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Abstract—A novel machine learning-based framework is pre-
sented to evaluate the effect of design parameters, affected
by epistemic uncertainty, on the Signal Integrity (SI) and
Electromagnetic Compatibility (EMC) performance of electronic
products. In particular, possibility theory is leveraged to charac-
terize the epistemic variations, which is combined with Bayesian
optimization to accurately and efficiently perform uncertainty
quantification (UQ). A suitable application example validates the
proposed method.
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I. INTRODUCTION

Uncertainty quantification problems for EMC and SI assess-
ment are usually defined in a statistical framework, and design
parameters under uncertainty effects are regarded as random
variables with specific distributions [1], [2], [3], [4], [5], [6],
[7]. Many statistical method have been applied to estimate the
effect of stochastic variations of design parameters, such as
the traditional Monte Carlo (MC) analysis, which requires a
high number of simulations of the electronic product study,
and the Polynomial Chaos (PC) based methods, which model
the variations in terms of stochastic surrogates.

In fact, all these statistical methods provide legitimate
results if the distribution of the random variables is known in
terms of, for example, their joint probability density function
(PDF). However, they fall short when design parameters under
epistemic uncertainty effects are present, i.e., no characteriza-
tion of the parameters’ variability is known in a probabilistic
sense.

To overcome this limitation of providing an adequate repre-
sentation for epistemic uncertainty, a framework that leverages
possibility theory for antenna design was introduced in [8].
Hybrid approaches which combines the effects of probabilistic
and epistemic uncertainty in a common framework have been
develop and applied in different engineering fields [9], [10],
[11]. In an EMC context, a hybrid UQ algorithm was applied
in [12] to estimate the radiated susceptibility of a non-ideally
twisted wire pair (above ground) illuminated by a partially-
unknown impinging electromagnetic (EM) field.

In this contribution, we present a machine learning-based
framework for the solution of epistemic UQ problems for EMC
and SI problems. The design parameters affected by epistemic

uncertainty (fuzzy variables (FVs)) are assigned possibility
distributions (PDs) and Bayesian Optimization (BO) is ex-
ploited to propagate this epistemic uncertainty. Efficiency and
accuracy of the presented hybrid algorithm are validated by
means of a suitable application example.

The manuscript is organized as follows. First, in Section II,
the relevant features of possibility theory are presented, and
their application to epistemic UQ problems is discussed.
Section III briefly introduces BO, and the procedure to apply
BO to EMC and SI problems. An application example is
presented in Section IV. Conclusions are drawn in Section V.

II. FORMULATION OF THE EPISTEMIC UNCERTAINTY
PROBLEM

A brief overview of FVs (also referred to as epistemic
variables) in the framework of possibility theory and their
relevant features are introduced in Section II-A, whereas the
epistemic UQ framework for EMC and SI assessment is
discussed in Section II-B. For a more complete treatment
of epistemic uncertainty problems and possibility theory, the
interested reader is referred to [13], [14], [15], [16], [17].

A. Epistemic Uncertainty and Fuzzy Variables

In the framework of possibility theory, epistemic uncertainty
finds its definition through the FVs and their possibility
distributions (PDs) π (x) which are defined as follows:

π : R→ [0, 1] ,∃ x ∈ R : π (x) = 1. (1)

The PD of an epistemic variable can be explained in analogy
to the PDF of a stochastic random variable as such: while a
PDF expresses the frequency of occurrence of an event, a PD
represents how likely it is that an event may occur. Hence,
the set [0,1] in 1 corresponds to different levels of confidence
assigned to a FV over a certain interval, i.e., 0 corresponds to
a impossible value and 1 corresponds to a perfectly possible
value.

Different PDs are defined to represent different level of
information. For instance, a rectangular (or uniform) PD (see
Fig. 1(a)) represents a complete lack of knowledge about the
value of a parameter or its distribution, i.e., all the values in the
interval [x1, x2] are equally plausible. However, a triangular
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Figure 1: Rectangular (a) and triangular (b) PDs, π(x), and their cor-
responding possibility Π (solid) and necessity N (dashed) measures
in (c) and (d), respectively.

PD (see Fig. 1(b)) is more suitable for cases where a parameter
assumes levels of confidence which are higher around a mean
value where π (x) = 1, and substantially decreasing ones for
all the other values in the interval [x1, x2].

In possibility theory, confidence levels of a FV are repre-
sented by α-cuts which are obtained by simply cutting the
PD of a FV evenly at different levels in the interval [0,1].
Two α-cuts of a triangular PD are demonstrated on Fig. 1(b).
Note that the α-cut at level 0.3 identifies the interval [c1, c2],
whereas the α-cut at level 0.8 determines the interval [d1, d2].

