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This paper presents a novel stochastic Model Predictive Control algorithm for linear systems characterized by multiplicative and 
possibly unbounded model uncertainty. Probabilistic constraints on the states and inputs are considered, and a quadratic cost 
function is minimized. The stochastic control problem, and in particular the probabilistic constraints, are reformulated in 
deterministic terms by means of the Cantelli inequality, so that the on-line computational burden of the algorithm is similar to 
the one of a standard MPC method. The properties of the algorithm, namely the recursive feasibility and the pointwise 
convergence of the state, are proven by suitably selecting the terminal cost and the constraints on the mean and the variance of 
the state at the end of the prediction horizon, and by considering as additional optimization variables also the mean and the 
covariance of the state at the beginning of the prediction horizon. An extension to deal with the case of expectation, rather than 
probabilistic, constraints is reported. The numerical issues related to the off-line selection of the algorithm’s parameters and its 
on-line implementation are discussed. Simulation results referred to a system with unbounded uncertainty are shown to 
compare the performances achievable with probabilistic and expectation constraints.

1. Introduction

The development of Stochastic Model Predictive Control
(S-MPC) algorithms for systems subject to random noises and
probabilistic constraints on the states and the inputs has recently
stimulatedmany research efforts. Twomain approaches have been

of a nominal MPC, often at the price of some degree of conserva-
tiveness and of a cumbersome off-line design phase. In scenario-
based methods, a properly chosen number of noise realizations is
randomly generated at any time instant to compute the optimal so-
lution with a given level of accuracy. Notably, scenario-based algo-
rithms can deal with generic systems, cost functions, and state and
N
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followed so far for addressing optimization problems with prob-
abilistic constraints: analytical methods, see for instance Cannon,
Kouvaritakis, andWu (2009), Farina, Giulioni,Magni, and Scattolini
(2015), Geletu, Klöppel, Hoffmann, and Li (2015), Nemirovski and
Shapiro (2007) and Primbs and Sung (2009) and randomized, or
scenario, techniques, e.g., Blackmore, Ono, Bektassov, andWilliams
(2010) and Calafiore and Fagiano (2013). In analytical methods the
optimization problem, i.e. the cost function to be minimized and
the probabilistic constraints on the state and input variables, are
reformulated in deterministic terms, so that the resulting algo-
rithm to be implemented on-line is of complexity similar to that
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control constraints, but theymay require a heavier on-line compu-
tational load than analytical methods.

A typical assumption in S-MPC methods based on analytical
reformulations is that the system under control is linear and is
affected by additive or multiplicative uncertainties, see for in-
stance Cannon, Cheng, Kouvaritakis, and Raković (2012), Can-
non et al. (2009), Evans, Cannon, and Kouvaritakis (2012), Farina,
Giulioni, Magni, and Scattolini (2013), Farina et al. (2015), Paulson,
Streif, andMesbah (2015) and Primbs and Sung (2009). For systems
with additive and unbounded noise, a state feedback algorithm
has recently been proposed in Farina et al. (2013), while its exten-
sion to the output feedback case has been reported in Farina et al.
(2015). The method is based on the reformulation of the state and
control constraints by means of the Cantelli–Chebyshev inequal-
ity and on considering at any time instant the current value of the
mean and of the covariance of the state as additional optimization
variables to be properly selected. This approach is more conserva-
tive than the analytical algorithms discussed, e.g., in Geletu et al.
(2015) and Nemirovski and Shapiro (2007) for coping with chance
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constraints; however, it has been selected since it allows to obtain
an explicit and linear expression of the reformulated constraints,
which is desirable in many engineering problems since it simpli-
fies the problem from the numerical perspective. Notably, recur-
sive feasibility is guaranteed also for unbounded disturbances and
mean square convergence of the state. These valuable properties
motivate the extension of this approach to the case of multiplica-
tive noises, which can represent model parametric uncertainties
of the system, see for example Primbs and Sung (2009), and are
popular in many application fields, such as financial optimization,
see Primbs (2007) and Shin, Lee, and Primbs (2010). For these rea-
sons, in this paper a new S-MPC algorithm is developed for systems
characterized bymultiplicative andpossibly unboundedmodel un-
certainty, probabilistic constraints on the states and inputs, and a
quadratic cost function. The recursive feasibility of themethod and
the pointwise convergence of the state are proven by suitably se-
lecting the terminal cost and the constraints on the mean and the
variance of the state at the end of the prediction horizon. Expecta-
tion constraints, rather than probabilistic ones, are also considered,
as in Primbs and Sung (2009), and the feasibility and convergence
properties of the proposed S-MPC algorithm are extended to this
case.

One of the main differences with respect to state-of-the-art
algorithms is mostly related to the recursive feasibility issue.
More specifically, in Primbs and Sung (2009) (which includes
expectation constraints), when the MPC optimization problem
results infeasible, an alternative control policy is adopted. A similar
approach is adopted in Cannon et al. (2009) (which considers
probabilistic constraints), where two alternative control policies
must be adopted, dependingwhether the state of the system lies in
the so-called invariant sets with probability p (where probabilistic
constraints are guaranteed to be verified) or not. Finally, in Evans
et al. (2012), the idea of stochastic tubes (Cannon et al., 2012)
is adopted, under the assumption that the noise has bounded
support.

