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Abstract: In this paper we introduce an explicit Model Predictive Controller (eMPC) for a
linear system subject to an additive stochastic disturbance with bounded support. The finite
horizon control problem that is solved to determine the eMPC consists in minimizing an average
quadratic cost subject to robust linear constraints involving state and input. By resorting to a
control law parametrization that is affine in the disturbance, the finite horizon control problem
is reformulated as a convex quadratic optimization program and solved via multiparametric
quadratic programming. The resulting eMPC is piecewise affine as a function of the state.
The proposed approach is compared with an alternative min-max approach from the literature
on a numerical example.
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1. INTRODUCTION

Model predictive control is a model-based control paradigm
that is able to cope with constrained multivariable sys-
tems. The control input to be applied at each sampling
time is determined by solving a finite horizon constrained
optimization problem that exploits the prediction of the
system behavior starting from the current state, thus re-
sulting in a state feedback control law. Online computa-
tions have to be performed in a sampling time interval,
and may become prohibitive for systems with fast dynam-
ics. This led to the study of methods for determining a
solution to the finite horizon optimization problem that is
parametric in the state, so as to reduce the online effort
to a function evaluation. The resulting model predictive
control strategy is then called explicit.

Explicit model predictive control has been extensively
studied in the literature, Alessio and Bemporad (2009).
The considered classes of systems include linear and hybrid
linear systems, possibly affected by disturbances. In the
explicit Model Predictive Controller (eMPC) computation,
both nominal and robust formulations have been consid-
ered with different costs, and using either an open-loop
or a closed-loop control policy, Bemporad et al. (2002a),
Bemporad et al. (2002b), Bemporad et al. (2003).

Concerning nominal eMPC design, in Munoz de la Pena
et al. (2004) a dynamic programming approach is pre-
sented for linear systems with a quadratic cost. Robust
eMPCs are typically designed by minimizing the worst-
case performance while enforcing state and input con-
straints. In Munoz de la Pena et al. (2005), a worst-case
quadratic cost is minimized by parametrizing the input as
the sum of an open-loop term and a linear feedback term
whose gain is a-priori fixed. In Bemporad et al. (2003), a
dynamic programming approach has been instead applied
for worst-case costs based on 1-norm and∞-norm. Robust
eMPC design has been tackled also in Pistikopoulos et al.

(2009), and, more recently, in Kouramas et al. (2013),
where uncertainty enters the system through its matri-
ces, characterized by the sum of a nominal term and an
error term. The proposed method uses dynamic program-
ming and multi-parametric programming to minimize a
quadratic cost and satisfy state and input constraints,
robustly with respect to uncertainty.

In this paper we consider linear systems subject to a
stochastic additive disturbance with bounded support. We
minimize an expected quadratic cost subject to robust con-
straints on state and input, with the objective of designing
a control law that is feasible for any uncertainty instance
since constraints are satisfied robustly, while imposing high
performance only on average, for most of the uncertainty
realizations, accepting a performance degradation but only
for uncertainty instances that are unlikely to occur. A
different philosophy is adopted in the worst-case approach
where guarantees of a certain (optimized) performance
level are enforced for all uncertainty instances, irrespec-
tively of their likelihood to occur, and in the nominal
approach where only the nominal system performance is
optimized. Choice of the approach depends on the problem
at hand and is also affected by the complexity of the
resulting solution.

Inspired by Goulart et al. (2006), we parametrize the
finite horizon control law as an affine function of the past
disturbance values, which allows us to reformulate the
finite horizon optimization problem as a convex quadratic
program. Furthermore, such a parametrization is equiva-
lent to a state feedback policy since disturbances can be
reconstructed from state measurements (see Goulart et al.
(2006)).

Robust eMPC design has been addressed in a stochas-
tic framework also in Sakizlis et al. (2004) and Gran-
charova and Johansen (2010). In Sakizlis et al. (2004),
constrained linear systems subject to additive uncertainty



are considered. An expected quadratic cost function is
introduced and both open-loop and closed-loop robust
parametric controllers are computed. Differently from our
setup, where we express the expectation as a quadratic
function in the control law parameters, in Sakizlis et al.
(2004) it is proposed an approximate solution based on
discretization of the expectation to a set of uncertainty
scenarios. In Grancharova and Johansen (2010), instead,
an approximate method in the context of nonlinear MPC
has been proposed. However, the disturbance entering the
system dynamics takes a finite set of values, while here
we are concerned with disturbances having a continuous
support.