A PD of a FV allows us to construct two important
measures: the possibility ΠA and the necessity N(A) functions
of an event A ∈ R are defined as:

Π (A) = sup
x∈A

π (x) ; N (A) = 1− sup
x/∈A

π (x) . (2)

The measures Π and N can be interpreted as the minimum
and the maximum bound of all possible cumulative distribution
functions (CDFs), respectively, such that for a family of prob-
ability measures P (A), the relation N(A) ≤ P(A) ≤ Π(A)
holds [17], [18]. These functions are demonstrated in Fig. 1(c)
for a rectangular PD, and in Fig.1(d) for a triangular one.

B. Epistemic UQ Problems for EMC and SI Assessment

The quantity of interest of the electronic product under study
(e.g., crosstalk level, DM-to-CM conversion, etc.), is denoted
as g (x), where x is a vector collecting the design parameters
subject to epistemic uncertainty, which are regarded as FVs.
The goal is to estimate the PD of the objective function
g (x) and, consequently, the corresponding possibility Π and
necessity N measures encompassing all families of probability
distributions P(A) [19].
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Figure 2: Flowchart of the BO algorithm.

In order to achieve this goal, we adopt the theory of
FVs [20]. First, a finite set of Nα α-cuts is defined, by
cutting the interval of possibility values [0, 1] at different
levels. Each value α delimits a domain Ωα in the space of
the pertinent FVs, in the vector x. Next, for each α-cut,
the minimum and maximum of the objective function are
computed for x ∈ Ωα. Finally, the possibility distribution of
the objective function π(g) is defined by the minima infα and
the maxima supα for all the Nα α-cuts. Once the PD of the
objective function is computed, the corresponding possibility
and necessity functions can be obtained using (2).

Hence, a series of Nα minimization and maximization
problems must be solved. Unfortunately, since time consum-
ing full-wave simulations are often required to estimate the
objective function, the standard “brute force” approach which
adopt a dense sampling of x ∈ Ωα to evaluate g (x) becomes
cumbersome. Furthermore, it can offer only limited accuracy
if the objective function is non-smooth in Ωα. These issues
become especially relevant when the number of parameters
effected by epistemic uncertainty, i.e., the number of FVs,
increases. In order to overcome these limitations, a machine-
learning based framework is proposed in Section III.

III. METHODOLOGY

A. Bayesian Optimization Framework

The goal of BO is to perform optimization on a surrogate
model which is much cheaper than directly performing opti-
mizing on the objective function g (x). The flowchart of BO is
shown in Fig. 2. First, the objective function is evaluated over a
set of design parameters [xk]

K
k=1 ∈ X (chosen, e.g., according

to a Latin hypercube). This allows to construct the first
surrogate model of g (x). Because the surrogate model in BO
is, contrary to other surrogate-based optimization strategies,
stochastic and not deterministic, the model uncertainty is used
by the acquisition function to determine the location of the
candidate optimum. This optimum is then evaluated via a new
simulation, and when none of the stopping criteria is met,
the surrogate model is updated. Therefore, each additional
simulation refines the surrogate model, which increases the
chance of finding the global optimum of the objective function.

In this contribution, Gaussian processes (GPs) [21] are
chosen as stochastic surrogate models, owing to their analytic



inference, accuracy, and modeling power. In particular, the
Matérn (5/2) was chosen as GP kernel, due to its capability to
model a wide class of functions (including nondifferentiable
ones). Among the available acquisition functions, in this work
the Expected Improvement (EI) [22] is adopted as sampling
method. EI is defined as

E [I (x)]=E [max{0, gmin−y}] (3)

where E is the expectation operator, I (x) is a suitable measure
of improvement defined at the point x, gmin is the current
evaluated minimum of the objective function and y is the
prediction of the GP surrogate model at point x. Since y is
a Gaussian random variable, the expectation in (3) can be
calculated analytically. Moreover, the hyper-parameters σ2 and
ρ are optimized using maximum likelihood estimation via the
GPyOpt package [23].

B. BO for Epistemic UQ problems in EMC and SI

BO is particularly suited for the solution of optimization
problems with epistemic uncertainty where both infα and supα
of all α-cuts need to be calculated. A possibility distribution
is then constructed with these extreme values. To this purpose,
the acquisition function (3) is modified as:

EImm (x)=max{E [max{0, gmin−y}] ,E [max{0, y−gmax}]}
(4)

This modification allows us to calculate the candidate points
in the space of the design parameters with a higher potential of
finding a minimum and a maximum at the same time. Indeed,
as illustrated in Section IV, the proposed method is capable
of finding both optima with a minimal number of evaluations
of the objective function g (x).

