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Thermodynamics is the paradigm example in physics of a time-asymmetric theory, but the origin of the asymmetry lies deeper

than the second law. A primordial arrow can be defined by the way of the equilibration principle (“minus first law”). By

appealing to this arrow, the nature of the well-known ambiguity in Carath�eodory’s 1909 version of the second law becomes

clear. Following Carath�eodory’s seminal work, formulations of thermodynamics have gained ground that highlight the role of
the binary relation of adiabatic accessibility between equilibrium states, the most prominent recent example being the important

1999 axiomatization due to Lieb and Yngvason. This formulation can be shown to contain an ambiguity strictly analogous to
that in Carath�eodory’s treatment.

I. THE ARROW OF TIME

In physical theories generally, time plays a multi-faceted 
role. There is the notion of temporal duration between events 
occurring at the same place (temporal metric, related to the 
ticking of an ideal inertial clock1), the comparison of occur-
rences of events at different places (distant simultaneity, reg-
istered by synchronized clocks), and the directionality, or 
arrow, of time. Thermodynamics is unusual, within the pano-
ply of physical theories, in the double sense that a metric of 
time is not prominent, and that it is the only theory, apart 
from that of the weak interactions, that incorporates an arrow 
of time at a fundamental level. Let us consider these two 
aspects in turn.

It is sometimes said that thermodynamics has no clocks, in 
the sense that none of its fundamental laws contains deriva-
tives with respect to time. For example, entropy is claimed 
never to decrease in adiabatic processes, but the theory gives 
no information about how quickly changes in entropy, if 
any, occur. It might be thought that a temporal metric and a 
privileged notion of simultaneity both lurk in the back-
ground, because thermodynamics always appeals to the me-
chanical notion of work. Whether this appeal to work 
introduces through the back door all the temporal structure 
of Newtonian time is far from clear. However, that may be, a 
noteworthy feature of Carath�eodory’s 1909 formulation of 
thermodynamics is the fact that time derivatives do appear 
explicitly in his Paper, as we shall see below.

As for the intrinsic arrow of time in thermodynamics, a 
reasonable question to ask is: what feature of the theory 
defines it? Consider the view expressed by Hawking:

Entropy increases with time, because we define the 
direction of time to be that in which entropy 
increases.2

There may be much to be said for this view in the context
of statistical mechanics, but in classical equilibrium thermo-
dynamics natural doubts arise. Within the traditional,

textbook approach to the theory, the mere introduction of a 
concept like a Carnot cycle presupposes a temporal ordering 
as applied to the equilibrium states within the cycle. The 
temporal direction of a Carnot cycle is taken for granted well 
before questions concerning the efficiency of such cycles in 
relation to other kinds of heat engine are raised, and hence 
before the second law is introduced. What does it mean to say 
that one state in the cycle is earlier than another? The claim 
that a certain process unfolds in such and such a way in time 
only makes sense in physics if some independent arrow of 
time is acting as a reference. What is it in this context?

That little attention is given to this question is not entirely 
surprising. Students learning, for example, Newtonian 
mechanics of systems of point particles are told that the state 
of the particles at a given time is given by the combination 
of the linear momenta of the particles and their positions at
that time. That the ith particle has velocity vi rather than �vi 
relative to some inertial reference frame must again be refer-
ring to some background arrow of time.3 Now given that the 
equations are time-reversal invariant, one might think that 
the choice of direction of time is mere convention. But it 
does not look like this to anyone trying to apply the theory to 
real systems in the world. A background arrow is being pre-
supposed; though rarely made explicit, it plausibly is related 
to the thermodynamic arrow.

