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Abstract: This paper presents the Matlab-based suite called NeoCASS (Next generation Con-
ceptual Aero-Structural Sizing Suite), developed at the Department of Aerospace Engineering
of Politecnico di Milano to be used especially in conceptual design phase. It enables the cre-
ation of efficient low-order, medium fidelity models particularly suitable for structural sizing,
aeroelastic analysis and optimization at the conceptual design level. The whole methodology is
based upon the integration of geometry construction, aerodynamic and structural analysis codes
that combine depictive, computational, analytical, and semi-empirical methods, validated in an
aircraft design environment. Originally developed in 2010 inside the FP7 EU funded project
SimSAC as a module of the CEASIOM environment, since 2012 NeoCASS is a standalone
code distributed under the open source scheme. After more than six years of development, and
more than 800 downloads, this paper presents the most recent advances in the implementation
of a unified aeroelastic and flight mechanics formulation.

1 INTRODUCTION

NeoCASS is a Matlab suite aimed at providing a complete set of tools for conceptual design
of aircraft [1] [2]. It has the capability of generating a preliminary sizing of the aircraft start-
ing from geometrical data and also allows aeroelastic analyses on the structural model which
is generated after the preliminary sizing phase. Having the possibility to introduce aeroelastic
analyses early in the design phase can be very useful since it allows to include aeroelastic sta-
bility and structural load analysis in the definition of the aircraft configuration. One additional
component that can be considered in the evaluation of the aircraft configuration is the automated
flight control system that can either be limited at the control of the motion of the aircraft or can
assume additional functions such as load alleviation and flutter suppression.

It is then very important to allow the interface between flight control system and the preliminary
aeroelastic models such as the ones generated and used by NeoCASS, and it is also desired that
such models can reproduce both the structural dynamic response of the aircraft and its rigid
motion, allowing a complete evaluation of the flight control system. This paper describes some
additions to the aeroelastic analysis capabilities of NeoCASS that have been introduced in order
to allow a complete interface between the aeroelastic model and the flight control system, while
still keeping an efficient, low-fidelity formulation suitable for a preliminary evaluation of the
aircraft properties.
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In order to provide a bridge between the traditional aeroelastic formulation and the linear flight
mechanics models used for the evaluation of the handling qualities of an aircraft, a body frame
formulation of the equation of motion has been introduced [3]. The body frame formulation
has also the advantage of allowing an easy correction of the aerodynamic forces using tabulated
coefficients [4], thus providing the possibility to increase the accuracy of the representation of
the system dynamics were additional data is available. The linear model thus obtained can be
used for standard aeroelastic dynamic analyses, the evaluation of the poles associated with the
aircraft flight mechanics and the solution of steady load conditions.

The possibility to couple the linear structural deformation with the full nonlinear rigid motion
of the aircraft can be useful to provide the possibility to further increase the accuracy of the
simulation, while still keeping a low-fidelity structural and aerodynamic representation. Many
formulations have been used for the analysis of nonlinear aeroelastic systems, for example
in [5], [6], [7] and [8] the aeroelastic and rigid nonlinear aircraft models are merged in one
single model, with the only coupling coming from the aerodynamic forces, having considered
a mean axes formulation of the modal basis. It is also possible to couple a nonlinear structural
model with the standard linearized aerodynamic modeling [9], allowing the inclusion of geo-
metrical stiffness in the model. Other formulations were proposed that are not based on the
nonlinear extension of the finite element method, but are based on a multibody formulation or a
nonlinear beam model. A general multibody formulation was for example used in [10] and [11],
this formulation allows for an exact representation of the rigid body dynamics and can include
complete nonlinear structural models even if in the cited works rigid bodies connected with
lumped spring elements were used to represent the flexibility of the structure. A completely
different formulation was instead used in [12] and [13], aimed at the aeroelastic simulation of
very flexible aircraft such as light High Altitude Long Endurance (HALE) UAVs. The formu-
lation is based on the use of a nonlinear structural model, coupled with an approximated model
for nonlinear unsteady subsonic aerodynamic that in [12] is obtained with the use of an unsteady
vortex lattice method.

In NeoCASS the inertial forces are formulated starting from a nonlinear kinematic model where
the motion of the overall aircraft is fully nonlinear while its deformation is considered as the
superposition of linear deformation shapes. The inertial forces are then obtained using the
Virtual Work Principle, allowing the generation of all coupling terms between the rigid motion
of the aircraft and its elastic deformation.

2 NEOCASS SUITE

The block diagram of NeoCASS suite is presented in Fig. 1. The starting point for the generation
of a new model is the definition of its geometrical properties by the use of the Acbuilder module,
that allows the generation of a database used for the sizing of the structure. The structural sizing
is performed by the GUESS module, and it is based on the database of geometrical properties
and on a set of manoeuvre conditions used to compute the ultimate loads the structure must be
able to sustain.

Once the structural sizing is completed a simplified structural and aerodynamic model of the
aircraft is generated, that can be used by the aeroelastic analysis module of NeoCASS, named
SMARTCAD, or can be exported for the use in external simulation software, such as Nastran.
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Figure 1: Organization of NeoCASS suite.

3 AEROELASTIC SOLVER

The aeroelastic solver in NeoCASS assumes that the structure is represented by a set of beam
elements, with the finite volume formulation presented in [14]. The structural model is coupled
to steady and unsteady aerodynamic forces computed using the Vortex Lattice Method (VLM)
and the Doublet Lattice Method (DLM) respectively. The DLM is implemented according to
the formulation presented in [15]. Three different types of analyses can then be performed:
static aeroelastic analysis, aeroelastic stability (flutter) and dynamic response analysis. For
the aeroelastic stability and the dynamic response analysis a formulation similar to the one
employed in Nastran [16] is used, while a continuation method is used for the evaluation of the
frequency and damping of aeroelastic modes in flutter analyses [17].