The paper is organized as follows. In Section 2 the system
to be controlled is introduced together with the considered
probabilistic constraints. Section 3 is devoted to define the
structure of the control law, to transform the state and control
constraints in deterministic terms by means of the Cantelli
inequality, to formulate the optimization problem, including the
state constraints to be considered at the beginning and at the end of
the prediction horizon, and to present themain convergence result.
In Section 4 the numerical issues related to the off-line design
and the on-line implementation are discussed, and numerical
algorithms are provided to compute themain design parameters as
the solutions of suitable linearmatrix inequalities (LMI’s). Section 5
is devoted to extend the previous results to the case of expectation
constraints, while in Section 6 a simulation example is reported
and commented. Finally, a section of conclusions closes the paper
and suggests hints for future research. To improve readability, the
proofs of the main results are reported in an Appendix.

2. The system

We consider the following discrete-time linear system

xt+1 = Axt + But +

q
j=1

(Cjxt + Djut)w
j
t (1)

where xt ∈ Rn is the state, ut ∈ Rm is the input and w
j
t ∈ R, for

all j = 1, . . . , q, is a zero-mean white noise with unitary variance
and possibly unbounded support. Furthermore, we assume that
E{w

j
tw

i
k} = 0 for all t, k and for all i ≠ j.

Perfect state information is assumed, together with the
stabilizability of the pair (A, B). We also assume that the state
and input variables are subject to the following probabilistic
constraints, for all t

P {bTr xt ≥ 1} ≤ prx r = 1, . . . , nr (2a)

P {cTs ut ≥ 1} ≤ psu s = 1, . . . , ns (2b)

where P (φ) denotes the probabilities of φ, br , cs are constant
vectors, and px, pu are design parameters.

3. MPC algorithm: formulation and properties

According to the standard procedure ofMPC, at any time instant
t a future prediction horizon of length N is considered and a
suitable optimization problem is solved. The main ingredients of
the optimization problem are now introduced.

3.1. Control law

Let x̄t = E{xt} and consider the state-feedback control law, for
k ≥ t ,

uk = ūk + Kk(xk − x̄k) (3)

where the input sequence ūk and the gain sequence Kk, k =

t, t + 1, . . . , are defined (see later for details) as the result of
a suitable optimization problem solved at time t (and therefore
independently of the sequences w

j
t , w

j
t+1, . . ., for all j = 1, . . . , q).

In view of the fact that w
j
k is a zero-mean white noise, x̄k, for

k > t , evolves according to

x̄k+1 = Ax̄k + Būk. (4)

Define δxk = xk − x̄k and Xk = var{δxk} = E{δxkδxTk }. Similarly
to Primbs and Sung (2009), it is possible to show that Xk evolves
according to the equation

Xk+1 = (A + BKk)Xk(A + BKk)
T

+

q
j=1

(Cj + DjKk)Xk(Cj + DjKk)
T

+

q
j=1

(Cjx̄k + Djūk)(Cjx̄k + Djūk)
T . (5)

The variance of the input is Uk = var{uk − ūk} = KkXkK T
k .

3.2. Constraints

In this section we use the Cantelli inequality (Marshall & Olkin,
1960) to cast the probabilistic constraints (2) as deterministic
ones, i.e., in terms of variables whose evolution is deterministically
defined.

Lemma 1 (Cantelli Inequality). Let y be a (scalar) random variable
with mean ȳ and variance Y . Then for every R ∋ α ≥ 0 it holds that
P (y ≥ y + α) ≤

Y
Y+α2 . �

As in e.g. Farina et al. (2013), constraints (2) are verified, for all time
instants k ≥ t , if

bTr x̄k ≤ 1 −


bTr Xkbr f (prx) r = 1, . . . , nr (6a)

cTs ūk ≤ 1 −


cTs Ukcsf (psu) s = 1, . . . , ns (6b)

where f (p) =
√

(1 − p)/p, regardless of the specific distribution
of the noise w

j
k.



3.3. Cost function

The considered cost function is

J = E


t+N−1
k=t

∥xk∥2
Q + ∥uk∥

2
R + ∥xt+N∥

2
P


(7)

where Q and R are positive definite, symmetric matrices of
appropriate size and P is the solution to the algebraic equation

(A + BK̄)TP(A + BK̄) + Q + K̄ TRK̄

+

q
j=1

(Cj + DjK̄)TP(Cj + DjK̄) − P = 0 (8)

where K̄ is a suitable stabilizing gain for the pair (A, B). As also
discussed in Cannon et al. (2009), the computation of suitable
matrices P and K̄ , if possible, can be carried out using linear
matrix inequalities, for more details see Section 4. Using standard
procedures, we can write J = Jm + Jv , where

Jm =

t+N−1
k=t

∥x̄k∥2
Q + ∥ūk∥

2
R + ∥x̄t+N∥

2
P

Jv =

t+N−1
k=t

tr{(Q + K T
k RKk)Xk} + tr{PXt+N}.

Note that Jm depends on ūt...t+N−1 and on the initial condition of
the mean value x̄t , while Jv depends on ūt...t+N−1, Kt...t+N−1, and
on the initial conditions of x̄t and Xt , since the evolution of Xk in (5)
depends also on x̄k and ūk. As later specified, the pair (x̄t , Xt)will be
also considered as an argument of the MPC optimization problem.