Rather than speculating as to what the 19th century fathers 
of thermodynamics would have meant by “before” and 
“after,” if these terms were anything other than primitive,4 it 
is tempting in physics generally to fall back on the psycho-
logical arrow of time, according to which observers remem-
ber the past and not the future. But within thermodynamics 
itself this position is unattractive. It seems plausible that for-
mation of memories in the brain would be impossible with-
out thermodynamic irreversibility, even if there is debate 
about the details. Maroney attempted to show in 2010 that 
the logical operations involved in computation do not per se 
determine an arrow of time.5 But in a 2014 rejoinder, Smith
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claimed that in the brain computational processes and in par-
ticular the formation of long-term memories in fact requires 
the existence of certain spontaneous diffusion/equilibration 
processes.6 From the point of view of statistical mechanics, 
these processes correspond to local entropy increase. But 
from the point of view of thermodynamics, they are arguably 
tied up with a principle lying deeper in the theory than the 
second law.

It has occasionally been noted in the literature that a fun-
damental principle that underlies all thermodynamic reason-
ing (including the zeroth law concerning the transitivity of 
equilibrium) is this:

An isolated system in an arbitrary initial state 
within a finite fixed volume will spontaneously 
attain a unique state of equilibrium.

This equilibration principle is the entry point in thermody-
namics of time asymmetry: an isolated system evolves from 
non-equilibrium into equilibrium, but not the reverse. Already 
in 1897 Planck had emphasised the independence of this 
principle from the second law,7 and in subsequent litera-ture, 
it has been variously called the “zeroth law” (a particu-larly 
unfortunate title, given that it standardly refers to the 
transitivity of equilibrium between systems), the “minus first 
law,”8 and the “law of approach to equilibrium.”9 The sug-
gestion we wish to make is that all references, implicit and 
explicit, to the temporal ordering of events in thermodynam-
ics can be understood in relation to the arrow of time defined 
by this process of spontaneous equilibration.

Such an approach is by no means compulsory; in principle 
an appeal to, say, the cosmological arrow of time (defined by 
the expansion of the universe) can serve the same purpose. In 
particular, our attempt in what follows to clarify certain 
temporal issues arising in modern axiomatic formulations of 
thermodynamics that do not rely on such notions as Carnot 
cycles does not strictly depend on the choice of the back-
ground arrow, as long as the role of the arrow is not over-
looked. However, the suggestion we are making to use the 
equilibration principle in this context seems to us an elegant 
solution to the problem raised above in relation to the tempo-
ral direction of Carnot cycles (and, as we shall see, of adia-
batic accessibility): one does not have to appeal to an arrow of 
time outside of thermodynamics itself.

II. AXIOMATIC THERMODYNAMICS

For the purpose of elucidating the source and consequen-
ces of the arrow of time in thermodynamics, the standard for-
mulations of the theory given in most undergraduate classes 
and textbooks are inadequate: the rigorous analysis of the 
heat engine concept involving the Carnot cycle proves to be 
very complicated,10 obscuring these issues still further. 
Moreover, such a cycle requires, in the case of a two-
dimensional state space for a simple system (see below), that 
adiabats and isotherms in the space of equilibrium states are 
curves intersecting only at single points. An example of a sit-
uation in which this is not the case is the region of the triple 
point of water, where the adiabats for a range of entropy val-
ues coincide partly with the 273.16 K isotherm.11

The first attempt to put equilibrium thermodynamics on a 
rigorous conceptual and mathematical footing without appeal 
at the fundamental level to cyclic heat engines, and in 
particular Carnot cycles, was found in the 1909 work of 
Constantin Carath�eodory.12 A number of subsequent careful

formulations of thermodynamics owe much to this work; the 
most prominent recent example is that due to Elliott Lieb and 
Jacob Yngvason, published in a lengthy Paper in 1999.11 