In addition to the standard aeroelastic analyses in the frequency domain, it is also possible to
generate a state-space model of the aeroelastic system in time domain, by using the Matrix
Fraction Description method [18] for the definition of unsteady aerodynamic forces in time
domain. The state-space formulation is the most convenient for the coupling of the aeroelastic
model to the flight control system and then it is the starting point for the additional modifications
presented in the following sections.

4 UNIFIED AEROELASTIC AND FLIGHT MECHANICS TREATMENT

The aeroelastic solver in NeoCASS is built in order to have an unified treatment of flight me-
chanics, static aeroelasticity and dynamic aeroelasticity. This allows to use the same model for
all kind of analyses and allows a direct comparison of the results that are obtained in the dif-
ferent analyses. The formulation of the dynamic equations of the system that allows the unified
formulation requires two main operations: the first one is the formulation of the equation of
motion of the elastic aircraft in body axes; while the second is the generation of a unified defini-
tion of steady and unsteady aerodynamic forces. The body axes represents the most convenient
frame to formulate the equations of motion of the flexible aircraft since they are traditionally
used for the analysis of the flight dynamics of the rigid aircraft and are a convenient reference
frame for the definition of aerodynamic forces.

The unified treatment requires also the definition of a common aerodynamic model that is able
to define both steady and unsteady aerodynamic forces, with the possibility to increase the
fidelity of the modeling with the inclusion of CFD forces or experimental correction factors.
This operation is performed in two steps: at first, the steady aerodynamic forces are corrected
to allow the inclusion of steady aerodynamic forces from higher-fidelity models namely CFD
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analyses and databases of aerodynamic coefficients. The corrected steady aerodynamic forces
are then used to correct the zero-frequency component of the unsteady aerodynamic forces, thus
enforcing a consistency between the results of unsteady and steady analyses.

4.1 Equations of motion in body axes

The equation of motion for the elastic aircraft are traditionally expressed using displacements
and rotations defined in a fixed frame that is the rigid motion of an aircraft can be expressed
using the linearized displacement ∆xb and rotation ϕb∆ of a body reference frame, along with
the amplitude of the elements of the reduced basis defining the structural deformation q and all
their time derivatives. The switch to a body axes formulation is done by using the components
of the body velocity in the body reference frame ∆vb instead of the time derivative of the body
position, and the rotational velocity in body axes ∆ωb instead of the time derivative of the
rotation angles. The state vector in inertial axes xi and in body axes xb can then be defined as:

xi =


∆xb
ϕb∆
q

∆ẋb
ϕ̇b∆
q̇

 ; xb =


∆xb
ϕb∆
q

∆vb
∆ωb
q̇

 ; (1)

In the particular case of fully linearised system with no initial rotational velocity, acceleration
and rotational acceleration it is possible to switch from the inertial to the body axes formulation
using simply a kinematic transformation for the variables and applying the linearised rotation
to the equation of motion. This particular linearization configuration allows indeed for the
elimination of all inertial force components that would result from the use of a relative frame for
the definition of the motion equations. The transformation between xi and xb can be expressed
as [3]: {

xi = T1xb

ẋi = T2ẋb + T3xb
(2)

where

T1 =


Rb0 0 0 0 0 0
0 Rb0 0 0 0 0
0 0 I 0 0 0
0 −v̄b0× 0 Rb0 0 0
0 0 0 0 Rb0 0
0 0 0 0 0 I

 ; T2 =


Rb0 0 0 0 0 0
0 Rb0 0 0 0 0
0 0 I 0 0 0
0 0 0 Rb0 0 0
0 0 0 0 Rb0 0
0 0 0 0 0 I



T3 =


0 −Rb0v̄b0× 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −Rb0v̄b0× 0
0 0 0 0 0 0
0 0 0 0 0 0



(3)

whereRb0 represents the rotation matrix that defines the body frame orientation at the reference
configuration. The deformation amplitudes q are unaffected by the transformation equations in
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Eq. (3), this is due to the fact that the combination of the reference frame rotation and the
structural deformation would results in a second order component, which is dropped in the
linearization of the transformation [19].

The transformation can then be applied directly to the model in state space form, that relates the
dynamic of the aeroelastic state to the system inputs u and defines the system output vector †:{

Eẋi = Axb + Bu

y = Fẋi + Cxi + Du
(4)

leading to {
ET2ẋb = (AT1 − ET3)xb + Bu

y = FT2ẋb + (AT1 + ET3)xb + Du
(5)

A further processing of the state variables can be introduced to switch from the use of the
velocity components in body angles to the use of the sideslip angle β and the angle of attack α
that define the orientation of the body velocity with respect to the body frame and are defined
as

β = sin−1

(
v

‖vb‖

)
α = tan−1

(w
u

)
(6)

equation (6) can be linearized around the reference value for the body velocity vb0 in order to
obtain a linear transformation for the system state:∆u

∆β
∆α

 =


1 0 0

− v0u0√
u20+w2

0‖v0‖2

(
1− v20

‖v0‖2

)
1√

u20+w2
0

− v0w0√
u20+w2

0‖v0‖2

− w0

u20+w2
0

0 u0
u20+w2

0


∆u

∆v
∆w

 (7)