The rest of the paper is organized as follows. After in-
troducing some basic notions and notations, we precisely
formulate the addressed problem in Section 2. In Section
3, we explain how the eMPC can be designed by rewriting
the constrained optimization problem for the finite-horizon
control computation as a quadratic convex problem and
solving it parametrically in the initial state. Section 4
provides a numerical example. Some remarks conclude the
paper in Section 5.

Basic notions and notations

Given two positive integers m and n, Rm,n denotes the
space of the m×n real matrices, and Rm stands for Rm,1.
Im and Om,n denote respectively the identity matrix of
order m and the m × n zero matrix, while 0m and 1m

are the elements of Rm with all zero and unitary entries,
respectively.

Given a matrix M , Ms, tr(M) and vec(M) indicate the
symmetric part, the trace and the vectorization of M ,
respectively. More precisely, the symmetric part of M is
the matrix 0.5(M + MT ) and the vectorization of M is
the column vector obtained by stacking the columns of
M . Given two matrices M1 ∈ Rm,n and M2 ∈ Rp,q, M1 ⊗
M2 and diag(M1,M2) denote respectively the Kronecker
product of M1 and M2 and the block-diagonal matrix
formed by M1 and M2.

A (convex) polyhedron P ⊆ Rh is defined as the inter-
section of q half-spaces (H-representation, Ziegler (2012)),
and can be expressed through PA ∈ Rq,h and pB ∈ Rq

as P = {z ∈ Rh|PAz ≤ pB} or P = (PA, pB) for ease of
notation. A polytope is a (convex) bounded polyhedron.

Given a random vector v ∈ Rh, we denote by Cv its
covariance matrix. Ev [g(v)] denotes the expectation of
g(v), with g : Rh → Rm measurable, with respect to the
probability distribution of the random vector v.

2. PROBLEM FORMULATION

Consider a linear system governed by the equation:

xt+1 = Axt +Buut +Bwwt, (1)

where x ∈ Rnx is the state, u ∈ Rnu is a control input,
and w ∈ Rnw is a weakly stationary stochastic disturbance
with known (constant) first and second order moments and
compact support within a polytope W. In particular, we

assume without loss of generality that w has zero mean. 1

Matrices A, Bu and Bw have appropriate dimensions.

The aim is to design an eMPC of the form u = κmpc(x)
by minimizing the average cost

Jav = Ew

[
N−1∑
t=0

(xTt Qxt + uTt Rut) + xTNPxN

]
, (2)

subject to the robust constraints

Caxxt + Cauut ≤ cb
xN ∈ Xf

∀wt ∈ W, t = 0, . . . , N − 1.
(3)

In the average cost Jav, matrices Q, R and P are symmet-
ric and positive semidefinite. In the state-input constraints

Caxxt + Cauut ≤ cb, t = 0, . . . , N − 1, (4)

Cax ∈ Rqc,nx , Cau ∈ Rqc,nu and cb ∈ Rqc . Note that (4) can
represent also constraints that depend only on the state or
the input. The terminal set Xf is convex and polyhedral.

Matrix P and the terminal set Xf can be suitably cho-
sen so as to guarantee stability and recursive feasibility
(see Mayne et al. (2000), Bemporad and Morari (1999),
Maciejowski (2002)).

Note that due to the weak stationarity of w, the cost
Jav is time-invariant, which is essential in the eMPC
design. Also, assuming a polytopic support W allows to
rewrite the infinite number of constraints in (3) as a finite
number of linear equalities and inequalities in the decision
variables. This is detailed in the next section.

3. DERIVATION OF THE EXPLICIT MPC

In this section, we describe a method to solve the robust
control problem introduced in Section 2 that rests on a
suitable parametrization of the finite horizon law and on
multiparametric programming.

Inspired by Goulart et al. (2006), we parametrize ut,
t = 0, . . . , N − 1, as follows 2

ut = vt +
t−1∑
j=0

Mt,jwj , (5)

where vt ∈ Rnu and Mt = [Mt,0 . . . Mt,t−1] ∈ Rnu,tnw

are design parameters that have to be optimally tuned.
The control law parametrization (5) is affine in the past
disturbance values, except for the control input u0 = v0
at time t = 0. If the finite horizon control problem is
solved parametrically in the initial condition x0, then, the
optimal parametric expression v∗0(x0) for v0 provides the
static state-feedback eMPC, i.e., u = κmpc(x) = v∗0(x).

