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The control of air quality in urban areas is drawing attention, as it generates significant benefits. Land use planning directly affects E
particularly on air quality. Nonetheless, scientific knowl-edge of the effects derived by Land Use Changes on air quality is inade
proposals.
This paper proposes an analytical application in the metropolitan area of Milan (North-west of Italy), one of the highly air
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The paper assumes that different dynamics cause of air pollution: (i) atmospheric emissions due to different kinds of land use sources; (ii) the rebound/
resuspension of particles caused by the impervious degree of soil, and (iii) the absorption through green areas and trees.
The methodological innovations introduced by this paper are related to (i) the small gridded distribu-tion of values, and (ii) the emissions 

dynamics mix up with those on resuspension and absorption.
This study experiments the upgrade of the existent Land Use Regression approach for Particulate Matters prediction and establishes a new 

methodology with a newer set of inputs. Compared to traditional approaches, the study can support the decision-making process for local planning.
Keywords:
Ecosystem Services Mapping
Air filtering
Land Use Regression Land use planning

1. Introduction

1.1. Ecosystem Service approach
air pollutants. The international literature concurs on the fact that 
different LULC emits distinct air pollutants: the human activities in 
anthropic sites directly generate PM concentration. That is so 
because all anthropic areas (houses, industry, roads and trans-
portation) are sources of pollution, but also because other kinds 
dynamics affect the PM concentrations. For example, impermeable 
surfaces change the rebound dynamics of air pollutants (Carvacho 

ominated by anthropic 
 pollution causing an 
 al., 2015).
 partic-

ulate cannot deposit on the ground and still re-bound in the air 
causing an increase in its concentration.

Particularly, in addition to direct emission, land use-related PM 

such as the road size and transport system, the compactness of 
housing and density/typology of settlements, the degree of sealed 
and non-sealed ground surfaces such as pavements, roads, squares 

or green areas, and the distribution of vegetation (shrubs and 
trees) in urban areas. Moreover, the altitude, the meteorological 
variables, and the wind direction affect Particulate Matter (PM) 
measurements (Beelen et al., 2009; Briggs et al., 1997; Foley 
et al., 2005; Mazzeo and Venegas, 1991).

Nowadays, it is widely recognized that Land Use/Land Cover
(LULC) has a direct effect on PM concentration and other kinds of

Abbreviations: ES, Ecosystem Services; LULC, Land Use/Land Cover; LUR, Land 
Use Regression; PM, Particulate Matters.
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concentrations in the air are associated by two main dynamics, the 
rebound and the absorption. The former acts as a hotspot of PM 
concentration, and causes a significant increase in air pollutants 
due to rebound of PM on sealed urban surfaces. Whereas the latter 
acts as a sink of pollutants, since the unsealed/permeable green 
areas, especially those of trees with a compacted canopy have a 
significant effect of lowering the PM concentration (Fig. 2).

Therefore, LULC influences PM concentration both as a source as 
well as a sink. While sealed areas generate PM, with different 
degrees, green areas help capture gaseous and particulate airborne 
pollutants absorbing their concentrations. For these reasons, urban
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Fig. 1. The study area.
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Fig. 2. Concept scheme of average PM10 in urban areas. PM values are predicted using l
unsealed plays for deposition.
green areas play a vital role in the provision of health conditions for 
citizens (Calfapietra et al., 2009; Nowak, 2006; Nowak et al., 2006). 
Their ecological functions provide different Ecosystem Services 
(ES). Among others, the regulative air filtering service provided by 
green areas is essential for quality in the urban environment, as it 
reduces the level of total PM concentration in the air (Akbari, 2002; 
Bardelli et al., 2011; Brack, 2002).

Currently, scientific knowledge of relations between land use 
and air quality is broad yet fragmented. The above mentioned 
LULC-related dynamics (emission, resuspension, and absorption) 
are often studied singularly with different approaches and theoret-
ical frameworks. This so-called ‘‘disciplinary fragmentation” is 
quite valuable for academic and scientific debate because it sup-
ports an in-depth knowledge of the physical dynamic of PM in 
urban areas. Nonetheless, the fragmentation of disciplines limits 
the possibility to fill the gap between theoretical knowledge on 
specific ES and their utilization for sustainable territorial policies. 
Synthetically, the knowledge of LULC related to PM spatial distri-
bution is still inadequate to support stakeholders and decision 
makers in designing land use policies in urban areas.

The traditional planner’s knowledge of the ES deterioration 
related to land use changes is quite poor. The most used software 
for ES mapping (e.g. Integrated Valuation of Ecosystem Services and 
Tradeoffs or Artificial Intelligence for Ecosystem Services) provides 
various models for the spatial assessment of different regulative ES, 
while a specific model/tool for air quality which relates the LULC 
characteristics to the biophysical value of PM concentration is not 
yet provided.