4.2 Gravitational forces

When dealing with motion equations for flight mechanics analysis it is convenient to include
also the effect of the weight force on the model dynamics, the weight forces acting on the
reduced dynamical model can be expressed as

fg = UTMTRT
b g

I (8)

where M is the mass matrix of the full structural model, with size [nDOF × nDOF ], U is the
matrix defining the reduced basis for expressing the motion of the structure and include both
the displacements associated with the linearized motion of the body reference frame and the
deformation of the structure. The matrix T is a [nDOF × 3] summation matrix that select from
the mass matrix only the columns associated with the three components of displacement of the
nodes of the structural model. The intensity and direction of the gravitational field is expressed
using components in the inertial frame gI , where they are constant. The linearization of this
equation then gives

fg = UTMT [Rb0(I +ϕb∆×)]T gI

= fg0 −UTMTϕb∆ ×RT
b0g

I
(9)

In addition to the weight force in the reference configuration fg0 there is also a stiffness contri-
bution related to the rotation of the body reference frame that need to be included in the state
matrix A.
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4.3 Correction of aerodynamic forces
Two aerodynamic solvers are currently available in NeoCASS, one implementing the Vortex
Lattice Method (VLM) for the computation of steady aerodynamic forces and the Doublet
Lattice Method (DLM) for the computation of unsteady harmonic aerodynamic forces [15].
Those low-fidelity aerodynamic methods are well suited for preliminary aeroelastic analyses
but higher-fidelity methods are usually needed to improve the accuracy of the results. In the
contest of the aeroelastic analyses performed in NeoCASS it is required to keep the numerical
efficiency of the low-fidelity methods, which have also the additional advantage of not requir-
ing a detailed geometry description of the model, but at the same time it is useful to have the
possibility to increase the accuracy of the aerodynamic forces. A series of methods for cor-
recting aerodynamic forces is then used in order to introduce a bridge between the low-fidelity
aerodynamic methods and high fidelity Computational Fluid Dynamic (CFD) simulations, and
can be used for both steady and unsteady aerodynamic forces. A scheme summarizing the pos-
sible corrections is presented in Fig. 2, the correction of the low-fidelity aerodynamic forces
is performed with the use of data obtained from CFD simulations or with the use of tabulated
aerodynamic coefficients. The CFD data when available represent the most accurate correction
available and can define the distribution of aerodynamic forces on the structure; the tabulated
coefficients are able to modify only the global forces acting on the rigid motion of the structure,
but can be useful in static and dynamic analysis because they allow the proper definition of the
trim of the aircraft or the frequency and damping of the flight mechanics modes of the aircraft.
The steady aerodynamic forces obtained using the VLM method are linear in the body motion
and the structural deformation, and can be expressed as

F a
z

q∞
= F a

0 +Ka
u∆vb +Ka

c δc +Ka
zuz (10)

where δc contains the deflection of the control surfaces, and uz is the vector of structural dis-
placements. Aerodynamic forces from CFD analyses must be provided at a reference configu-
ration, then providing a correction for the reference term F a

0 , by providing also the same data
obtained in perturbed conditions also the correction for the matrices Ka

c and Ka
u can be ob-

tained by finite differences. As shown in Fig. 3 there is no need to provide a full aerodynamic
configuration, but the use of CFD computed forces can be limited to some portions of the ge-
ometry. The use of aerodynamic coefficients, instead, allows the correction of only the rows of
matrices F a

0 , Ka
u and Ka

c that are associated with forces on rigid motion of the aircraft, while
leaving the distribution of forces on the structure unchanged.

The corrections mentioned above can be applied to the steady aerodynamic forces, and can be
used to correct the zero-frequency part of the unsteady response. Unsteady aerodynamic forces
are expressed in frequency domain as

∆fa(jk) = HI(k,M)ua(jk) (11)

where k is the reduced frequency and ua is the vector of inputs for the aerodynamic system,
which includes the state ∆xi, the control surfaces deflections and the gust input. The use of
a fitting procedure allows the definition of the same forces using a dynamical system in time
domain {

x′a = AIxa +BI
0ua +BI

1u
′
a +BI

2u
′′
a

∆fa = CIxa +DI
0ua +DI

1u
′
a +BI

2u
′′
a

(12)

where the prime (′) denotes the derivative with respect to a non-dimensional time τ = t/ta =
tV∞
la

and la is a reference length.
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Figure 2: Scheme used for the correction of aerodynamic forces in static and dynamic analyses.

Both the frequency domain and the time domain formulations can be transformed using Eq. (2)
in body coordinates, by considering only the structural motion ∆xb as input it results

∆fa = H(k,M)∆xb;

{
x′a = Axa +B0∆xb +B1∆x′b +B2∆x′′b

∆fa = Cxa +D0∆xb +D1∆x′b +B2∆x′′b
(13)

In order to allow the correction of the steady portion of the aerodynamic forces it is convenient
to reshape the system in Eq. (13) to lump all the steady response in D0 and its first derivative
inD1, then formulating the system in the form{

w′a = Awa + B̄2∆x′′b
∆fa = Cwa + D̄0∆xb + D̄1∆x′b +B2∆x′′b

(14)

where

B̄2 = B2 +A−1
(
B1 +A−1B0

)
(15)

D̄0 = D0 −CA−1B0 (16)

D̄1 = D1 −CA−1
(
B1 +A−1B0

)
(17)

A similar procedure can be applied also for the frequency formulation, leading to the following
expression

∆fa = H(0)∆xb − j
∂H

∂k

∣∣∣∣
0

∆x′b +

[
H(jk,M)−H(0)− k ∂H

∂k

∣∣∣∣
0

]
∆xb

= D̄0∆xb + D̄1∆x′b + H̃(jk,M)∆xb

(18)
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Figure 3: Example of partial definition of CFD forces.

then lumping all the steady response in the D̄0 and D̄1 matrices that can be corrected without
modifying the higher frequency contribution in H̃ .