We next show how, by adopting parametrization (5), the
cost (2) and the infinite number of constraints in (3) can
be respectively expressed as a convex quadratic function
and a finite number of linear constraints in the controller
parameters. We shall then exploit the obtained properties
for cost and constraints to design the eMPC by applying
multiparametric Quadratic Programming (mp-QP) to the
resulting convex quadratic optimization program.
1 If the disturbance w has a nonzero mean, a suitable change of
coordinates can be adopted to get a zero mean disturbance w −
Ew [w].
2 A summation where the index ranges between 0 and a negative
integer is meant to be empty and, hence, provides a zero contribution.



3.1 Average cost reformulation

We introduce the variables:

XN =
[
xT1 . . . xTN

]T
, UN =

[
uT0 . . . uTN−1

]T
,

VN =
[
vT0 . . . vTN−1

]T
, WN =

[
wT

0 . . . wT
N−1

]T
,

and rewrite cost (2) as:

Jav = xT0Qx0 + Ew

[
N−1∑
t=1

xTt Qxt + xTNPxN

]

+ Ew

[
N−1∑
t=0

uTt Rut

]
=

= xT0Qx0 + Ew

[
XT

N diag(IN−1 ⊗Q,P )XN

]
+ Ew

[
UT
N (IN ⊗R)UN

]
.

Since the state of system (1) at time t, t ≥ 1, can be
expressed as

xt = Atx0 +

t−1∑
j=0

At−1−j(Buuj +Bwwj),

we can write XN as

XN = ANx0 + Bu,NUN + Bw,NWN ,

where

AN =
[
AT . . . (AN )T

]T
,

Bu/w,N =


Bu/w Onx,nu/w

. . . Onx,nu/w

ABu/w Bu/w . . . Onx,nu/w

...
...

. . .
...

AN−1Bu/w AN−2Bu/w . . . Bu/w

 .
By exploiting parametrization (5), UN is given by

UN = VN + MNWN−1

where WN−1 is defined similarly to WN and

MN =


Onu,nw

Onu,nw
. . . Onu,nw

M1,0 Onu,nw
. . . Onu,nw

...
...

. . .
...

MN−1,0 MN−1,1 . . . MN−1,N−2

 .
We can then express XN as

XN = ANx0 + Bu,NVN + (Bu,NMN,0 + Bw,N )WN ,

with MN,0 = [MN ONnu,nw ].

By recalling that, given a random vector v and a matrix
P , we have that

Ev

[
vTPv

]
= Ev [v]

T
PEv [v] + tr(PCv),

and by setting Dx,N = diag(IN−1 ⊗ Q,P ) and Du,N =
IN ⊗R, the two terms of cost (2) can be rewritten as

Ew

[
XT

NDx,NXN

]
= xT0 A

T
NDx,NANx0

+ V T
N BT

u,NDx,NBu,NVN + 2xT0 A
T
NDx,NBu,NVN

+ tr[Dx,N (Bu,NMN,0 + Bw,N )CWN
(MT

N,0B
T
u,N + BT

w,N )]

Ew

[
UT
NDu,NUN

]
= V T

NDu,NVN

+ tr[Du,NMNCWN−1
MT

N ],

where we used the linearity of the expectation and the
expression of the covariance matrix of the image of a
random vector v through an affine map defined by a matrix
P and a vector q, i.e.:

CPv+q = PCvP
T .

Note that, being w stationary, the covariance matrices
CWN

and CWN−1
are constant, which implies that cost

Jav is time-invariant.

The next step is to express the trace terms as quadratic
functions of the control law parameters. To this aim, we
introduce a vector mN ∈ Rnm defined as

mN =
[
vec(M1)T vec(M2)T . . . vec(MN−1)T

]T
,

where nm = 0.5nunwN(N − 1), and exploit the following
properties related to the trace, the vectorization operator
and the Kronecker product:

tr(PT ) = tr(P ),

tr(P1 + P2) = tr(P1) + tr(P2),

tr(P1P2P3P4) = tr(P3P4P1P2),

tr(P1P2) = vec(PT
1 )T vec(P2),

tr(P1P
T
2 P3P2) = vec(P2)T (P1 ⊗ P3) vec(P2),

vec(P1P2) = (I ⊗ P1) vec(P2).

Also, we use the fact that the non-zero components of
vec(MN ) and the components of mN are related with each
other by means of a linear map defined by an invertible
matrix L ∈ Rnm,nm .

