In SMOTE, the minority class is over-sampled

by taking each minority class sample and introducing synthetic

examples along the line segments joining any/all of the Q nearest

neighbors in the minority class.25 Briefly, for each sample of the

minority class, the Q nearest neighbors of the same class are found

identified and one of them is chosen randomly. The new synthetic

sample lies on a random point of the line joining the two original

samples. In this study, Q was chosen equal to 3. After SMOTE

application, both classes have the same number of instances to be

classified.

Figure 1 shows a schematic representation of the method

used for classification. As first step, a test set was created, contain-

ing 10% of the data (one patient of intermediate and one high

grade group), used to test the classifier and examine its behavior

with never-seen data. The remaining 90% of the data underwent

the oversampling by SMOTE, thus both classes contain 13 patients

each. Then the feature selection and classification algorithms were

run, using 2/3 of the data as training and 1/3 as validation group.

The classification algorithm gave as output the optimal model that

was used to classify elements of the test group.

In particular, for feature selection, a sequential forward float-

ing search (SFFS) algorithm26 was used to identify the best subset

of features differentiating the two STS grades. Briefly, starting

from the empty set of features, the feature xi that maximizes the

objective function (Yk1Xi) when combined with the features Yk

that have already been selected, is added. After this forward step,

SFFS performs backward steps as long as the objective function

increases. A backward step consists in removing from Yk the feature

that makes the objective function increase. A schematic representa-

tion of the algorithm is shown in Figure 2.

After the feature selection step, the classification was per-

formed by using the k-nearest neighbor classifier with k equal to

3.27 In the training phase 2/3 of the 90% of the data were used to

build the model, whereas in the validation phase the remaining 1/3

of the data were classified according to the model generated in the

training phase.28 Leave-p-out cross-validation was performed with

100 bootstrap repetitions, i.e., all the above steps are repeated 100

times, randomizing images, allowing images from the two scanners

to be part of the groups. Performance metrics were averaged over

the 100 repetitions.

In this study, we tested the different classes of features alone

and in combination, i.e., we performed the features selection and

classification using only intensity-based features, GLCM, GLRLM,

and their combinations.

The difference in feature values between intermediate- and

high-grade STSs was assessed by the Wilcoxson test. Spearman cor-

relation coefficient was computed between the feature values and

the tumor grade. Accuracy of the 100 repetitions for the model

using N features was compared with the accuracy of the 100 repe-

titions for the model using N11 features, using an unpaired t-test.

A P-value< 0.05 was considered statistically significant.

Results

Features Results
Figure 3a shows two ADC maps of an intermediate- (top

panel) and high- (bottom panel) grade STSs. It is apparent

that the intermediate-grade lesions have a higher and less

FIGURE 1: Schematic representation of the overall method. As first step, 10% of the data (one patient of intermediate and one
high grade group) are removed to be used as test group. The remaining 90% of the data enter the oversampling (obtained using
SMOTE) and then the feature selection and classification algorithms, using 2/3 of the data as training and 1/3 as validation group.
The classification algorithm gives as output the optimal model to be used on the test group.



dissimilarity were higher in the high grade. Regarding the

GLRLM texture features (Fig. 4d), the ones related to the

high gray run were higher in the intermediate grade STSs,

whereas those related to the low gray run were higher in the

high grade STSs.

All differences, analyzed one by one, were not statisti-

cally significant between intermediate and high-grade STSs.

Classification Results
The distinction between the two types of STSs was per-

formed using the three different sub-groups of features sepa-

rately (FOS, GLCM, and GLRLM) as well as all the

features together. Figure 5 shows the accuracy obtained

FIGURE 2: Schematic representation of the SFFS algorithm, as an example starting with three features already selected. Each rect-
angle represents the whole set of features, and each vertical line a feature. The top rectangle represents the current set of chosen
features (three gray lines) along with all the others (white lines), these three features make an accuracy equal to Acc(3). The first
block is the Forward Selection: each not yet selected feature is added (dotted line) and the corresponding accuracy computed
(Acc(4)i). The feature producing the maximum accuracy is finally added (black line). The following block is the Backward Selection:
each of the selected features (light gray line), but the last one, is removed from the selected features set and the corresponding
accuracy computed. If the maximum accuracy Acc(3)i is bigger than the previous Acc(3), the feature is removed from the selected
features set. If a feature is removed, the Backward Selection is repeated, otherwise the following step is the Forward Selection.

disperse ADC values in comparison to high-grade ones, as 
also shown by the corresponding histograms of Figure 3b.