As shown in Fig. 2 it is possible to correct the steady forces predicted by the DLM method using
the steady aerodynamic forces obtained using the steady VLM, thus recovering the effects of
aerodynamic twist and camber. An higher level of fidelity can be obtained if the aerodynamic
forces also include CFD force corrections. The aerodynamic matrices F a

0 ,Ka
u ,Ka

c andKa
z can

be directly included in the matrices D̄0 and D̄1 leading to the correction of the low-frequency
behaviour of the aerodynamic forces. An additional term related to the linearization of the
dynamic pressure can be introduced:

∆faU =
d

du

(
1

2
ρU2

)
fa0 (19)

then leading to an additional force coefficient in u

Du = −2fa0 (20)

this coefficient matrix relates the increase in aerodynamic forces due to the variation of flight
speed and is required to properly recover the phugoid mode of the aircraft.

It is also possible to introduce aerodynamic coefficients in the aerodynamic force formulation
as they are traditionally used in the flight mechanics analysis. The aerodynamic coefficients
are used to express the forces and moments in the wind axes (lift L, drag D, side force S, roll
moment L, pitch momentM and yaw momentN ) to the aerodynamic parameters (flight speed
u, angle of attack α, sideslip angle β, roll velocity p, pitch velocity q, yaw velocity r) and their
derivatives.

The symmetry of the aircraft geometry usually lead to a decoupling between the aerodynamic
forces associated with the longitudinal and the latero-directional motion, but the more general
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formulation for the definition of aerodynamic forces using tabulated coefficients is

∆f coefu = q∞S1


CX/u CX/β CX/α CX/p CX/q CX/r
CY/u CY/β CY/α CY/p CY/q CY/r
CZ/u CZ/β CZ/α CZ/p CZ/q CZ/r
Cl/u Cl/β Cl/α Cl/p Cl/q Cl/r
Cm/u Cm/β Cm/α Cm/p Cm/q Cm/r
Cn/u Cn/β Cn/α Cn/p Cn/q Cn/r

S2


u
β
α
p
q
r

+q∞S1



CX/β̇ CX/α̇
CY/β̇ CY/α̇
CZ/β̇ CZ/α̇
Cl/β̇ Cl/α̇
Cm/β̇ Cm/α̇
Cn/β̇ Cn/α̇


S3

[
β̇
α̇

]

(21)
the second matrix has been limited only to the coefficient related to α̇ and β̇ since these are the
most commonly used. In addition to the linearised forces ∆fa the aerodynamic coefficients are
also able to define some portions of the steady aerodynamic forces fa0, in the same way as they
are used to correct the steady aerodynamic force component F a

0 in Eq. (10), using the definition
of aerodynamic forces on the reference state:

f coef0 = q∞S1


CX0

CY 0

CZ0

Cl0
Cm0

Cn0

 (22)

In the equations above S1, S2 and S3 are scaling matrices

S1 = Sref


1

1
1

bref
cref

bref

 (23)

S2 =



1
1

1
bref
V∞ cref

V∞
bref
V∞


S3 =

[
bref
V∞

0

0
cref
V∞

]
(24)

Additional matrices can be defined in order to provide the effect of the control surfaces, for
example for the most common case of aileron, elevator and rudder:

∆f coefδ = q∞S1


CX/δa CX/δe CX/δr
CY/δa CY/δe CY/δr
CZ/δa CZ/δe CZ/δr
Cl/δa Cl/δe Cl/δr
Cm/δa Cm/δe Cm/δr
Cn/δa Cn/δe Cn/δr


δaδe
δr

 (25)

The reference point used for the definition of the aerodynamic moments must be at the origin
of the coordinate system, if the aerodynamic coefficients are defined with respect to a different

9



IFASD-2019-021

point a transformation is required

fJa1

∣∣∣
O

=

[
I 0

rOQ× I

]
fJa1

∣∣∣
Q

(26)

where rOQ is the position of the reference point for the aerodynamic coefficients with respect
to the body reference frame.

In order to insert these coefficients in the steady aerodynamic force matrix it is necessary to
transform them from the wind axes reference frame to body axes, using the transformation
matrix in the reference configuration:

RBA =

cos(α0)cos(β0) −cos(α0)sin(β0) −sin(α0)
sin(β0) cos(β0) 0

sin(α0)cos(β0) −sin(α0)sin(β0) cos(α0)

 (27)

it is also necessary to express the body velocity ∆vb as function of the aerodynamic angles ∆α,
∆β, using the transformation in Eq. (7).

It is possible to have aerodynamic coefficients expressed in the stability reference system, which
originates from a rotation of angle α of the body reference system, so that the ŝ1 versor of the
system is directed as the asymptotic velocity, in this case the rotation matrix includes only the
rotation according to the angle of attack and is expressed as

RBS =

cos(α0) 0 −sin(α0)
0 1 0

sin(α0) 0 cos(α0)

 (28)

The rotation from wind (or stability) reference system to body reference system must be taken
in account in the linearization process, then the forces in body axes fBa can be defined starting
from the forces in wind axes fAa as

fBa = RBAf
A
a0 +RBA∆fAa + ∆RBAf

A
a0

= fBa0 +RBA∆fAa +RBAϕa∆ × fAa0

(29)

then the linearization introduces and additional contribution to the force coefficients in body
axes that depends on the aerodynamic forces in the reference condition in the aerodynamic
frame and on the perturbation in the aerodynamic angles, that are contained in ϕa∆.