Until now however, the effect of land use changes on air quality 
has not been modelled by standard open-access ES mapping soft-
ware, as in the case of others ES. Considering that air quality in 
urban areas is one of the primary drivers of adverse effects on 
human health, studies focusing of urban air should consider more 
attention.
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In this paper, we propose a methodology that predict the PM 
spatial concentration obtained through a Land User Regression 
equation. Particularly, the study will consider the coarser part of 
PM (PM10) which is in part generated by the dust stirred up by 
vehicles on roads.

The study assumes that LULC data are considered as predictors 
of air pollution. Compared to traditional LUR models, the study uses 
local datasets, since it refers to local planning activity. Plan-ners are 
likely to design land use project using detailed maps (of a 1:10,000 
scale at least), thus we employed values of PM10 using a fine-scale 
LULC dataset.

Considering that key policies of sustainable urban development 
are focused on ‘‘quality of life” and ‘‘livability”, there is a pressing 
need to map and evaluate the effect of land use changes on air-
borne pollutant concentration in metropolitan areas. In this con-
text, the possibility of mapping the air filtering capacity under 
different LULC typologies can support decision makers during the 
screening phase of a local Plan definition.

1.2. Mapping Particulate Matter concentration

Recently, attention to ES has risen because their connection 
with urban planning policies (Haase et al., 2014). Typically, when 
ES are considered during the planning process, sustainability indi-
cators show an increase in value (Ahern et al., 2014; Haase et al., 
2014; Li et al., 2014), and the assessment of targeted policies for 
environmental quality in urban areas can be achieved and 
monitored.

Many research activities are devoted to estimating the benefits 
of land use changes to some ES (Burkhard et al., 2012; Clerici et al., 
2014; Langemeyer et al., 2016); still, such kind of assessment 
depends on knowledge of soil quality, the interaction between soil 
and subsoil and air, and the ecological effects and impacts of a land 
use transformation on other ecosystems.

Nowadays, new models for ES mapping and assessment are 
widely used to set environmental planning policies and share com-
mon knowledge about Natural Capital among different stakehold-
ers (Nelson et al., 2011). The higher the knowledge of the various ES 
biophysical values, the greater the likelihood of reaching a sus-
tainable target of land use efficiency (Artmann, 2014) potentially 
increasing public health (Carb, 2005).

Unfortunately, the air filtering capacity of urban green spaces 
has not been yet accounted when a multifunctional ES assessment 
is considered during planning phases. However, air quality seems 
to become one of the major indicators for better living conditions 
(Miranda et al., 2015; Sancho et al., 2014) because it has a direct 
effect on public administration costs related to diseases caused by 
air pollution.

The air filtering service is often associated with another signif-
icant kind of regulative services i.e. – the carbon sequestration. 
However, even if carbon sequestration is somehow related to air 
quality the service of carbon storing cannot be compared with the 
air filtering service since the former measure the tons of carbon 
stored on the soil and the latter the quantity of PM on air. Even both 
services are regulative, air filtering is delivered by different 
ecological functions that are not the ones of the carbon stored 
above-ground, below-ground and on soil litter.

This paper aims to connect existing field studies on LULC related 
PM distribution to define a preliminary methodological approach 
for mapping PM concentrations using emissions, resuspension, and 
absorption dynamics. Results should be tested for practical land use 
planning activities, and particularly during the Strategic 
Environmental Assessment (SEA), where the effects of LULC config-
uration on health should improve the awareness of citizens and 
politicians. Public health expenditure is a good proxy for air quality 
(Ostro and Chestnut, 1998); it is widely recognized that urban
green areas play a beneficial role in PM abatement (Martínez et al., 
2014).

From a methodological perspective, modeling air quality using 
land use variables has several limitations. International literature 
on PM detection (fine and coarse) (de la Paz et al., 2015; Vecchi et 
al., 2007) commonly argue that many variables characterize the 
relation between LULC and air quality. The first indicates that (i) air 
quality is often dependent by environmental factors (PM detection 
is influenced by upwind or downwind analysis positions) and, 
moreover, climate variables heavily influence the PM mea-
surement and depends by site-specific conditions. Thus, it is not 
possible to define a linear equation between LULC emissions and 
local PM concentrations; unless the model aims at defining average 
values for long-time series; (ii) the scientific approach of physical 
gaseous uses to keep emission, rebound, and deposition dynamics 
distinct from one another because they behave distinctly under 
different atmospheric conditions. Such dynamics are measured 
with different techniques/tools: concentrations are typically 
detected through fiber filters (of different diameter) using an active 
sampler, while rebound or deposition dynamics are often detected 
through measurement of aerosol vertical fluxes using an optical 
particle counter based on a direct Eddy Covariance approach 
(Damay et al., 2009).