3.4. Terminal constraints

As usual in MPC with guaranteed stability (see e.g. Mayne,
Rawlings, Rao, & Scokaert, 2000) and consistently with Farina
et al. (2013), constraints are enforced at the end of the prediction
horizon on both the mean value x̄t+N and the variance Xt+N , i.e.,

x̄t+N ∈ X̄f (9)

Xt+N ≤ X̄ . (10)

The set X̄f , containing the origin, is a positively invariant set for the
system (4), with the control law ūk = K̄ x̄k, see Kolmanovsky and
Gilbert (1998), that is

(A + BK̄)x̄ ∈ X̄f ∀x̄ ∈ X̄f (11)

while X̄ verifies the Lyapunov-type equation

X̄ = (A + BK̄)X̄(A + BK̄)T

+

q
j=1

(Cj + DjK̄)X̄(Cj + DjK̄)T + W̄ (12)

where W̄ =
q

j=1(Cj + DjK̄)W (Cj + DjK̄)T and W is an arbitrary
matrix, defined in such a way that W > x̄x̄T for all x̄ ∈ X̄f . The
following must also hold for all x̄ ∈ X̄f .

bTr x̄ ≤ 1 −


bTr X̄br f (p

r
x) (13a)

cTs K̄ x̄ ≤ 1 −


cTs K̄ X̄ K̄ T csf (psu). (13b)

Note that, provided that Eq. (12) has a solution for some W̄ > 0,
the key requirement here is the definition of a sufficiently small X̄f .
In fact, the smaller X̄f , the smallerW , the smaller W̄ and hence the
smaller X̄ resulting from (12). In view of this, it is always possible
to define X̄f in such a way that inequalities (13) are verified.
3.5. Initial conditions for the mean and the covariance

As in Farina et al. (2015), for feasibility purposes the initial
conditions (x̄t , Xt) at the current time instant must also be
accounted for as free variables in the optimization problem. More
specifically, the following alternative strategies can be selected.
– Strategy 1—Reset of the initial state: in the MPC optimization
problem set x̄t|t = xt , Xt|t = 0
– Strategy2—Prediction: in theMPCoptimization problemset x̄t|t =

x̄t|t−1, Xt|t = Xt|t−1.
This will result in including in the MPC optimization problem

the following constraint
(x̄t , Xt) ∈ {(xt , 0), (x̄t|t−1, Xt|t−1)}. (14)

3.6. MPC problem

The Stochastic MPC problem can now be stated:
min

ūt...t+N−1,Kt...t+N−1,(x̄t ,Xt )
J (15)

subject to the dynamics (4) and (5), to the constraints (6) for all
k = t, . . . , t + N − 1, to the initial constraint (14), and to the
terminal constraints (9), (10). �

Denoting by ūt...t+N−1|t = {ūt|t , . . . , ūt+N−1|t}, Kt...t+N−1|t =

{Kt|t , . . . , Kt+N−1|t}, and (x̄t|t , Xt|t ) the optimal solution of the S-
MPC problem, and according to the receding horizon principle,
the feedback control law actually used is, consistently with (3),
ut = ūt|t + Kt|t(xt − x̄t|t).

The recursive feasibility and convergence properties of the
resulting control system are stated in the following result.

Theorem 1. If, at time t = 0, the S-MPC problem admits a solution,
the optimization problem is recursively feasible and E{∥xt∥2

Q } →

0 as t → +∞. Furthermore, the state and input probabilistic
constraints (2) are verified for all t ≥ 0.

Remark 1. As discussed, the fact that the initial conditions for
mean and variance are accounted for, in our approach, as free vari-
ables (where only two different solutions are possible) is funda-
mental to guarantee recursive feasibility of our scheme. This can
be done at the price of suitably characterizing the probabilistic
constraints (2). In the state-feedback approach presented in Can-
non et al. (2009), for example, conditional probability constraints,
e.g., of type P {bTr xt+k ≥ 1|xt} ≤ prx are implicitly enforced in
the MPC optimization problem formulated at time step t , when
feasible. In view of the receding horizon principle, this may re-
sult in P {bTr xt+1 ≥ 1|xt} ≤ prx for all t , meaning that the 1-step
forward conditional probability constraint is verified at each time
step. In our paper, however, the two possible initial conditions are
stated in (14). It is important to remark, indeed, that the two pos-
sible initializations imply different probability definitions. Specif-
ically, if the reset Strategy 1 is adopted at time t , we implicitly
enforce P {bTr xt+1 ≥ 1|xt} ≤ prx while, if the prediction Strategy
2 is adopted, we verify P {bTr xt+1 ≥ 1|xt−τ } ≤ prx, where t − τ
is the most recent past time step when the reset strategy has been
adopted. Finally note that our approach allows to enforceP {bTr xt ≥

1|x0} ≤ prx, i.e., the fulfillment of the ‘‘non-conditional’’ expectation
constraint, by disregarding, at each time step (even if feasible and
optimal), the reset strategy, i.e., by setting (x̄t , Xt) = (x̄t|t−1, Xt|t−1)
for all t ≥ 0. This would lead to amore straightforward characteri-
zation of the probabilistic properties of the proposed approach, but
at the price of a reduced optimality of the results. Importantly, the
latter choice would not compromise the recursive feasibility and
convergence results provided by Theorem 1.

Remark 2. To increase the initial feasibility region, the state
constraints (6a) can be enforced also for a different horizon, i.e., for
i = t + 1, . . . , t + N − 1. All guaranteed results can be obtained
also in this case.



4. Numerical issues and simplified formulations

In this section the design and implementation issues of the
proposed control scheme are discussed.

4.1. Offline design

The main design problem consists in the computation of
matrices K̄ , P , and X̄ such that, at the same time, Eqs. (8) and (12)
are verified.