We then reformulate the trace terms as follows:

tr[Dx,N (Bu,NMN,0 + Bw,N )CWN
(MT

N,0B
T
u,N + BT

w,N )]

= mT
NL

TCq,x(Dx,N ,Bu,N ,CWN
)LmN

+ Cl,x(Dx,N ,Bu,N ,Bw,N ,CWN
)TLmN

+ tr[Dx,NBw,NCWN
BT

w,N ],

tr[Du,NMNCWN−1
MT

N ]

= mT
NL

TCq,u(Du,N ,CWN−1
)LmN ,

where Cq,x(·), Cq,u(·) ∈ Rnm,nm are symmetric and posi-
tive semidefinite and Cl,x(·) ∈ Rnm .

Finally, we can reformulate cost (2) as

Jav =
1

2
xT0Hxxx0 + xT0Hxu

[
VN
mN

]
+

1

2

[
V T
N mT

N

]T
Huu

[
VN
mN

]
+ vTu

[
VN
mN

]
+ d,

(6)

where

Hxx = 2(Q+ AT
NDx,NAN )

Hxu = 2AT
NDx,N

[
Bu,N O(N+1)nx,nm

]
Huu = 2 diag

(
BT

u,NDx,NBu,N +Du,N

LTCq,x(Dx,N ,Bu,N ,CWN
)L

+ LTCq,u(Du,N ,CWN−1
)L
)

vTu =
[
0T
Nnu

Cl,x(Dx,N ,Bu,N ,Bw,N ,CWN
)TL

]
d = tr[Dx,NBw,NCWN

BT
w,N ].

Note that, since Dx,N , Du,N , Cq,x(·) and Cq,u(·) are
symmetric and positive semidefinite, matrix Huu inherits
the same properties, so that Jav is a convex quadratic
function in the control law parameters VN and mN . We
exploit this property in Subsection 3.3, when deriving the
eMPC.



3.2 Constraints reformulation

In this subsection we show that, by introducing suitable
auxiliary variables, constraints (3) can be formulated as
a finite set of linear equalities and inequalities in the
parameters VN , mN , x0 and in the introduced auxiliary
variables.

We start by considering the state-input inequality con-
straints (4). For t = 0 they are:

Caxx0 +
[
Cau Oqc,(N−1)nu

]
VN ≤ cb,

while for t ≥ 1 we express them as:

(IN−1 ⊗ Cax)XN−1 +
[
O(N−1)qc,nu

IN−1 ⊗ Cau

]
UN

= (IN−1 ⊗ Cax)AN−1x0

+
(
(IN−1 ⊗ Cax)

[
Bu,N−1 O(N−1)nx,nu

]
+
[
O(N−1)qc,nu

IN−1 ⊗ Cau

])
VN

+ ((IN−1 ⊗ Cax)Bu,N−1MN−1,0 + (IN−1 ⊗ Cax)Bw,N−1

+
[
O(N−1)qc,nu

IN−1 ⊗ Cau

]
MN

)
WN−1

≤ 1N−1 ⊗ cb, WN−1 ∈ WN−1.

Such constraints are robustly satisfied only if they are
satisfied in the worst case, i.e., when the left-hand side,
affected by the disturbance, assumes its maximum value.
Since the disturbance support is a polytope, given a H-
representation (Wa, wb) of W with Wa ∈ Rqw,nw and
wb ∈ Rqw , we can exploit LP duality as in Goulart et al.
(2006) so as to equivalently reformulate the constraints by
introducing a matrix Zc ∈ R(N−1)qw,(N−1)qc of nonnega-
tive auxiliary variables such that:

ZT
c (IN−1 ⊗Wa) = (IN−1 ⊗ Cax)Bu,N−1MN−1,0

+ (IN−1 ⊗ Cax)Bw,N−1 +
[
O(N−1)qc,nu

IN−1 ⊗ Cau

]
MN

ZT
c (1N−1 ⊗ wb) ≤ 1N−1 ⊗ cb − (IN−1 ⊗ Cax)AN−1x0

−
(
(IN−1 ⊗ Cax)

[
Bu,N−1 O(N−1)nx,nu

]
+
[
O(N−1)qc,nu

IN−1 ⊗ Cau

])
VN ,

(7)

As for the terminal constraint xN ∈ Xf , it can be written
as

Xfa[ANx0 + B
[N+1]
u,N VN + (B

[N+1]
u,N MN,0

+ B
[N+1]
w,N )WN ] ≤ xfb, WN ∈ WN ,

where (Xfa, xfb) with Xfa ∈ Rqf ,nx and xfb ∈ Rqf is a
H-representation of Xf , and we set

B
[N+1]
u/w,N =

[
AN−1Bu/w . . . ABu/w Bu/w

]
.