4.4 Mode acceleration method
Dynamic analyses are computationally efficient if a reduced basis is used to represent the defor-
mation of the structure. While the use of a reduced basis can lead to good results in the recovery
of internal forces in the structure due to dynamic load conditions, its use for static simulations
can lead to poor results due to the fact that the reduced basis may not be able to fully represent
the static deformation of the structure. For this reason the mode acceleration method is used
to allow a direct comparison of the results obtained with the dynamic model and the analogous
results that can be obtained from a static aeroelastic simulation. The forces can be recovered in
NeoCASS using the mode acceleration method according to the equation:

s = SK−1

[
Fext −MUq̈ + q∞

(
H∗am(k,M∞)q +H∗ac(k,M∞)δc +H∗ag(k,M∞)

vg
V∞

)]
(30)
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where S is a matrix defining the relationship between the nodal displacement and the selected
internal load component, K is the full model stiffness matrix, Fext contains all external forces
applied to the structure, U is the array defining the reduced basis used in dynamic simulations
and relates the nodal displacements u to the amplitude of the reduced basis elements q as u =
Uq. M is the mass matrix of the system and the unsteady aerodynamic forces are expressed by
the matricesH∗am,H∗ac andH∗ag that are defined as a function of the frequency and express the
relationship between the inputs to the aerodynamic system and the nodal forces on the structure.
The allowed aerodynamic inputs are the structural deformations related to the reduced basis q,
the deflection of the aircraft control surfaces δc and the gust velocity vg. The equation for the
recovery of internal loads is defined in frequency domain, thanks to presence of the unsteady
aerodynamic forces. An equivalent formulation in time domain can be obtained if a linear state
space model is used to fit the nodal aerodynamic forces, using the same methodology used for
the fitting of the aerodynamic forces in the motion equations. In order to reduce the dimension
of the aerodynamic system that need to be fitted it is possible to condensate the forces as

HΣ = SK−1
[
H∗am(k,M∞) H∗ac(k,M∞) H∗ag(k,M∞)

]
(31)

the matrixHΣ can then be fitted according to the algorithm described in [18].

5 NONLINEAR RIGID BODY MOTION

In this chapter a formulation of the dynamic equation for a flying aeroelastic vehicle is in-
troduced to increase the accuracy of flight mechanics simulations that include flight control
systems and the structural deformation. The formulation assumes an arbitrary, non linearized
motion of a reference frame associated with the rigid motion of the aircraft. The linearized
structural deformation is then included considering a superposition of modal shapes defining the
displacement and rotation of the structural points with respect to the moving reference frame.
The formulation is derived from that of the modal element implemented in the free multi-body
dynamics software MBDyn [20], specializing it for the analysis of a flying aircraft.

5.1 Kinematics

The position of a point on the structure is given by the composition three different components:

• the position x0 and orientationR0 = R(ϕ0) of a reference frame J ;
• the position r̃ of the point with respect to the reference frame (the initial orientation is

assumed to be zero).
• the displacement ũ and rotation ϕ̃ relative to the reference frame.

the meaning of the various component is displayed in Fig. 4.

Instead of considering the structure as a continuous here a discretized approach will be followed,
where the structure is considered as given by a set of N nodes, each with associated mass,
inertia and mass unbalance. While not physical, this approach is directly related to the finite
element model formulations that will be used for the generation of the matrices required by this
formulation.
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Figure 4: Decomposition of the position of a generic structural point.

The position and rotational velocity of a generic node i can then be expressed as

xi = x0 +R0 (r̃i + ũi) (32)

ωi = ω0 +R0
˙̃ϕi (33)

vi = ẋ = v0 + ω0 ×R0 (r̃i + ũi) +R0
˙̃ui (34)

αi = ω̇i = α0 + ω0 ×R0
˙̃ϕi +R0

¨̃ϕi (35)
ai = ẍ = a0 +α0 ×R0 (r̃i + ũi) + ω0 × ω0 ×R0 (r̃i + ũi) (36)

+ 2ω0 ×R0
˙̃ui +R0

¨̃ui (37)

in Eq. (33) a small value of ϕ̃i was assumed, allowing the identification of the rotational velocity
with the time derivative of the rotation vector associated with the relative rotation of the node
with respect to the body reference frame.

The orientation can be expressed combining the orientation of the body frame with the relative
orientationR(ϕ̃i).

Ri = R0R̃i = R(ϕ0)R(ϕ̃i) (38)

The change in orientation of reference J is not linearized, then the relation between the time
derivative of the rotation vector and the rotational velocity is given by.