Figure 4 shows radar plots of the features in the two 
groups of patients. The Radar plot assumes only two values 
(0 and 1) to emphasize the differences between intermedi-

ate- and high-grade tumors (for each feature, the radar plot 
is equal to 1 for the group having the higher value). Most 
of the intensity-based features are higher for the 
intermediate-grade STSs (Fig. 4a), while the features related 
to the signal variability (like SD and Variance) are higher in 
the high-grade (Fig. 3a). Almost all the histogram-based fea-

tures (Fig. 4b) are higher for the intermediate grade STSs. 
The GLCM features (Fig. 4c) related to entropy and



using an increasing number of features, as selected by the

SFFS algorithm, for each sub-group of features for the vali-

dation and test sets. In Figure 5, the n-th dot represents the

mean accuracy (over the 100 repetitions) obtained using n

features. In each sub-group the mean accuracy increases

when the number of features in increased from one to two.

Adding more features, the mean accuracy further increases

for the FOS and GLCM groups only. Then, when new

parameters are added, it slightly decreases.

Table 4 shows the best selected features of each sub-

group using up to six parameters with the corresponding

mean accuracy and mean AUC. The best accuracy is

obtained with a maximum of three features for each

subgroup, representing the best classification models for our

problem. The model obtained using the FOS feature group

is the one leading to the best classification. Using two or

three parameters of the FOS features, namely STD, Histo-

gram Uniformity, Histogram Quantile 0.3, leads to the best

compromise balancing the number of features and the accu-

racy values.

Finally, Figure 6 shows the accuracy obtained using

all the features for the validation and test sets. Beyond a

slight improvement in accuracy by adding features, the

accuracy is almost constant and when using all the features

the mean accuracy is much lower than that using a few of

them.

FIGURE 3: Four ADC maps for two intermediate- and two high-grade STSs (a), and two intensity histograms corresponding to an
intermediate- (gray) and high-grade (light gray) STSs (b).



Discussion and Conclusions

In this study, we investigated whether features derived from

ADC maps of patients with STSs could be used to differen-

tiate intermediate- versus high-grade lesions. The main

result was that a high accuracy and AUC can be obtained

by considering only few features. Although we reported the

average accuracy using all the possible features for the sake

of completeness, the classifications performed with a high

FIGURE 4: Radar charts for signal intensity-based features (a), histogram-based features (b), GLCM features (c), and GLRLM fea-
tures (d). Each spoke represents one of the features, the data length of a spoke is proportional to the magnitude of the variable
for the data point relative to the maximum magnitude of the variable across all data points. The spokes are normalized so that
the difference between intermediate (black line) and high (gr y line) grades STSs is emphasized.

FIGURE 5: Mean 6 the standard deviation of the accuracy of the validation set (black line and the grey area, respectively) with
superimposed the average accuracy of the test set (dashed line) for FOS features (a), GLCM features (b), and GLRLM features (c).
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number of features suffers from the curse of dimensionality,

i.e., increasing the number of features results in a decrease

of performance.29 The best classification models (balancing

accuracy, AUC, and number of features) for our problem

were those obtained using three features. The best average

accuracy we obtained was not excellent, but these prelimi-

nary results are encouraging as with such a small study pop-

ulation, the accuracy is good, thus we expect that with

larger population the accuracy may increase. Features

belonging to the FOS class are the best performing in terms

of accuracy and AUC. In the FOS class, features describing

the histogram distribution, i.e., the gray levels distribution,

are those first selected in the classification. Accordingly, the

histogram of intermediate-grade tumors is narrower than for

high-grade tumors. From a functional point of view, high

grade is more heterogeneous and this is what the histogram

distribution highlights and thus may be reason for a better

performance of the FOS features belonging to the class of

histogram descriptors.