However, the importance of bridging the gap between a frag-
mented theoretical framework and the needs for supporting effec-
tive policies to increase the quality of urban environment demands 
some steps forward. In the proposed methodology, different 
approaches are combined to set a model that estimates the benefit 
derived from green urban spaces on air quality, to do so, we use a 
spatial interpolation method as the basis for average daily PM10 

concentration. The methodology also promotes air-quality assess-
ment tool able to support land use policies: the availability of an air 
filtering mapping model determines policies on urban green areas 
implementation that considers PM10 concentration as a proxy for 
sustainability. Such gain in precision is fundamental to meet the 
needs of land use planning decision-making process (Ahern et al., 
2014; Hilde and Paterson, 2014; Primmer and Furman, 2012).
2. Material and methods

2.1. The study area

This study focuses on the City of Milan (northwest of Italy, Lom-
bardy Region), which constitutes the core of the biggest metropoli-
tan system in Italy (Fig. 1). The Organization for Economic Co-
operation and Development (OECD) classification states the Greater 
Milan is the metropolitan area with the most extensive socio-
economic and settlement system (Sali et al., 2016). It encom-passes 
eight Lombardy Provinces, including Novara (which is a Pro-vince 
of Piedmont Region), with a total population of 7.4 million 
inhabitants (Sanesi et al., 2016). The city is one of the most densely 
populated in Italy, and it suffers the effects of a daily heavy com-
muting network from the suburbs to the inner-city, leading to all 
severe air pollution issues.

Particularly, the urban area of Milan is affected by a high degree 
of artificial covers occasioning a high concentration of noise, pollu-
tion and other anthropic threats that result in a decreased quality of 
life (Fattore et al., 2016).

Milan has a dry winter period (normally between December 
and January), which determines an increase in air pollutant con-
centrations above the threshold limit (50 mg/m3 for 35 days per 
year) determined by the Italian National Law n. 155 of 13 August 
2010.



 

 

The study uses the estimated PM concentration registered by 
ARPA sample sites,1 and it simulates PM10 distribution over the 
entire urban area during the peak air pollution concentration 
recorded in the 2015 winter season.
 
 

 
 
 
 
 
 
 

 

 
 

 
 

2.2. Data sources

Considering the LUR methodology of Janssen et al. (2008) which 
estimates the averege contentration of air pollution using land use 
variables at national scales, two innovations were introduced: (i) a 
LULC dataset with a high spatial resolution and (ii) the integration 
of two additional dataset for a better assessment of model predic-
tion: the Copernicus High-Resolution Layer and the city tree reg-
istry (Benini et al., 2010). The main input data are:

1.

2.

LULC. The datasets were derived from detailed regional data-
bases publicly available (www.geoportale.regione.lombardia. 
it), dating 2012 ad called DUSAF. Information was obtained by 
photointerpretation of the regional territory. Digitalization was 
obtained at a 1:5,000 scale with a minimum detectable size of 5-
meter. A total extension of 1600 m2 for non-urban areas, and of 
400 m2 for urban areas was detected. The database adopted the 
same classification criteria and categories based on the Corine 
Land Cover dataset (http://uls.eionet.europa.eu/CLC2006/
CLC_Legeng.pdf) (44 land use classes).
The Copernicus High-Resolution dataset – Imperviousness 
Degrees data (2012). Elaborated by ISPRA and European Envi-
ronmental Agency, the layer provides a raster spatial distribu-
tion of sealed surfaces over the entire territory with cell 
values ranging from 0 (unsealed) to 1 (sealed).
Data were collected with Fast Track Service Precursor on Land 
Monitoring – Degree of soil sealing with a high-detailed resolu-
tion output of 5-meter cell. Since 2009, the service has been 
realized for the European Commission by Planetek Italia 
(Geoland 2 project).

3. The Geographical Information System for urban green areas of
the City of Milan which includeda digital mapping of urban 
green areas and trees.
The tree registry counts more than 2780 public urban green 
areas (2340 hectares, 13% of the municipal territory, based on 
the data available in 2016) of different typologies, distributed 
across nine different urban zones. It counts more than 
225,000 trees, of which 26,000 are of the recent plantation (last 
three years). The 60% of trees are located in public green areas, 
gardens and parks, the 29% in linear tree plantations, and the 
rest located in school or public building gardens. The 47% of 
the species are Acer, Platanus and Tilia.