ω0 = S(ϕ0)ϕ̇0 (39)

Since the principle of virtual work will be used for the formulation of the equation of motion,
it is necessary to define the virtual variations of the orientation and position of the point i, the
virtual variation of the position is given by

δxi = δx0 +R0δũi +ϕ0δ ×R0 (r̃i + ũi) (40)

The computation of the virtual variation of orientation is more complex and requires to resort
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to the definition of a perturbation of the orientation

θδi× = δRiR
T
i (41)

= δ(R0R̃i)R̃
T
i R

T
0 (42)

= δR0R̃iR̃
T
i R

T
0 +R0δR̃iR̃

T
i R

T
0 (43)

= ϕ0δ ×+R0ϕ̃δi ×RT
0 (44)

= ϕ0δ ×+ (R0ϕ̃δi)× (45)

obtaining then the following expression for the virtual variation of the orientation θδi

θδi = ϕ0δ +R0ϕ̃δi (46)

The portion of the nodal motion coming from the structural deformation is represented using a
superposition of M modal shapes defining its displacement and rotation

ũi =
M∑
j=1

Uijqj = Uiq ϕ̃i =
M∑
j=1

Vijqj = Viq (47)

δũi =
M∑
j=1

Uijδqj ϕ̃δi =
M∑
j=1

Vijδqj (48)

5.2 Inertial forces

It is assumed that each node on the element has a mass mi, a static unbalance si = mi(xCGi −
xi) and an inertia tensor Ji, the inertial forces and moments acting on the single node are then
given by

f ini = miai − si × ωi − ωi × si × ωi (49)

min
i = si × ai + Jiαi + ωi × Jiωi (50)

(51)

where the moments are evaluated with respect to the node position xi.

It is then possible to formulate the expression for the virtual work of the inertia forces acting on
node i

δLini = δxi · f ini + θδi ·min
i (52)

Then, by substituting the expression for the inertia forces from Eq. (51) in Eq. (52)

δLini = δx0 · [miai − si × ωi − ωi × si × ωi]

+ϕ0δ ·
[

(si +miR0(r̃i + ũi))× ai + (Ji −R0(r̃i + ũi)× si×)αi

+ ωi × Jiωi −R0(r̃i + ũi)× ωi × si × ωi
]

+ δũi ·RT
0 [miai − si × ωi − ωi × si × ωi]

+ ϕ̃δi ·RT
0 [si × ai + Jiαi + ωi × Jiωi]

(53)

13
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The total virtual work of inertial forces is given by the sum of all the nodal contributions

δLin =
N∑
i=1

δLini (54)

Before getting an expression for the total inertia forces in the system it is convenient to rotate
all the vector and tensor quantities by the rotation tensorR0, in this way the vectorial equations
already assume a form analogous to the form obtained when expressed in components in the
body frame. The body frame is indeed the preferred reference system for the expression of the
equations of motions since it allows a direct comparison with the formulation traditionally used
in flight mechanics and is the natural choice for the evaluation of aerodynamic forces.

a0 = R0ā0; α0 = R0ᾱ0; ω0 = R0ω̄0; si = s̄i;

Ji = R0JiR
T
0 ; δx0 = R0δx̄0 ϕ0δ = R0ϕ̄0δ

(55)

Equation (52) then assumes the form

δLini = δx̄0 · [miāi − s̄i × ω̄i − ω̄i × s̄i × ω̄i]

+ ϕ̄0δ ·
[

(s̄i +mi(r̃i + ũi))× āi +
(
J̄i − (r̃i + ũi)× s̄i×

)
ᾱi

+ ω̄i × J̄iω̄i − (r̃i + ũi)× ω̄i × s̄i × ω̄i
]

+ δũi · [miāi − s̄i × ω̄i − ω̄i × s̄i × ω̄i]
+ ϕ̃δi ·

[
s̄i × āi + J̄iᾱi + ω̄i × J̄iω̄i

]
(56)

The equations can then be expanded introducing the kinematic relationships described in the
previous section. Since a linearized structural deformation is considered all elements quadratic
in ũi, ˙̃ui, ¨̃ui ϕ̃i, ˙̃ϕi, ¨̃ϕi are neglected. The inertial forces energetically conjugated to the rigid
motion of the body frame J are

f inx = miā0 − (s̄i +mir̃i)× ᾱ0 +mi
¨̃ui − s̄i × ¨̃ϕi −miũi × ᾱ0

− ω̄0 × (s̄i +mir̃i)× ω̄0 − ω̄0 × (miũ)× ω̄0

+ 2ω̄0 × (mi
˙̃ui − s̄i × ˙̃ϕi)

(57)

while the inertial forces energetically conjugated to the change in orientation of the frame J are

f inϕ = (s̄i +mir̃i)× ā0 + [J̄i − r̃i × s̄i ×−s̄i × r̃i ×−mir̃i × r̃i×]ᾱ0

+miũi × ā0 − [(s̄i +mir̃i)× ũi ×+ũi × (s̄i +mir̃i)×]ᾱ0

+ (s̄i +mir̃i)× ¨̃ui + (J̄i − r̃i × s̄i×) ¨̃ϕi

− ω̄0 × [J̄i − r̃i × s̄i ×−s̄i × r̃i ×−mir̃i × r̃i×]ω̄0

− ω̄0 × [(s̄i +mir̃i)× ũi ×+ũi × (s̄i +mir̃i)×]ω̄0

+ [− ˙̃ui × (s̄i +mir̃i)×+ ˙̃ϕi × (J̄i − s̄i × r̃i×)]ω̄0

+ [s̄i × ˙̃ϕi × r̃i ×−r̃i × ˙̃ϕi × s̄i×]ω̄0

+ [−(s̄i +mir̃i)× ˙̃ui ×−(J̄i − r̃i × s̄i×) ˙̃ϕi×]ω̄0

+ ω̄0 × [(s̄i +mir̃i)× ˙̃ui + (J̄i − r̃i × s̄i×) ˙̃ϕi]