4.1.1. Solution with LMI’s
Both (8) and (12) can be solved by defining suitable LMI’s.

– Concerning (8), if we define Π = P−1 and S = K̄P−1, we can
cast the corresponding inequality P − {(A + BK̄)TP(A + BK̄) +q

j=1(Cj +DjK̄)TP(Cj +DjK̄)+Q + K̄ TRK̄} ≥ 0 as the following
LMI

Π

∗ ∗ . . . ∗ ∗ ∗



AΠ + BS
C1Π + D1S

...
CqΠ + DqS

Π

S





Π 0 . . . 0 0 0
0 Π . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . Π 0 0
0 0 . . . 0 Q−1 0
0 0 . . . 0 0 R−1




≥ 0 (16)

- regarding (12), it can be cast as an LMI by setting W = X̄; note
that the latter can be done if X̄ satisfies X̄ > w̄I , where w̄ is
defined in such a way that w̄I > x̄x̄T for all x̄ ∈ X̄f , since W is
arbitrary. If we define Y = K̄ X̄ , we can cast the corresponding
inequality X̄ − {(A + BK̄)X̄(A + BK̄)T +

q
j=1(Cj + DjK̄)X̄(Cj +

DjK̄)T + W̄ } ≥ 0 as the following pair of LMI’s

X̄

∗ ∗ . . . ∗ ∗




(AX̄ + BY )T

(C1X̄ + D1Y )T

...

(CqX̄ + DqY )T



X̄ 0 . . . 0

0
1
2
X̄ . . . 0

...
...

. . .
...

0 0 . . .
1
2
X̄




≥ 0


X̄ I

I
1
w̄

I


≥ 0.

(17)

A problem arises when a unique LMI problem is set, aiming to
computeΠ , X̄ , and K̄ satisfying both (16) and (17) at the same time
with the additional constraint that

SΠ−1
= Y X̄−1. (18)

In fact, (18) cannot be cast as an LMI and would destroy
the convexity of the resulting problem. A solution (although
conservative) to this issue consists in setting Π = X̄ and S = Y
by just replacing Π and S in (16) with X̄ and Y .

4.1.2. Solution using small gain arguments
An alternative solution, for the computation of matrices P and

X̄ satisfying (8) and (12), respectively, can be found thanks to the
following result.
Proposition 1. If (a) there exists a matrix K̄ such that

µ2

1 − λ2

q
j=1

∥Cj + DjK̄∥
2 < 1 (19)

where µ > 0 and λ ∈ [0, 1) are the positive scalars defined in
such a way that ∥(A + BK̄)k∥ ≤ µλk, (b) we set P(0) = X̄(0) =

0, and (c) we define P(i), X̄(i) according to the following iterative
equations

P(i + 1) = (A + BK̄)TP(i)(A + BK̄)

+

q
j=1

(Cj + DjK̄)TP(i)(Cj + DjK̄) + Q + K̄ TRK̄ (20a)

X̄(i + 1) = (A + BK̄)X̄(i)(A + BK̄)T

+

q
j=1

(Cj + DjK̄)X̄(i)(Cj + DjK̄)T + W̄ (20b)

then P(i) → P, X̄(i) → X̄ as i → ∞, where P and X̄ verify (8) and
(12), respectively.

Proposition 1 provides a constructive method for designing
matrices P and X̄ , provided that a suitable gain has been computed,
satisfying (19). The problem of computing K̄ could be addressed
by solving the following nonlinear optimization problem: minK̄ γ ,
subject to (i) ρ(A + BK̄) < 1, (ii) µ2

1−λ2

q
j=1 ∥Cj + DjK̄∥

2
≤ γ ,

(iii) γ < 1, where ρ(A + BK̄) is the spectral radius of A + BK̄ .

4.2. Online implementation

In this section we discuss how to enhance the numerical
feasibility of the online implementation of the algorithm, focusing
in particular on the optimization problem (15). Similarly to Primbs
and Sung (2009), it is possible to show that the update Eq. (5) can
be reformulated as a suitable LMI. In fact, defining Yk = KkXk we
can write

Xk+1

∗ ∗ . . . ∗ ∗ . . . ∗




(AXk + BYk)
T

(C1Xk + D1Yk)
T

...

(CqXk + DqYk)
T

(C1x̄k + D1ūk)
T

...

(Cqx̄k + Dqūk)
T





Xk 0 . . . 0 0 . . . 0
0 Xk . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . Xk 0 . . . 0
0 0 . . . 0 I . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 0 0 . . . I




≥ 0. (21)

The constraints (6) are non linear in the optimization variables Uk
and Xk, compromising the simplicity of the optimization problem
to be solved online. Since we are interested in the computational
advantages of the linear constraints, similarly to Farina et al. (2013)
linear approximations of (6) can be used. More specifically, the
inequalities in (6) are verified if the following are satisfied, for
r = 1, . . . , nr , s = 1, . . . , ns.

bTr x̄k ≤ (1 − 0.5ε) −
1
2ε

bTr Xkbr f (prx)
2 (22a)

cTs ūk ≤ (1 − 0.5ε) −
1
2ε

cTs Ukcsf (psu)
2 (22b)

where ε ∈ (0, 1]. Therefore, linearity is preserved if constraints (6)
are replaced by (22). This implies that also the conditions (13)must



be replaced by the following ones.

bTr x̄ ≤ (1 − 0.5ε) −
1
2ε

bTr X̄br f (p
r
x)

2 (23a)

cTs K̄ x̄ ≤ (1 − 0.5ε) −
1
2ε

cTs K̄ X̄ K̄
T csf (psu)

2. (23b)

Finally, note that, similarly to Farina et al. (2015), the problem can
be simplified, from the numerical side, by using constant control
gain Kk = K̄ for all k. This does not compromise the recursive
feasibility and the convergence properties of the control scheme,
but significantly reduces the number of degrees of freedom
of the control scheme, and consequently the corresponding
computational load.