2.3. Spatial interpolation of the model

European Commission’s Air Quality Directive No. 30 of 1999 first 
introduced target and limit values for population exposure to fine 
particles. The monitoring system is traditionally composed by fixed 
stations distributed over a survey area. In our case study, the 
registered concentrations were used to set up a regression 
equation. The LUR methodology assumes that the relation of the 
registered PM10 concentrations and the LULC composition can be 
modeled by a linear equation that predict the PM10 distribution 
over the entire territory of study. The city of Milan has empowered 
a well-developed and capillary monitoring system consisting of 
three fixed detection stations (Juvara Pascal street, Verziere street 
and Senato street) inside the municipality of Milan, in addition to
1 ARPA is the Regional environmental agency responsible for air quality 

measurements.
eight fixed detection stations in the metropolitan area. The abun-
dance of a monitoring system is crucial to obtain a well-developed
spatial interpolation model that predict PM concentration.

The literature that explores relations between LULC and PM
concentrations use the LUR as the equation that predicts pollutant
on air using LULC variables (Janssen et al., 2008; Lee et al., 2015; Lu
and Wong, 2008; Vienneau et al., 2009). Different statistic interpo-
lation models were tested to generate PM distribution (Ayers, 2001;
Contreras and Ferri, 2016; de Hoogh et al., 2014; Karppinen et al.,
2000; Li and Heap, 2011; Mercer et al., 2011; Ryan and LeMasters,
2007). These models directly relate the con-centration of pollutants
to LULC. As introduced, spatial interpola-tion models based on
regression assume that LULC is a proxy of PM concentration. Thus, it
is important to find out the correct rela-tions between LULC
variables and their effect on air quality (Vautard et al., 2007).

The estimation of PM concentration (Janssen et al., 2008) is an
output of a spatially interpolated model based on a land use indi-
cator (b) as a proxy of the total emission. The methodology
assumes that LULC should be used as the independent variable
for a regression equation of PM concentration.

Moreover, the method is integrated by other LULC variables: the
sealing pattern, and the quantity and distribution of trees. The
study uses the following datasets:

� DUSAF, integrated with street network dataset, and used as a

LULC variable that determines emissions;
� degree of imperviousness used as a variable that determines

resuspension;
� tree cadastre used as variable that determines deposition;

Compared to the methodology presented in the study of Janssen 
et al. (2008), the spatial interpolation of LULC variables was carried 
out by using a regular grid of 1 * 1 km instead of 4 * 4 km.

The analytical framework is made up of the following steps:

1. Development of RIO land use classification using the DUSAF 
(Janssen et al., 2008). The RIO methodology links statistical 
emission data of the air pollution to land use patterns at the 
local scale using a land use indicator. For this step, a GIS session 
has been launched with Esri ArcGIS 10.3 to integrate the base-
map with the detailed infrastructural system, and subsequently, 
land use classes were grouped according to RIO ones. The scale 
of representation is 1:10,000 instead of the original RIO scale of 
1:250,000.

2. The association of LULC classes to RIO has been used to set 
specific emission factors of the INEMAR-ARPA2 (Table 2) agency 
that provides specific emission quantification for different sources 
(Table 1). This association has been possible because the sources 
of air pollution (first column in the Table 1) are related to the 
DUSAF classification (third column in the Table 2).

3. The procedures for spatial interpolation took into consideration 
the guess of land use indicator b by using the Regional INEMAR-
ARPA sector. The b indicator is a float number that associate at a 
specific land use an emission factor which has been previously 
normalized (Table 3). Its estimation considers setting the emis-
sion of residential land uses (RCL1 and RCL2) as the benchmark 
for normalization (value 1). Accordingly, the b value ranges from 
0.15 (RCL8) to 2.08 (RCL4).
2 INventary of Emission on AiR is the Regional database of emissions for typologies 

of land covers in Lombardy
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Table 4
Relation of b value and PM concentration measurement for regression equation.

Beta value Detected values

3412 0.438061201 70
2743 0.774922754 77
2393 0.672709845 85
2386 1.014474459 97
2316 0.923878019 81
2249 0.928087319 87
2843 0.697863667 60
2224 0.863504783 97
2618 0.502080946 82
2682 0.706171377 87

Table 1
Emission table in the Province of Milan (2012) – (Source: INEMAR ARPA LOMBARDIA).