Similarly to (7), we can introduce a matrix Zf ∈ RNqw,qf

of nonnegative auxiliary variables so as to satisfy the
following equivalent constraints:

ZT
f (IN ⊗Wa) = XfaB

[N+1]
u,N MN,0 +XfaB

[N+1]
w,N

ZT
f (1N ⊗ wb) ≤ xfb −XfaA

Nx0 −XfaB
[N+1]
u,N VN

(8)

Now, by considering columnwise the matrix equality con-
straints in (7) and (8), we are finally able to formulate
constraints (3) as a finite set of equalities and inequali-
ties that are linear in the overall decision variables ϑ =[
V T
N mT

N vec(ZT
c )T vec(ZT

f )T
]T

:

Geqϑ = geq + Feqx0
Ginϑ ≤ gin + Finx0,

where the expressions of Geq ∈ Rqeq,nϑ , Gin ∈ Rqin,nϑ ,
geq ∈ Rqeq , gin ∈ Rqin , Feq ∈ Rqeq,nx and Fin ∈ Rqin,nx

can be obtained by suitably stacking and rearranging
constraints (7) and (8), together with the nonnegativity
conditions on the introduced auxiliary variables Zc and
Zf .

3.3 Explicit MPC design

According to the derivations from the previous sections,
the optimization problem to be solved offline in order to
compute the eMPC takes the following form:

min
ϑ
J(ϑ, x0) (9)

subject to:
Geqϑ = geq + Feqx0
Ginϑ ≤ gin + Finx0

with

J(ϑ, x0) = Jav(ϑ)− 1

2
xT0Hxxx0 − d

=
1

2
ϑTHϑϑϑ+ xT0Hxϑϑ+ vTϑ ϑ,

where we set

Hϑϑ = diag(Huu, Onz
),

Hxϑ = [Hxu Onx,nz ] , vϑ =

[
vu
0nz

]
,

nz = qw((N − 1)2qc +Nqf ).

To solve problem (9) we resort to multiparametric quadratic
programming (mp-QP) so as to determine an optimizer
ϑ∗(x0) that is a PieceWise Affine (PWA) function of x0.
Specifically, we exploit the fact that mp-QPs are special in-
stances of Parametric Linear-Complementarity Problems
(PLCPs), i.e., problems of the form:

min
w,z

0 (10)

subject to:

w −Mz = q +Qx0

wT z = 0

w, z ≥ 0

for which numerically robust algorithms have been devel-
oped, Herceg et al. (2013). The idea is then to convert
problem (9) into the form (10), solve it, and finally retrieve
a solution to problem (9). Both the conversion of problem
(9) into a PLCP and the computation of its solution can
be performed through the Multi-Parametric Toolbox as
described in Herceg et al. (2013).

By extracting from ϑ∗(x0) the component v∗0(x0), we
finally obtain the eMPC:

u = κmpc(x) = v∗0(x).

Note that, since ϑ∗(x0) is a PWA function of x0, then the
eMPC is a PWA function of the state x.

4. NUMERICAL EXAMPLE

In this section we illustrate the simulation results obtained
by applying the control methodology presented in Section
3 to a numerical example from Munoz de la Pena et al.
(2005). We performed computations with a portable PC
equipped with a 2.8 GHz quad-core Intel Core i7 processor



and 16 GB of RAM. Multi-parametric quadratic programs
have been solved through the Multi-Parametric Toolbox
(version 3.21) as described in Herceg et al. (2013).

The system dynamics is given by equation (1) with

A =

[
1 1
0 1

]
, Bu =

[
0
1

]
, Bw =

[
0.1
0

]
. (11)

We assume that the disturbance w is a white noise uni-
formly distributed in [−1, 1], from which we readily obtain
its mean and variance: Ew [w] = 0 and Cw = var [w] = 1

3 .

We address the problem of designing an eMPC to regulate
system (11) around the origin despite of the additive
uncertainty w.

The finite horizon problem to be solved offline has the
following form:

min
ut, t=0,...,N−1

J (12)

subject to:

‖xt‖∞ ≤ 10, t = 0, . . . , N
|ut| ≤ 1, t = 0, . . . , N − 1
∀wt ∈ [−1, 1], t = 0, . . . , N − 1.