5. Dealing with expectation constraints

In Primbs and Sung (2009) expectation constraints are used
instead of probabilistic ones. In line with this, in this paper we
consider linear expectation constraints of the type

E{bTr xk} ≤ 1 r = 1, . . . , nr (24a)

E{cTs uk} ≤ 1 s = 1, . . . , ns. (24b)

Recalling that E{xk} = x̄k, E{uk} = ūk, we rewrite (24) as

bTr x̄k ≤ 1 r = 1, . . . , nr (25a)

cTs ūk ≤ 1 s = 1, . . . , ns. (25b)

From the computational perspective, the advantages of (25) with
respect to the chance constraints are manifold. For example, (25)
is linear with respect to the optimization variables, and there is
no need of a further linearization procedure as in (23) to cast the
overall constraints as LMI’s. Secondly, since the variances Xk and
Uk do not appear in (25), for recursive feasibility we do not need to
define a terminal region for Xt+N . This leads to a less conservative
optimization problem, makes the terminal region X̄f wider and,
even more interestingly, makes it unnecessary to compute X̄ in
(12). In view of this the offline design phase can be performed
in a rather standard form, requiring just to compute the solution
to the LMI (16) and allowing to discard the inequalities (17).
Overall, the Stochastic MPC problem in this case (denoted avS-
MPC) corresponds to

min
ūt...t+N−1,Kt...t+N−1,(x̄t ,Xt )

J (26)

subject to the dynamics (4) and (5), to the constraints (25) for
all k = t, . . . , t + N − 1, to the initial constraint (14), and to
the terminal constraint (9). The set X̄f is a positively invariant set
for the system (4), with the control law ūk = K̄ x̄k, such that for
all x̄ ∈ X̄f , bTr x̄ ≤ 1, cTs K̄ x̄ ≤ 1, for all r = 1, . . . , nr , s =

1, . . . , ns. Recursive feasibility and convergence of the resulting
control system are stated similarly to Theorem 1.

Corollary 1. If, at time t = 0, the avS-MPC problem admits a
solution, the optimization problem (26) is recursively feasible and
E{∥xt∥2

Q } → 0 as t → +∞. Furthermore, the state and input
expectation constraints (24) are verified for all t ≥ 0.

Note that similar considerations to those reported in Remark 1
apply when dealing with expectation constraints of type (24).

6. Example

We consider the example illustrated in Primbs and Sung
(2009). More specifically, the system (1) is characterized by A =
1.02 −0.1
0.1 0.98


, B =


0.1 0
0.05 0.01


, C1 =


0.04 0
0 0.04


, D1 =
10
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Fig. 1. Feasibility and terminal sets (delimitedwith solid lines) obtained for various
values of parameter ε ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The dashed line denotes the
constraint bT x ≤ 1.
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Fig. 2. Feasibility and terminal sets (delimitedwith solid lines) obtained for various
values of the parameter ε ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Zooms of four different areas
of Fig. 1. The dashed line denotes the constraint bT x ≤ 1.

0.04 0
−0.04 0.008


. The disturbance is w1

t ∼ N (0, 1). The weighting
matrices are Q = diag(2, 1) and R = diag(5, 20). We consider a
single constraint on the state variableswith bT =


−2 1


/2.3. In

the remainder of the section two cases are considered, i.e. proba-
bilistic constraints of type (2a) with p = 0.1, and expectation con-
straints of type (24a).

6.1. Feasibility sets in case of probabilistic constraint

The first set of simulation tests (see Figs. 1 and 2) is devoted
to evaluating the size of the feasibility sets resulting from the
application of the described control scheme, with different values
of the arbitrary parameter ε in (22a). Indeed, we consider ε ∈

{0.1, 0.3, 0.5, 0.7, 0.9}. As illustrated in Figs. 1 and 2, we cannot
derive a clear rule on how to choose the parameter ε in order to
enlarge the feasibility set, as it is apparent from the comparison of
the top-right and of the bottom-right panels of Fig. 2. Apparently,
an acceptable compromise is to take values of ε in the range
[0.3, 0.7]. It is worth mentioning that, in the case of expectation
constraints the feasibility region corresponds to the set of initial
conditions such that bT x0 ≤ 1.



Fig. 3. Probabilistic constraints: results of the Monte Carlo simulation campaign,
consisting of 900 runs for each initial condition, with t ∈ [0, 40] and different noise
realizations. Left panels: nominal trajectories x̄t ; right panels: real trajectories xt .
The blue dashed line denotes the constraint bT x ≤ 1. Initial conditions: (i) x0 =

[−0.1, 1.2]T (upper panels); (ii) x0 = [−0.1, 1.3]T (middle panels); (iii) x0 =

[−0.1, 1.4]T (lower panels).

Fig. 4. Expectation constraints: results of the Monte Carlo simulation campaign,
consisting of 900 runs for each initial condition, with t ∈ [0, 40] and different noise
realizations. Left panels: nominal trajectories x̄t ; right panels: real trajectories xt .
The blue dashed line denotes the constraint bT x ≤ 1. Initial conditions: (i) x0 =

[−0.1, 1.2]T (upper panels); (ii) x0 = [−0.1, 1.3]T (middle panels); (iii) x0 =

[−0.1, 1.4]T (lower panels).

6.2. Trajectories for probabilistic and expectation constraints

In this section we show the results of a number of Monte Carlo
simulation campaigns, each consisting of 900 runs of the closed-
loop controlled system. We want to test the proposed control
scheme where we use both probabilistic constraints of type (22a)
with p = 0.1 and ε = 0.5 and expectation constraints of
type (25a). For comparison with Primbs and Sung (2009), we
consider different initial conditions, feasible for both approaches,
i.e., (i) x0 =


−0.1 1.2

T ; (ii) x0 =

−0.1 1.3

T ; (iii) x0 =
−0.1 1.4

T . In particular, Figs. 3 and 4 show the behavior of the
nominal trajectories x̄t and of the real ones xt for all simulated
realizations in case of probabilistic and expectation constraints,
respectively.