Because α-cuts are always nested, regardless of the specific
PD under consideration, BO is performed as follows. First,
for a small number of initial samples, BO is applied at the
top alpha level (α=1). Next, the optimization for all other
α levels is performed progressively by making use of the
samples already evaluated at the “upper” α levels and by
evaluating only a few additional samples at each subsequent α
level. Optimization of the objective function at all α levels is
performed until the bottom α level (α = 0) is reached. During
this process, if a better optimum is found in the current α level,
the optimum for previous levels can be updated accordingly,
whenever applicable.

IV. APPLICATION EXAMPLE

The proposed approach is applied to two coupled microstrip
lines making a 90◦ bend [24] (see Fig. 3). For this example,
we consider four independent epistemic variables: the lengths
of both of line segments, l1 and l2, the relative permittiv-
ity εr, and the height h of the substrate. Their supports
are as follows: [48.75 mm, 51.25 mm], [48.75 mm, 51.25 mm],
[3.36, 3.96], and [1.374 mm, 1.674 mm], respectively. In par-
ticular, a uniform PD is assigned to l1 and l2, and a triangular
one for εr and h, on their respective supports.

The goal is to estimate the effect of the design parameters
affected by epistemic uncertainty, on the total differential mode
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Figure 3: Bent microstrip lines: The top panel shows the layout of
the bent microstrip lines, delimiting the line lengths l1 and l2. The
two differential signaling ports are also indicated using braces. The
cross-section of the bent microstrip lines is shown in the bottom
panel, demarcating the remaining parameters. The fixed parameters
are s = 0.7 mm, t = 35 µm, tan δ = 0.003, w1 = w2 = 1.8 mm,
and the line conductivity is 4.1 × 107 S m−1. The lengths l1 and
l2, the relative permittivity εr , and the height h of the substrate are
considered to be four independent epistemic variables.

(DM) to common mode (CM) conversion. Given that mode
conversion is especially critical for bent interconnects, we
construct an objective function that is a measure of the total
DM-to-CM conversion [25], as follows:

f (x) = C =

[∫ 6GHz

0GHz

(
|Scd11 (f)|2 + |Scd21 (f)|2

)
df

]1/2
,

(5)
where Scd11 and Scd21 are the relevant frequency-dependent
elements of the modal S-parameters matrix. Here, no analyt-
ical model for the S-parameters nor the cost function C is
available. For a specific sample of the epistemic variables, the
cost function is computed by first acquiring the S-parameters
in the frequency range of interest [0-6 GHz] by means of
full wave simulations, performed using Advanced Design
System (ADS) [26]. Then, the modal scattering parameters
are computed [24], and the integral in (5) is calculated using
standard numerical techniques [25].

BO was performed on 51 α-cuts ranging from possibility
level 1 to 0. First, a computational budget of 10 (l1, l2, εr, h)
samples is assigned for α = 1, while a budget of 1.8 additional
samples is given for each following α level, for a total
maximum computational budget of 100 (l1, l2, εr, h) samples.

For validation purposes the results of the proposed method
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Figure 4: Possibility Π and necessity N functions for the cost
function C (5), estimated with the grid search (GS) and the proposed
BO-based method (BO) for different number of samples.

are compared to a grid search (GS) with a uniform grid of
9 × 9 × 9 × 9 (l1, l2, εr, h) samples. The elapsed time is 78
minutes for the BO-based method and 8 days and 6.5 hours for
the grid search method, using a personal computer with 8 GB
and 8 cores Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz. The
corresponding Π and N measures as well as an example CDF
are presented in Fig. 4. The CDF was calculated with 10000
(h, εr, L,W ) samples by treating all variables as probabilistic
and assigning uniform distributions on their corresponding
supports. As pointed out in Section II-A, the CDF is always
in the domain defined by the possibility Π and necessity N
functions. Clearly, the proposed method estimates a better N
and a comparable, but smoother, Π function while requiring
less computational resources.

V. CONCLUSION

A machine learning-based framework to propagate the epis-
temic uncertainty in EMC and SI problems is introduced in
this contribution. The method characterizes epistemic varia-
tions using possibility theory, and leverages on the theory
of fuzzy sets combined with a suitable BO-based approach
to solve epistemic UQ problems. In contrast with stochastic
approaches, no characterization of the parameters’ variability
in a probabilistic sense is needed. A suitable application
example validates the efficiency and the accuracy of the
proposed method.
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