SO2 NOx COV CH4 CO CO2 N2O NH3 PM2.5 PM10 PTS CO2eq Precurs. O3 Tot. acidif.
(H+)

t/year t/year t/year t/year t/year kt/year t/year t/year t/year t/year t/year kt/year t/year kt/year

Production and transformation
energy plant

S1 12 1216 116 253 2744 1995 9.4 12 12 12 2003 1904 27

Non-industrial combustion S2 281 3413 1121 520 6140 5258 111 8.2 534 556 583 5303 5968 83
Industrial combustion S3 1446 1598 298 22 491 937 12 1.5 98 120 155 941 2302 80
Productive processes S4 13 22 1766 3.9 206 48 0.8 12 59 109 154 49 1816 1.6
Extraction and distribution

of fuels
S5 1968 23,530 494 2297

Use of solvents S6 0.1 0.5 21,275 0.0 0.2 1.7 176 200 284 350 21,276 0.1
Road transport S7 25 14,912 4654 349 19,486 4144 142 229 885 1157 1459 4195 24,995 338
Other mobile sources and

machinery
S8 56 1237 364 1.7 1125 186 3.9 0.2 43 44 44 187 1997 29

Waste treatment S9 37 362 166 20,808 75 197 147 64 10 10 11 680 906 13
Agriculture S10 12 135 5490 12,705 639 583 4851 71 86 178 448 5903 289
Other sources and sinks S11 2.3 11 355 24 241 -37 0.4 0.2 228 229 229 -37 395 0.3
Total 1885 22,907 37,572 58,217 31,148 12,728 1008 5168 2117 2523 3110 14,613 69,760 861

Table 2
Conversion from INEMAR-ARPA classification to RIO classification, according to DUSAF classes.

FROM EMEP TO RIO RIO CLASS DESCRIPTION DUSAF_Code

S2 RCL1 Continuous urban fabric 1111,1112,11231
S2 RCL2 Discontinuous urban fabric, green and sports 1121,1122,1123,1411,1412,1421,1422,1423
S3 + S4 RCL3 Industrial or commercial units 12111,12112,12121,12122,12123,12124,12125,12126
S7 RCL4 Road and rail networks and associated land 1221,1222
S8 RCL5 Port areas
S8 RCL6 Airports 124
S1 + S4 + S5 + S9 RCL7 Mine, dump and construction sites 131,132,133,134
S10 RCL8 Arable land 2111,2112,2115,21131,21132,21141,21142
S10 RCL9 Agricultural areas 213,221,222,2241,2242,2311,2312,2313
S11 RCL10 Forest and semi-natural areas 314,3113,3221,3222,3223,3241,3242,31111,31112,31121,31311,31312
S11 RCL11 Wetlands and water bodies 331,411,511,5121,5122,5123

Table 3
Normalization of emission values using residential areas as proxy.

RIO CLASS abs norm

RCL1 556,35 1
RCL2 556,35 1
RCL3 229,29 0,41
RCL4 1.156,85 2,08
RCL5 44,4 0,08
RCL6 44,4 0,08
RCL7 130,93 0,24
RCL8 85,58 0,15
RCL9 85,58 0,15
RCL10 228,72 0,41
RCL11 228,72 0,41
4. Evaluation of the spatial distribution of b values over the study 
area. The distribution of b values was determined with a spatial 
grid of 1 * 1 km instead of 4 * 4 km. LULC classes were grouped 
into each cell and then the average b value has been assigned 
according to LULC composition using ArcGis dissolve function.

5. Implementation of initial guess of b values with auxiliary data-
sets such as the soil sealing dataset and the tree registry.The 
new b value (b1) is then a result of emission data, adding a frac-
tion value for resuspension dynamics (that increases concentra-
tions) and detracting the fraction of deposition (that decreases 
concentrations).

6. Statistical interpolation of measured values with the new guess 
of b1 values (Table 4). According to the RIO approach, the 
regression equation was calculated by using the 10 sample
points where PM wasrecorded with fixed ARPA stations during 
a field campaign conducted on 5th December 2015 (see Sec-tion 
2.1), one of the days of maximum PM concentration in the Milan 
metropolitan area. Thus, the linear regression outlines the 
predicted concentration of PM10 for all the grid cells using the b 
value as the regression coefficient.

7. Finally, the spatial distribution of predicted concentration over
the study area was modelled by combining kriging using a
spherical semivariogram model with a radius setting of maxi-
mum 12 b values. This operation has been carried using Esri
ArcGis 10.3.

Results were used to present a metropolitan-level assessment
(Nuissl et al., 2009), rather than a sub-national one (Miranda 
et al., 2015).



Table 5
Annual air quality benefits of public trees of Milan city.

Deposition

Species kg of PM10 $

White poplar 559.7 13,900
American sycamore 714.2 17,736
Broadleaf Deciduous Small 171.8 4,957
Black locust 341.3 9,323
Sweetgum 111.3 3,039
Northern red oak 287.5 7,854
Conifer Evergreen Medium 372.1 12,363
Boxelder 272.8 7,453
2.4. Model implementation

As the resuspension dynamics of PM10 in an urban environment 
is highly affected by pavements, roads, and other impermeable sur-
faces, a correction of the original b value was used to account for an 
increase of maximum 15% (de la Paz et al., 2015) where the sealing 
patterns of the grid cell were 100%. It is therefore assumed that a 
complete sealed land use pattern increases emission of PM10 at a 
fraction no higher than 15% (Dordević et al., 2004; Früh-Müller 
et al., 2016).