A final analysis has been devoted to the comparison of
the different approaches stemming from different initialization
Fig. 5. Average cost function over 900 Monte Carlo realizations for each initial
condition,with t ∈ [0, 15]. The left panels are relative to the casewhenprobabilistic
constraints are enforced, see Fig. 3, while the right panels are relative to the case
when expectation constraints are enforced, see Fig. 4. Solid lines: optimal cost;
dashed lines: cost in case the initialization x̄t|t = x̄t|t−1 is adopted at each time
instant, t > 1. Initial conditions: (i) x0 = [−0.1, 1.2]T (upper panels); (ii) x0 =

[−0.1, 1.3]T (middle panels); (iii) x0 = [−0.1, 1.4]T (lower panels).

strategies. More specifically, we have carried out Monte Carlo
simulation tests in three different cases, i.e., (i) in case (14) is
imposed; (ii) in case it is set x̄t|t = x̄t|t−1 for all t > 1; (iii) in
case it is set x̄t|t = xt for all t ≥ 1. Subsequent analysis for strategy
(iii) is not carried out in view of the fact that recursive feasibility
is not guaranteed in this case and feasibility is lost for 70%–90% of
realizations (depending on the initial condition) in case of average
constraints and for 99.5% of realizations in case of probabilistic
constraints. For strategies (i) and (ii), Fig. 5 shows the performance
improvements in case (14) is used.

7. Conclusions

This paper describes a stochastic MPC algorithm for linear
systems with possibly unbounded multiplicative uncertainty.
The design method guarantees recursive feasibility, pointwise
convergence of the state, and is characterized by a reduced on-
line computational load, which results similar to the one required
by nominal MPC algorithms. Possible extensions regard the output
feedback case, extensive testing in significant control problems,
and its distributed implementation.

Appendix A. Proof of Theorem 1

Assume that, at time instant t , a feasible solution of S-MPC
is available, i.e., (x̄t|t , Xt|t) with optimal sequences ūt...t+N−1|t ,
Kt...t+N−1|t .We prove that, at time t+1, a feasible solution to S-MPC
exists, i.e., (x̄t+1|t , Xt+1|t) with admissible sequences ūf

t+1...t+N|t

= {ūt+1|t , . . . , ūt+N−1|t , K̄ x̄t+N|t}, K f
t+1...t+N|t = {Kt+1|t , . . . ,

Kt+N−1|t , K̄}.
Constraint (6a) is verified for all pairs (x̄t+1+k|t , Xt+1+k|t), k =

0, . . . ,N − 2, in view of the feasibility of S-MPC at time t .
Furthermore, in view of (9), (10), and the condition (13a), we have

that bT x̄t+N|t ≤ 1 −


bTr X̄br f (p

r
x) ≤ 1 −


bTr X̄t+N|tbr f (prx),

i.e., constraint (6a) is verified.
Analogously, constraint (6b) is verified for all pairs (ūt+1+k|t ,

Ut+1+k|t), k = 0, . . . ,N − 2, in view of the feasibility of S-MPC
at time t . Furthermore, in view of (9), (10), and the condition



(13b), we have that cT K̄ x̄t+N|t ≤ 1 −


bTr K̄ X̄ K̄ Tbr f (prx) ≤ 1 −

bTr Ut+N|tbr f (prx), i.e., constraint (6b) is verified.
In view of (9) and of the invariance property (11) it follows that

x̄t+N+1|t = (A + BK̄)x̄t+N|t ∈ X̄f and, in view of (10) Xt+N+1|t =

(A + BK̄)Xt+N|t(A + BK̄)T +
q

j=1(Cj + DjK̄)Xt+N|t(Cj + DjK̄)T +q
j=1(Cj + DjK̄)x̄t+N|t x̄Tt+N|t(Cj + DjK̄)T ≤ (A + BK̄)X̄(A + BK̄)T +q
j=1(Cj +DjK̄)X̄(Cj +DjK̄)T +

q
j=1(Cj +DjK̄)W (Cj +DjK̄)T = X̄ ,

hence verifying both (9) and (10) at time t + 1.
In view of the feasibility, at time t+1 of the possibly suboptimal

solution ūf
t+1...t+N|t , K

f
t+1...t+N|t , and (x̄t+1|t , Xt+1|t ), we have that

the optimal cost function computed at time t + 1 is J∗(t + 1) =

J∗m(t + 1) + J∗v (t + 1). In view of the optimality of J∗(t + 1)

J∗(t + 1) ≤ Jm(t + 1|t) + Jv(t + 1|t) (A.1)

where Jm(t + 1|t) = J∗m(t) − ∥x̄t|t∥2
Q − ∥ūt|t∥

2
R + ∥x̄t+N|t∥

2
Q +

∥K̄ x̄t+N|t∥
2
R − ∥x̄t+N|t∥

2
P + ∥(A + BK̄)x̄t+N|t∥

2
P and

Jv(t + 1|t) = J∗v (t) − tr{(Q + K T
t|tRKt|t)Xt|t}

+ tr{(Q + K̄ TRK̄)Xt+N|t

− PXt+N|t + P(A + BK̄)Xt+N|t(A + BK̄)T

+ P
q

j=1

(Cj + DjK̄)Xt+N|t(Cj + DjK̄)T

+ P
q

j=1

(Cj + DjK̄)x̄t+N|t x̄Tt+N|t(Cj + DjK̄)T }. (A.2)