(58)
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For the definition of the inertial forces energetically conjugated with the modal coordinates the
modal decomposition of ũi and ϕ̃i is used

f inqk = (UT
ik − V T

ik s̄i)ā0 + [UT
ik(s̄i +mir̃i)×+V T

ik (J̄i − s̄i × r̃i×)]ᾱ0

+
M∑
j=1

[UT
ikmiUij + V T

ik s̄i ×Uij −UT
iks̄iVij + V T

ik J̄iVij]q̈j

+ ω̄T0 [Uik × (s̄i +mir̃i)×−Vik × (J̄i − s̄i × r̃i×)]ω̄0

+ ω̄T0 [−Vik × s̄i × r̃i ×−r̃i × (s̄i × Vik)×]ω̄0

+
M∑
j=1

[−UT
ikmiUij − V T

ik s̄i ×Uij]qj × ᾱ0

+ 2
M∑
j=1

(−UT
ikmiUij ×−V T

ik s̄i ×Uij ×+UT
iks̄i × Vij ×−V T

ik J̄iVij×)q̇jω̄0

+
M∑
j=1

(−2UT
ikVik × s̄i ×+V T

ikVij × J̄i)q̇jω̄0

+ ω̄T0

[ M∑
j=1

(Uik ×miUij ×+Uij × (Vik × s̄i)×)q̇j

]
ω̄0

(59)

The expression in Eqs. (57), (58) and (59) can be simplified if all the terms depending only on
the mass properties of the structure are collected, allowing the definition of the invariants listed
in Eqs. (60) and (61). The invariants are not only useful for obtaining a more compact represen-
tation of the inertial forces, but they can be computed before running the time simulation, thus
reducing the computational cost associated with the solution itself.

I1 =
∑
i

miI (3× 3)

I2 = −
∑
i

s̄i ×+mir̃i× (3× 3)

I3 =
∑
i

miUi − s̄i × Vi (3×M)

I4 =
∑
i

[(s̄i +mir̃i)×Ui + (J̄i − r̃i × s̄i×)Vi] (3×M)

I6 =
∑
i

[UT
i miUi + V T

i s̄i ×Ui −UT
i s̄iVi + V T

i J̄iVi] (M ×M)

I7 =
∑
i

[J̄i − r̃i × s̄i ×−s̄i × r̃i ×−mir̃i × r̃i×] (3× 3)

(60)
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I8j = −
∑
i

(s̄i +mir̃i)×Uij× (3×M × 3)

I12j = −
∑
i

miUij× (3× 3×M)

I13j = −
∑
i

s̄i ×+Vij × r̃i× (3× 3×M)

I14j =
∑
i

[Uij × (s̄i +mir̃i)×−Vij × (J̄i − s̄i × r̃i×)] (3× 3×M)

I15j =
∑
i

[−Vij × s̄i × r̃i ×−r̃i × (s̄i × Vij)×] (3× 3×M)

I16j =
∑
i

(−2UT
ijVij × s̄i ×+V T

ij Vil × J̄i) (M × 3×M)

I17j =
∑
i

[−UT
ijmiUil − V T

ij s̄i ×Uil] (M × 3×M)

I18j = −
∑
i

(−UT
ijmiUil ×−V T

ij s̄i ×Uil ×+UT
ij s̄i × Vil ×−V T

ij J̄iVil×) (M × 3×M)

I19j =
∑
i

(Uij ×miUil ×+Uil × (Vij × s̄i)×) (M × 3×M)

(61)

It is then possible to formulate the inertial forces using the definition of the invariants

f inx = I1ā0 + I2ᾱ0 + I3q̈ +
∑
j

I12jqjᾱ0 + ω̄0 × I2ω̄0 + ω̄0 ×
∑
j

I12jqjω̄0

f inϕ = IT2 ā0 + I7ᾱ0 +
∑
j

IT12j
qjā0 −

∑
j

(I8jqj + IT8jqj)ᾱ0 + I4q̈ − ω̄0 × I7ω̄0

− ω̄0 ×
∑
j

(I8jqj + IT8jqj)ω̄0 +
[∑

j

(I13jqj + IT13j
q̇j)−

∑
j

(I14jqj + IT14j
q̇j)
]
ω̄0

+ ω̄0 ×
∑
j

(I16j q̇j)

f inqk = IT3 ā0 + IT4 ᾱ0 + I6q̈l + ω̄T0 [I14k + I15k ]ω̄0 +
∑
j

(I17jqj)ᾱ0

+
[
− 2

∑
j

(I18j q̇j) +
∑
j

I18j q̇j

]
ω̄0 +

M∑
l=1

(−2UT
ijVij × s̄i ×+V T

ij Vil × J̄i)q̇lω̄0

+ ω̄T0

[∑
j

I19jkqj

]
ω̄0

(62)

Some decoupling in the expression of the inertial forces could be obtained by selecting a mean
axes formulation [19, 21], that is the modal shapes are defined in order to be orthogonal to the
rigid modes with respect to the system mass matrix. In this way it would result

I3 = 0 I4 = 0 (63)

but since this simplification brings a small reduction of the computational cost with respect
to the general case it was not included as a requirement of this formulation. Modal shapes
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obtained from a free structure, however, would naturally be formulated in mean axes, leading
to the satisfaction of conditions in Eq. (63).

The equations were so far considered as vectorial equation that are not related to any choice of a
reference system used to express them. They are now formulated considering the component in
the body reference J and thanks to the transformation in Eq. (55) their expression is not affected
by this operation, as can be verified by noticing that

āI0 = aJ0 ω̄I0 = ωJ0 ᾱI0 = αJ0 (64)

where the superscripts J and I indicate the components in the references J and I respectively.