The implementation of the original b value was conducted by 
using the Copernicus High-Resolution Layer database. It consists of 
a raster of cell size 5 m with different sealing degrees (from 0 to 
100%) whose quantification was assigned to the grid cell to mod-ify 
the original b values. The average sealing value cell was con-ducted 
usigng the Esri ArcGIS 10.3 intersect function between the sealing 
layer and the grid cell map of b value distribution. Each cell in the 
first b guess value sample was interpreted and assigned to different 
soil sealing strata: from 0% to 100%. This procedure aimed at 
restituting a meta-model of land cover types for specific sealing 
parameters.

The first integration serves to modify the initial guess based on 
emission only, with a value ranging from 0 to 15% of the initial b 
value that accounts for local resuspension.

A second correction was applied to estimate in the model the 
parts of PM10 which are removed by absorbtion of green areas. Such 
correction considers that significant scientific bibliography is 
dedicated to assessing the influence of trees and vegetation of 
urban green spaces as pollutant removers (Akbari, 2002; Bardelli et 
al., 2011). The integration of emission models to predict the total 
PM10 concentration was performed to assess PM deposition using 
the urban green and tree registry. The assumption is that PM depo-
sition due to green areas acts as a sink for pollutants. Accordingly, 
the traditional interpolated model based on relations between land 
use and emissions was incorporated with additional LULC-related 
datasets.

Green areas are a sink of pollution rather than a source thereof, 
and contribute to PM abatement (Nowak et al., 2006; Selmi et al., 
2016); as a consequence, the contribution of green areas to PM 
concentration is not accounted for emission dynamic, but for 
absorption (decreasing values).

In this research, an assessment of PM10 absorption for the 
metropolitan City of Milan is set out using I-tree software 
(Cabaraban et al., 2013). I-Tree software estimates the deposition 
of air pollutants (expressed in kg for O3, NO2, PM10 and SO2) and 
air pollution removal (expressed in kg for NO2, PM10 and VOC) 
by the municipality’s street tree population (USDA Forest Service, 
2008).

More specifically, the software provides different opportunities 
for both biophysical and economic evaluations by considering:

� annual pollutant removal by urban trees (SO2, NO2, O3, PM10);
� annual removal of carbon monoxide (CO);
� the total amount of carbon stored in the entire trees;
� the net annual amount of sequestered carbon;
� urban forest structure, including species composition, coverage,
health, biomass, and ground cover (shrubs, among others);

� effect of trees on the energy balance of buildings (including the
reduction of CO2 emissions);

� susceptibility to pests;
� tree species composition (including Exotic species);
� rainwater retention
(Nowak et al., 2006).

In this study, trees on private gardens were not accounted
for. According to the manuals and inventory of I-Tree Streets
(v 6.0), data inputs needs information on tree species (genus, 
species and varieties) plus additional information on their size 
(High, DBH – diameter at breast height divided into 10 classes, 
from less than 7.6 cm to more than 106 cm). Our data are 
referred to the public trees located in the city of Milan and man-
aged by the public administration, the private ones are not 
included in the cadastre.

Each tree was linked to an ‘‘Spp_Code‘‘ related to the species, 
according to the ”Species code table‘‘ of I-Tree. When a species was 
not included in the archive, it was associated to a generic 
identification code to distinguish the Conifer from the Broadleaf 
and then the Broadleaf evergreen and the Broadleaf deciduous, 
including information on the size of the tree (Small, Medium, 
Large).

The tree registry consists in a point shapefile that has been 
intersected with the city LULC, thus it has been possible to have 
another spatial dataset that supplements the ones of emission and 
resuspension.

Outcomes for PM10 values were grouped by species, and divided 
by assigning a share of deposition for each tree based on its char-
acteristics and structure (Table 5). This operation was conducted 
using Microsoft Excel functions successively associated to the point 
shape file of the trees through a GIS operation (table join) to include 
the amount of deposition per species.

Given the input, the software automatically provides a statisti-
cal dataset for annual air quality benefits produced by public trees: 
the annual PM10 deposition on tree surface.

Furthermore, the software automatically calculates the mon-
etary values of ES air purification established for the United States 
as adjusted by the producer price index (PPI) for the year 2007 (U.S. 
Department of Labor; Baró et al. 2014; Nowak et al. 2002).