We consider two approaches to address problem (12), both
resting on suitably parametrized control laws. The first one
is the approach proposed in this paper, while the second
one is presented in Munoz de la Pena et al. (2005).

In our approach we minimize J = Jav in (2) using the
control parametrization (5), while in the other approach
the goal is to minimize J = Jwc, with

Jwc = max
wt, t=0,...,N−1

[
N−1∑
t=0

(xTt Qxt + uTt Rut) + xTNPxN

]
,

subject to the control parametrization

ut = vt +Kxt
with K fixed. We choose for both costs Jav and Jwc the
weights Q = P = I2 and R = 10. The gain K was set equal
to the unconstrained LQR gain for system (A,Bu), which
is K = [−0.2054 −0.7835] for the considered dynamics
and weights.

We now compare the results obtained with the two meth-
ods in terms of complexity of the eMPC structure, quanti-
fied by the number of regions with a different expression for
the affine function κmpc(x0). Table 1 reports the number
of regions for the two methods corresponding to different
values of the time horizon length N .

Table 1. Number of regions generated with our
approach and the one in Munoz de la Pena

et al. (2005) for different values of N .

N 1 3 5 8

average cost 1 9 19 43

min-max cost 3 45 71 147

Our approach results in an eMPC structure with a smaller
complexity for each value of N , which facilitates its online
implementation since one has to identify the region of the
partition to which the current state belongs. Indeed, the
complexity of the partition is affected by the number of
constraints of the mp-QP problem, which in our method
grows polynomially with N , while in Munoz de la Pena

Fig. 1. State-space partitions obtained by applying the
approach of Section 3 forN = 3 (top),N = 5 (middle)
andN = 8 (bottom). The bottom plot reports also the
trajectories of the closed-loop system when the eMPC
is applied in the time horizon [0, 40] starting from the
same initial condition, for 1000 different disturbance
realizations.

et al. (2005) grows exponentially with N . The state-space
partitions obtained for N = 3, 5, 8 are depicted in Figure
1, while the partitions for the approach in Munoz de la
Pena et al. (2005) are not reported here and can be found
in that paper.

We finally consider the closed-loop behaviour of the system
in the time horizon [0, 40] when the eMPC determined
with our approach for N = 8 is applied. Specifically,



Fig. 2. Closed-loop behavior in the time horizon [0, 40]
obtained by applying the approach of Section 3 with
prediction horizon of length N = 8, subject to 1000
disturbance realizations, starting from the same initial
state x0: in red the first state component, in black
the second state component and in blue the applied
control actions.

the closed-loop system is initialized at x0 = [9.75 −5.5]
T

and we analyze its evolution subject to 1000 different
disturbance realizations. Figure 2 shows the behavior in
time of each state component and of the control input
when the prediction horizon length is N = 8 and Figure
1 reports the corresponding 2D state trajectories. Also,
the closed-loop performance of our approach is similar to
that reported in Munoz de la Pena et al. (2005), where
the controller has been tested on a finite set of constant
disturbances.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we derived an eMPC for linear systems
subject to a stochastic additive disturbance with bounded
support. The controller is obtained by solving paramet-
rically in the initial state a convex quadratic program
and its structure is defined by a piecewise affine (PWA)
function of the state. This result is obtained by integrating
in the design a suitable parameterization of the finite
horizon control law. Admittedly, such a parametrization
is restricting the class of control policies with respect
to the more powerful dynamic programming approach
adopted in Bemporad et al. (2003). However, in our ap-
proach a single mp-QP problem has to be solved whose
number of constraints is polynomial in the finite horizon
length N , while in Bemporad et al. (2003) a sequence
of N mp-LP problems has to be solved whose number
of constraints may grow exponentially. We compared our
approach with an alternative one still resorting to a control
law parametrization but adopting a min-max approach
as in Bemporad et al. (2003). The two approaches show
the same performance in terms of closed-loop behavior
of the controlled system but our approach generates a
controller with a simpler structure, which makes its online
implementation easier.

Admittedly, in our work we considered a single kind of
uncertainty, which enters the system only through an
additive disturbance. Other kinds of uncertainties should

be taken into account as well. To this purpose, we are
investigating a suitable extension of this work to the class
of uncertain linear systems where both an additive distur-
bance and some parametric uncertainty on the dynamic
matrices are present, like, e.g., in Bemporad et al. (2003).
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