Grading of STSs is widely held as their main prognos-

tic factor. The F�ed�eration Nationale des Centres de Lutte

Contre le Cancer (FNCLCC) grading system is often used,

taking into account the mitotic rate, the degree of necrosis

and tumor differentiation.18 It applies to several histologies,

but not to all of them, and indeed some histologies auto-

matically correspond to a given grading, irrespective of those

characteristics.30,31 Of course, the value of grading may be

limited when the diagnosis is achieved through core needle

biopsies, because the tumor may be heterogeneous and grad-

ing can be underestimated.5 In other words, some STSs

whose biopsy points to an intermediate malignancy grade

remain uncertain as to their actual potential of aggressive-

ness, because higher-grade areas may co-exist. Indeed,

appropriate grading on biopsy may be crucial for decisions

about neoadjuvant treatment, and data were recently pro-

vided that neoadjuvant chemotherapy can provide signifi-

cant benefit to a subset of high-risk (thus also high-grade)

STSs patients.7 Sometimes, the obvious radiologic features

of lesions are taken into account. For example, one could

factor the degree of macroscopic necrosis which is visible

radiologically, even if the histological necrosis is low. Thus,

there is room for radiological improvement to assist in

assessing the actual malignancy grade when a biopsy points

to an intermediate-grade STS. In this respect, radiomic anal-

ysis could be crucial: many features describing the tumor

are computed on the 3D-volumes obtained from MRI.

Radiomic analysis is a noninvasive, fast, low-cost and repro-

ducible way of investigating phenotypic information.

In this study, we computed the radiomic features on

ADC maps only for two main reasons. First, the ADC

maps have been shown to assess tumor cellularity even when

different scanners are used,11 provided that the same range

of b-values and the same field strength are chosen.12,13 This

property of the ADC map suggests that they are useful in

multicenter studies, where scanners are usually different.

Moreover, it has been shown that repetition time (TR) and

echo time (TE) values may be chosen so that the ADC

value is not affected. A selection of TR as short as the lon-

gest T1 relaxation time of the tissue of interest may result

in overestimation of ADC values. However, it has been

shown that choosing a TR approximately five-times longer

than the tissue T1 relaxation time solves the problem.32

This recommendation, in our study, is translated into a TR

value larger than 5000 ms33 and both scanners satisfied this

condition. Selection of TE has a small effect on ADC maps

and minimum TE selection has been recommended for

DWI protocol, being TE values lower than 100 ms suffi-

cient for not affecting the ADC computation.32 The second

reason is that the study population was small and comput-

ing the features on other N images would have created sev-

eral features N-time larger than the present number. Several

features hundreds of time bigger than the number of

patients may create problems in classification.

A limitation of the study is the imbalanced dataset,

i.e., the classes are not approximately equally represented

and imbalanced data on minority class and high dimension-

ality problem may cause a misclassification. As the perfor-

mance of machine learning algorithms for classification is

FIGURE 6: Mean 6 the standard deviation of the accuracy of the validation set (black line and the gray area, respectively) with
superimposed the average accuracy of the test set (dashed line) using all the features.



typically evaluated using predictive accuracy, imbalanced

data make the assessment of accuracy not appropriate.25 We

overcame this problem by oversampling the minority class,

i.e., the intermediate grade class, using SMOTE. SMOTE

has been shown to be useful when using kNN classifiers

with feature selection to reduce the number of variables.34

We performed feature selection and classification without

SMOTE, but results were poorer: the average accuracy was

significantly lower than when using SMOTE for all the

number of selected features. This solution proved to be sat-

isfactory, leading to an average high accuracy using only two

FOS features. When running the classification algorithm

without SMOTE, the results were less accurate: the maxi-

mum average accuracy without performing oversampling

was obtained with a higher number of features and was sig-

nificantly lower.

A second limitation of this exploratory study is that

the number of patients was low and the selection process

essentially arbitrary. However, we believe that these data are

suggestive enough as to encourage larger clinical studies on

the value of radiomics to grade a subset of soft tissue sar-

coma patients, allowing better decisions as to the indication

to neo-adjuvant chemotherapy. Moreover, these preliminary

results lay the groundwork for future studies where radiomic

features may be used for grading or classification of other

clinical characteristics of interest. In the end, future studies

should compare radiomics with what standard radiology can

allow as of today. Moreover, future studies will be needed to

evaluate radiomic biomarkers in independent and prospec-

tive validation cohorts with large sample sizes also to assess

feature repeatability.

In conclusion, these preliminary results show that

good accuracy and AUC could be obtained using only few

Radiomic features, when grading STSs using MRI features.
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