The final step was the association of the deposition value of the 
trees with the above mentioned b value distribution; the procedure 
was performed using an Esri ArcGIS 10.3 overlay function combin-
ing first a union operation between the tree registry and the grid 
cell map and then a dissolve function for a visual distribution of the 
total deposition values per each grid cell.

The values were standardized (Prawiranegara, 2014) by scaling 
from 0 to 1 and divided into nine categories using Jenks natural 
breaks classification method; the ranking expresses the deposition 
action by trees depending on density and species of trees in each 
grid cell (Fig. 3).

According to the principle of re-suspension, deposition values 
were also used to decrease the original b value of maximum 15%. 
The procedure assumes a balanced dynamic between resuspension 
and deposition. The final distribution of the predicted PM10 con-
centration values was accomplished through a Land Use Regres-
sion (prediction function of Microsoft Excel) using the final 
interpolated b1 value in the grid cell (which was a product of the 
original b value, plus the re-suspension fraction minus the deposi-
tion fraction).



Fig. 3. Distribution of deposition values using the tree registry.
3. Results and discussion

3.1. The model output: distribution of PM10 concentration

With regard to the distribution of absorption values (Fig. 3), the 
grid cells nearest to the city centre, with a high value of deposition, 
correspond to an important urban park (the urban park of Porta 
Venezia) with a high vegetation equipment and the Monumental 
Cemetery of Milano that includes ancient trees governed by a 
specific legislation for their conservation and protection.

The cells with a low amount of PM10 deposition were instead 
characterized by a continuous urban fabric with a dense urban 
morphology where the tree equipment is quite scarce (Fig. 3).

The overall contribution of urban trees to PM10 deposition is 
11,638.4 kg, which means a significant contribution to the removal 
of pollutants from the air.

The final output of the study is a map of PM10 distribution con-
sidering an average daily pollution in a period of highly PM con-
centration (registered values of December 2015 were used as a 
benchmark).

Fig. 4 shows PM10 values ranging from more than 89 mg/m3 to 
more than 71 mg/m3. All values are above the threshold of 50 mg/m3 

(which is the daily maximum threshold fixed by European 
Commission’s Directive No. 30 of 1999), and the distribution of val-
ues show a higher concentrations in the core area, especially along 
the northeast axes (P.ta Venezia, Città Studi, Loreto and Bicocca). 
That is a part of Milan where central station, bus stations, and the 
directions to the most industrialized part of the metropolitan area 
are located.

Fig. 4 also shows a mixed pattern of concentrations with a few 
variation in the core area. In the central area of the city, PM10 val-
ues range from 80 mg/m3 to 89 mg/m3 and their distribution follows 
the dense and compact LULC patterns (Fig. 4). All the ancient built-
up area of the city is subjected to great PM concentrations due to a 
high sealing degree of the soil and the presence of a dense road 
network. Outside of the first city ring the situation is quite 
heterogeneous.
    The eastern part of the city is influenced by the urban motorway 
which runs along the border of the compact city and plays as a
source of pollution. Historical quarters such as Lambrate, Città 
Studi or Rogoredo are affected by a high degree of PM concentra-
tion, while in the southern part the quarters of Corvetto and 
Gratosolio are subjected to less PM concentration due to their 
proximity to the Parco Agricolo Sud Milano: one of the most rele-
vant sovra-local green zones of the city. Such mitigative effects are 
also visible on the west border of the compact city where the Parco 
delle Cave and Monte Stella and other green quarters such as the 
Gallaratese, San Siro and Cesano Boscone lower the PM concentra-
tion thanks to their green equipment. In these areas the results 
showed that vegetation and trees may effectively lower the air pol-
lution, playing a vital function to reduce the average air concentra-
tion of PM10.

3.2. Limitations and opportunities

Assuming that the RIO approach states that relations between 
land use information and pollution concentration could formulate 
accurate models, the proposed methodology represents an attempt 
of a better spatial interpolation model for air quality prediction. 
From a city planning perspective, such an attempt is of great 
importance, because the comparison of different LULC scenarios 
allows assessing the predicted impact of land use changes on air 
quality at the city scale and, thus, to evaluate the trade-off among 
different land use configurations. The model helps to address bet-
ter the cost-benefit balance related to air quality increase or 
decrease associated with urban planning decisions. Methodologi-
cally, if a fine-scale spatial model is reliable enough to find out 
the relationship between land uses and PM, then it is possible to 
test the model against different LULC configurations and check 
whether or not alternative scenarios increments or deteriorate 
the air quality.