Considering (A.2) and recalling (8), tr{(Q+K̄ TRK̄)Xt+N|t−PXt+N|t+

P(A+BK̄)Xt+N|t(A+BK̄)T +P
q

j=1(Cj +DjK̄)Xt+N|t(Cj +DjK̄)T } =

tr{((Q + K̄ TRK̄)−P+(A+BK̄)TP(A+BK̄)+
q

j=1(Cj+DjK̄)TP(Cj+

DjK̄))Xt+N|t} = 0. Also, the last line of (A.2) results in

tr


P

q
j=1

(Cj + DjK̄)x̄t+N|t x̄Tt+N|t(Cj + DjK̄)T


= ∥x̄t+N|t∥

2
q

j=1
(Cj+DjK̄)T P(Cj+DjK̄)

. (A.3)

From (A.1)–(A.3) and recalling (8) again, we obtain J∗(t + 1) ≤

J∗(t) − E{∥xt∥2
Q + ∥ut∥

2
R} + ∥x̄t+N|t∥

2
P̃

≤ J∗(t) − E{∥xt∥2
Q }, since

P̃ = (Q + K̄ TRK̄) − P + (A + BK̄)TP(A + BK̄) +
q

j=1(Cj +

DjK̄)TP(Cj + DjK̄) = 0. Using standard arguments we conclude
that E{∥xt∥2

Q } → 0 as t → +∞.

Appendix B. Proof of Proposition 1

Proof of Proposition 1. We focus, for brevity, only on the update
Eq. (20a) although the same arguments can be applied to (20b). The
proof is divided in three steps.
– Boundedness. The boundedness of P(k), if computed by iterating
(20a), can be proved along the lines of Dashkovskiy, Rüffer, and
Wirth (2007). We rewrite (20a) as the following system of coupled
equations

P(i + 1) = (A + BK̄)TP(i)(A + BK̄)

+

q
j=1

(Cj + DjK̄)T∆(i)(Cj + DjK̄) + Q + K̄ TRK̄ (B.1a)

∆(i + 1) = (A + BK̄)T∆(i)(A + BK̄)

+

q
j=1

(Cj + DjK̄)TP(i)(Cj + DjK̄) + Q + K̄ TRK̄ (B.1b)
with P(0) = ∆(0), from which we derive that P(k) = ((A +

BK̄)T )kP(0)(A+BK̄)k+
k

i=1((A+BK̄)T )k−i
{
q

j=1(Cj+DjK̄)T∆(i−
1)(Cj + DjK̄) + Q + K̄ TRK̄}(A + BK̄)k−i, and that ∆(k) = ((A +

BK̄)T )k∆(0)(A+BK̄)k+
k

i=1((A+BK̄)T )k−i
{
q

j=1(Cj+DjK̄)TP(i−
1)(Cj + DjK̄) + Q + K̄ TRK̄}(A + BK̄)k−i. It follows that

∥P(k)∥ ≤ ∥(A + BK̄)k∥2
∥P(0)∥ +

k
i=1

∥(A + BK̄)k−i
∥
2

×


q

j=1

∥Cj + DjK̄∥
2 max
h∈[0,k]

∥∆(h)∥ + ∥Q + K̄ TRK̄∥



≤ ∥(A + BK̄)k∥2
∥P(0)∥ +

µ2

1 − λ2


q

j=1

∥Cj + DjK̄∥
2

× max
h∈[0,k]

∥∆(h)∥ + ∥Q + K̄ TRK̄∥


(B.2a)

∥∆(k)∥ ≤ ∥(A + BK̄)k∥2
∥∆(0)∥ +

µ2

1 − λ2


q

j=1

∥Cj + DjK̄∥
2

× max
h∈[0,k]

∥P(h)∥ + ∥Q + K̄ TRK̄∥


. (B.2b)

Denote δk = maxh∈[0,k] ∥∆(h)∥ and pk = maxh∈[0,k] ∥P(h)∥. From
(B.2) we obtain that pk ≤ γ δk + q, δk ≤ γ pk + q, where γ =

µ2

1−λ2

q
j=1 ∥Cj + DjK̄∥

2 and q = µ2
∥P(0)∥ +

µ2

1−λ2
∥Q + K̄ TRK̄∥

since P(0) = ∆(0). We define Γ =


0 γ
γ 0


and we write

(I − Γ )


pk
δk


≤


q
q


.

According to Dashkovskiy et al. (2007), if the spectral radius of Γ

is strictly smaller than one, i.e., if γ < 1, for every initial condition
(see, e.g., Lemma 13 for the general nonlinear case), the solution to
the system (B.1) exists and is uniformly bounded, since q does not
depend on k.

– Monotonicity. Define f (P) = (A + BK̄)TP(i)(A + BK̄) +q
j=1(Cj + DjK̄)TP(i)(Cj + DjK̄) + Q + K̄ TRK̄ . To obtain the proof

of Proposition 1, we need to show that, if PA ≥ PB (where both
matrices PA and PB are symmetric positive semi-definite), then
f (PA) ≥ f (PB). This follows from the fact that f (PA)− f (PB) = (A+

BK̄)T (PA −PB)(A+BK̄)+
q

j=1(Cj +DjK̄)T (PA −PB)(Cj +DjK̄) ≥ 0.

– Convergence. Consider now that P(0) = 0. Therefore P(1) =

f (P(0)) ≥ 0 = P(0). In view of the monotonicity property,
f (P(1)) ≥ f (P(0)). Using recursion arguments, we obtain that,
under the stated initialization, P(k + 1) ≥ P(k) for all k ≥ 0. In
view of the boundedness property, P(k) → P̄ as k → ∞, where P̄
results to be the solution to the algebraic equation (8).