It is also convenient to substitute the acceleration of the body frame with the time derivative of
the component of the velocity with respect to the body frame, this substitution can be done by
using the Poisson formula

aJ0 = v̇J0 + ωJ0 × vJ0 (65)

The inertial forces can be expressed in terms of vJ0 , v̇J0 , ωJ0 , ω̇J0 .

F in = (M +Mq(q))

v̇J0ω̇J0
q̈

+ F in
0

(
vJ0 ,ω

J
0 ,ω

J
0

)
+ F in

q

(
q,vJ0 ,ω

J
0 ,ω

J
0

)
+ F in

q̇

(
q̇,ωJ0

)

= (M +Mq(q))

v̇J0ω̇J0
q̈

+ F in
∆

(
q, q̇,vJ0 ,ω

J
0

)
(66)

5.3 Weight force

The nodal force and moment associated to gravity vector g and acting on the node i are given
by

f gi = mig

mg
i = si × g

(67)

The expression of the virtual work is then

δLg =
N∑
i=1

δxi · f gi + θδi ·mg
i

=
N∑
i=1

[
δx0 ·mig +ϕ0δ ·

[
(si +miR0r̃i)× g +miR0ũi × g

]
+ δũi ·miR

T
0 g + ϕ̃δ · s̄i ×RT

0 g

] (68)

Leading to the following definition of the generalized forces

F g =

I1

IT2
IT3

RT
0 g

I +

 0∑
j I

T
12j
qj

0

RT
0 g

I (69)
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5.4 Dynamic equations
The formulation of the inertia and weight forces can be completed by introducing the aerody-
namic forces. One possibility of introduction of aerodynamic forces consists in the use of a
time domain state-space formulation in body axes, as described in the previous chapter, which
is however subjected to limitations of small perturbations and subsonic flow. The complete
equations of motion can then be formulated including all the inertial, aerodynamic and weight
contributions.

6 RESULTS
The presented methodologies are applied here to a model of large transport aircraft, sized using
the NeoCASS software using the geometrical data of the B747 aircraft. The aeroelastic model
is presented in Fig. 5.

Figure 5: Aeroelastic model

Aerodynamic forces are computed for the model using the VLM and DLM methods, and then
they are used for the generation of the state-space model of the aircraft. The aerodynamic forces
obtained from the DLM and VLM usually do not allow for the accurate prediction of the low
frequency flight mechanics modes of the aircraft. The aerodynamic forces can then be corrected
using aerodynamic coefficients in order to provide a model with the expected characteristics.
In the present applications the aerodynamic coefficients for a landing configuration were ob-
tained from reference [22] and directly introduced in the aeroelastic model, leading to the flight
mechanics modes in Fig. 6. Where also the poles of the system computed directly from the
linearized equation of motion of the rigid body aircraft are displayed.

Three different methods were used to compute the flight mechanics modes from the aeroelastic
system. In the first case the modes are obtained directly from the aeroelastic state-space model
in body axes, without aerodynamic corrections. It can be seen that the high frequency short
period and dutch roll modes are recovered with some error in frequency, while the phugoid
mode is not recovered, due to the absence of the aerodynamic load in the reference configuration
in the DLM formulation. The introduction of VLM matrices to correct the steady portion of
the aerodynamic forces in this case does not lead to a significant improvement of the results,
this can originate from the different aerodynamic configuration between the NeoCASS model
and the actual aircraft in landing configuration that is used as a reference for the aerodynamic
coefficients. In addition also the absence of the fuselage model can lead to some inaccuracy
in the predicted coefficients. It can be seen, however, that it is now possible to obtain the
short period mode. The last analysis is performed by directly introducing the aerodynamic

18



IFASD-2019-021

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Real( ) [rad/s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
a
g
(

) 
[r

a
d
/s

]

Body

Body - DLM/VLM

Body - corrected

Analytic - lon

Analytic - lat

Figure 6: Flight mechanics poles of the B747 aircraft obtained with the corrected aeroelastic model compared with
the analytical values.

coefficients in the model equations, in this case the computed frequencies and damping match
the values predicted from the longitudinal and latero-directional equations of motion.

A gust response simulation is then performed to evaluate the effect of the nonlinear simulation
on the dynamic response. A longitudinal gust with frequency 0.5 Hz and amplitude 20 m/s is
applied with the aircraft flying at sea level with Mach numberM = 0.52. The simulation results
are summarized in Fig. 7 where the wing root torsional and bending moment are presented,
along with the vertical velocity and the pitch rate.

It can be seen that the linear and nonlinear responses are very similar, but the low frequency
body motion is behaviour is modified by the introduction of the nonlinear dynamics, as can be
seen from the time history of the pitch rate in Fig. 7(d). The different body motion also lead to
different internal forces in the second portion of the time response, after the first peak.

7 CONCLUSIONS

The accuracy in the prediction of aircraft motion from aeroelastic models can be increased by
defining a unified formulation able to recover both the structural response and the dynamics of
the rigid motion. This unified formulation can be expressed in a linearized way or considering a
full nonlinear rigid body motion. Both formulations can be easily applied to low-fidelity models
such the ones generated by NeoCASS after the preliminary sizing. In most cases the improve-
ment in the recovery of structural loads that can be obtained from the unified formulation is low,
as expected by the fact that the corrections operate mostly on the low-frequency rigid modes.
It is however useful to have a unified formulation when the effect of automatic control systems
need to be evaluated since it allows the proper recovery.
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