Further calibration of this model is fundamental to reach the 
standard reliability of other LULC-dependent ES models (Ho 
et al., 2015; Johnson et al., 2010). This consideration implies that 
the implementation of the model in a standalone software should 
potentially provide in future an open-access software that opera-
tionalizes the tested methodology and provides a new easy-to-
use tool for ES mapping. Such tool will demand from a hypothetical



Fig. 4. Distribution of final PM10 prediction using kriging methodology.
user a LULC map as an input and, together with few optional vari-
ables, it generates as output a spatial map of biophysical/economic 
values for a context-based study area.

Air filtering services are harder to assess compared to other ES. 
Air is affected by turbulent dynamics and measured concentrations 
are not completely a product of local emission rather than a mark of 
the upwind source of pollution (Carvacho et al., 2004). Weather, 
altitude, humidity, the wind and other variables have a significant 
influence on PM fluxes (Bertazzon et al., 2015; Zhang et al., 2015). 
Nonetheless, the ES approach for land use planning is a result of a 
simplification of the real ecological processes and functions that 
generate final services.

At this stage, PM predictions obtained through LUR should be 
considered only as a benchmark, since this method uses only land 
use values as predictors of PM concentration. The proposed 
methodology assumes that the integration of land use with other 
predictors, particularly the sealing rate of the ground surfaces and 
the tree registry, will improve the prediction of PM concentra-tion. 
Nonetheless, often the risk with linear predictive models is that a 
refinement of input data does not correspond to better out-put 
reliability, because the distribution of values is sometimes chaotic, 
and may depend on external variables.

The limitation of the I-Tree software is that the model is spe-
cially designed for US case studies and custom adaptations are nec-
essary. For instance, the selection of the climate region is based on 
US climate conditions, and if the software is used in other countries 
it is important to define the appropriate input dataset. Moreover, 
although the I-Tree database has over 5000 species, it does not 
include tree and shrubs typical of the Lombardy Region.
The interpolation methodology employed here also has also
limitations. The dynamics of resuspension and deposition
accounting for a maximum increase or decrease of 15% of the b
initial guess. This is an oversimplification, but it was accepted
as a tentative of model implementation to overcome the tradi-
tional model. Whether the result is well addressed or not, it
should stimulate the need for future advance research in a
PM10 field campaign measurement within the Milan metropoli-
tan area. If detected concentrations of PM10 are similar to the
predicted ones, then the model should be deemed reliable, other-
wise, and that is more likely, it will have to be validated,
adjusted and corrected with empirical data that integrate the
regression equation.

Despite the above mentioned limitations, the LUR approach
seems to reach a good predictive reliability and is less time con-
suming compared to measurement campaigns extended to large
areas of investigation. Thus its utilization for planning purposes
should be considered feasible.

Finally, the upgrade of the study has to account for a refinement
of the grid for the guess of b value. The distribution in urban areas
has to consider at least cells of 500 m by 500 m, otherwise urban
historical green areas bordered by dense built-up zones such as
Parco del Sempione are not visible as expected in the final PM
distribution.

The need of a finer assessment has to consider also a refinement
of fixed and non fixed stations for PM detection. A limit of this
study is that the predictive model uses only few measured concen-
trations, while the efficacy of such approach request much more
registered values to adjust and calibrate the regression equation.



4. Conclusions

The integration of PM10 emission data with other LULC-related 
dynamics representation increases the reliability of traditional 
LUR-based air quality models and aims to support and guide plan-
ners and policy makers considering the cause-effect of land use 
changes to air quality.

The future challenge is to integrate those models together to 
map the ES connected to air quality during the planning process 
and to use this evaluation to assess the effect of land use change 
scenarios.

The proposed methodology hopes to apply recent research 
advancements in the field of air quality and its relations with land 
use change, especially by integrating Land Use Regression models 
and vegetation. Since planners are likely to define a spatial project 
using detailed maps, the assessment presented here associates a 
visual distribution of PM concentrations to detailed Land Use res-
olution map. A fine-scale resolution of the spatial distribution of 
PM10 concentration is a step to consider air quality as a proxy for 
healthy conditions of citizens into land use decision-making pro-
cess (Carb, 2005; Yu et al., 2011).

Our methodology reinforces the value of planning for sustain-
able air quality policy by estimating PM concentrations due to cur-
rent and predicted land use scenarios. The assessment of air 
pollution in urban planning will help to predict the decrease of 
healthy conditions linked to air quality in the urban environment 
and to potentially determine the cost of public welfare under dif-
ferent scenarios.

If sustainability is a new paradigm of contemporary planning, 
there is an apparent need to develop air pollution models at fine 
scale using GIS techniques that allow a better explanation of the 
cause-effect mechanism of land use change. Awareness of the envi-
ronmental effect of land use change on air quality might be a good 
way of achieving affordable results over the coming years.
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