Appendix C. Proof of Corollary 1

Assume that, at time instant t , a feasible solution of avS-
MPC is available, i.e., (x̄t|t , Xt|t) with optimal sequences ūt...t+N−1|t ,
Kt...t+N−1|t . Similarly to the proof of Theorem 1, we can prove that,
at time t + 1, a feasible solution to avS-MPC exists, i.e., (x̄t+1|t ,

Xt+1|t) with admissible sequences ūf
t+1...t+N|t = {ūt+1|t , . . . ,

ūt+N−1|t , K̄ x̄t+N|t}, K
f
t+1...t+N|t = {Kt+1|t , . . . , Kt+N−1|t , K̄}. From

this point on, the proof of convergence proceeds as in the proof
of Theorem 1, showing that E{∥xt∥2

Q } → 0 as t → +∞.



References

Blackmore, L., Ono, M., Bektassov, A., & Williams, B. C. (2010). A probabilistic
particle-control approximation of chance-constrained stochastic predictive
control. IEEE Transactions on Robotics, 26(3), 502–517.

Calafiore, G. C., & Fagiano, L. (2013). Robust model predictive control via scenario
optimization. IEEE Transactions on Automatic Control, 58(1), 219–224.

Cannon, M., Cheng, Q., Kouvaritakis, B., & Raković, S. V. (2012). Stochastic tubeMPC
with state estimation. Automatica, 48(3), 536–541.

Cannon, M., Kouvaritakis, B., & Wu, X. (2009). Model predictive control for systems
with stochastic multiplicative uncertainty and probabilistic constraints.
Automatica, 45(1), 167–172.

Dashkovskiy, S., Rüffer, B. S., & Wirth, F. R. (2007). An ISS small gain theorem for
general networks. Mathematics of Control, Signals, and Systems, 19, 93–122.

Evans, M., Cannon, M., & Kouvaritakis, B. (2012). Linear stochastic MPC under
finitely supported multiplicative uncertainty. In American control conference,
ACC (pp. 442–447).

Farina, M., Giulioni, L., Magni, L., & Scattolini, R. (2013). A probabilistic approach to
model predictive control. In IEEE 52nd annual conference on decision and control,
CDC (pp. 7734–7739).

Farina, M., Giulioni, L., Magni, L., & Scattolini, R. (2015). An approach to output-
feedback MPC of stochastic linear discrete-time systems. Automatica, 55,
140–149.

Geletu, A., Klöppel, M., Hoffmann, A., & Li, P. (2015). A tractable approximation of
non-convex chance constrained optimizationwith non-Gaussian uncertainties.
Engineering Optimization, 47(4), 495–520.

Kolmanovsky, I., & Gilbert, E. G. (1998). Theory and computation of disturbance
invariant sets for discrete-time linear systems. Mathematical Problems in
Engineering , 4(4), 317–367.

Marshall, A. W., & Olkin, I. (1960). Multivariate Chebychev inequalities. Annals of
Mathematical Statistics, 34(4), 1001–1014.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained
model predictive control: Stability and optimality. Automatica, 36, 789–814.

Nemirovski, A., & Shapiro, A. (2007). Convex approximations of chance constrained
programs. SIAM Journal on Optimization, 17(4), 969–996.

Paulson, J. A., Streif, S., & Mesbah, A. (2015). Stability for receding-horizon
stochastic model predictive control. In American control conference, ACC, 2015
(pp. 937–943), July.
Primbs, J. A. (2007). Portfolio optimization applications of stochastic receding
horizon control. In American control conference, ACC (pp. 1811–1816).

Primbs, J. A., & Sung, C. H. (2009). Stochastic receding horizon control of constrained
linear systems with state and control multiplicative noise. IEEE Transactions on
Automatic Control, 54(2), 221–230.

Shin, M., Lee, J. H., & Primbs, J. A. (2010). Constrained stochastic MPC under
multiplicative noise for financial applications. In 49th IEEE conference on decision
and control, CDC (pp. 6101–6106).

Marcello Farina received the Laurea degree in Electronic
Engineering in 2003 and the Ph.D. degree in Information
Engineering in 2007, both from the Politecnico di Milano.
In 2005 hewas visiting student at the Institute for Systems
Theory and Automatic Control, Stuttgart, Germany. He is
presently Associate Professor at Dipartimento di Elettron-
ica, Informazione e Bioingegneria, Politecnico di Milano.
His research interests include distributed and decentral-
ized state estimation and control, stochasticmodel predic-
tive control, and applications, e.g., mobile robots, sensor
networks, and energy supply systems.

Riccardo Scattolini was born in Milano, Italy, in 1956.
He received the Laurea degree in electronic engineering
from the Politecnico di Milano, Italy, in 1979. He is
Professor of automatic control with the Politecnico
di Milano. From 1984 to 1985, he was a Visiting
Researcher at the Department of Engineering Science,
Oxford University, U.K. He also spent one year working
in industry on the simulation and control of chemical
plants. His current research interests include modeling,
identification, simulation and control of industrial plants
and distribution networks, with emphasis on hierarchical,

distributed, and stochastic model predictive control of large-scale systems.
Prof. Scattolini received the Heaviside Premium from the Institution of Electrical
Engineers, U.K., in 1991. He is currently Associate Editor of Automatica.

http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref1
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref2
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref3
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref4
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref5
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref8
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref9
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref10
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref11
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref12
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref13
http://refhub.elsevier.com/S0005-1098(16)30130-3/sbref16

	Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints
	Introduction
	The system
	MPC algorithm: formulation and properties
	Control law
	Constraints
	Cost function
	Terminal constraints
	Initial conditions for the mean and the covariance
	MPC problem

	Numerical issues and simplified formulations
	Offline design
	Solution with LMI's
	Solution using small gain arguments

	Online implementation

	Dealing with expectation constraints
	Example
	Feasibility sets in case of probabilistic constraint
	Trajectories for probabilistic and expectation constraints

	Conclusions
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Corollary 1
	References