These authors follow Carath�eodory in basing their approach 
on the notion of adiabatic accessibility but do without the 
machinery of differential forms that Carath�eodory had used in 
his reasoning. A penetrating analysis of the Lieb-Yngvason 
formulation was published by Jos Uffink in 2001, principally 
with a view to determining which axioms pro-posed by these 
authors were time symmetric and which not.13 In the present 
Paper, we are concerned with a related but distinct issue. It is 
well known that Carath�eodory’s for-mulation contained an 
ambiguity, or incompleteness, which Carath�eodory himself 
highlighted, and which is connected with the fact that his 
postulates lead to a version of the sec-ond law that is weaker 
than the traditional version due to Kelvin and Planck. These 
postulates permit the existence of two possible worlds: one in 
which entropy is non-decreasing for adiabatic processes, and 
another in which it is non-increasing. We argue that by 
referring to the arrow of time defined by the equilibration 
principle, it becomes clear that these worlds are indeed 
empirically distinct. The ambiguity in question arises in many 
Carath�eodory-inspired approaches to thermodynamics; some, 
whether of the formal14 or infor-mal variety,15 add an extra 
empirical postulate to remove the ambiguity. We argue that 
this is what Lieb and Yngvason do in their approach, though 
not with complete transparency.

III. CARATH�EODORY

In his seminal 1909 reformulation of thermodynamics, 
Carath�eodory realized that heat need not be introduced as a 
primitive notion, and that the theory could be extended to 
systems with an arbitrary number of degrees of freedom using 
generalized coordinates analogous to those employed in 
mechanics. In doing so, he provided the first satisfactory 
enunciations of what are now called the zeroth and first laws 
of thermodynamics.16 In particular, by defining an adiabatic 
enclosure in terms of its capacity to isolate the thermody-
namic variables of the system of interest from external dis-
turbances, Carath�eodory was the first to base the first law, and 
thus the existence of internal energy, on Joule’s experi-ments 
(under the assumption that Joule’s calorimeter was 
adiabatically isolated). Heat is then defined as the change in 
internal energy that is not accounted for by the work being 
done on or by the system, the existence of heat being a con-
sequence of the first law and the conservation of energy.

However, what is of particular relevance for our purposes is 
that Carath�eodory did to the equilibrium state space some-
thing akin to what his ex-teacher Hermann Minkowski had 
done to space-time a year earlier. Assuming that the space C 
of equilibrium states is an N-dimensional differentiable 
manifold equipped with the usual Euclidean topology, 
Carath�eodory introduced the relation of adiabatic accessibil-
ity between pairs of points, a notion clearly analogous to that 
of the causal connectibility relation in Minkowski space-
time.17 An adiabatic process is one taking place within an 
adiabatic enclosure. It is time-directed; the arrow of time can 
be that defined by the equilibration principle, though 
Carath�eodory himself was silent on the matter. He famously 
postulated that in any neighborhood of any point p in C, there 
exists at least one point p0 that is not adiabatically ac-cessible 
from p.18 We shall refer to this axiom as the inac-cessibility 
principle.



Carath�eodory’s main result concerns “simple” systems, 
whose states can be described by a single thermal coordinate 
along with an arbitrary number of “deformation” coordi-
nates, sometimes called work or configuration coordinates, 
which depend on the external shape of the system and on any 
applied fields. This rules out systems comprised of a col-
lection of subsystems adiabatically isolated from each other. 
Carath�eodory also assumed that simple systems show no in-
ternal friction or hysteresis in sufficiently slow (quasi-static) 
processes, in the definition of which he referred to deriva-
tives with respect to time.19 As a result of these and other 
assumptions, he showed that quasi-static processes involving 
simple systems can be represented by continuous curves in 
the state space, where the external work associated with the 
process can be determined solely by the forces required to 
maintain equilibrium at all times. (Carath�eodory made a point 
of proving that quasi-static adiabatic processes of a simple 
system are reversible.) By appealing to a result in the theory 
of Pfaffian forms, he was further able to show that given the 
inaccessibility principle, the differential form for heat for 
quasi-static processes has an integrating factor. In other 
words, there exist functions T and S on the state space such 
that the heat form can be expressed as TdS, where dS is an 
exact differential. Further considerations show that T and S 
are related to the absolute temperature (which depends on 
empirical temperature as defined by way of the zeroth law20) 
and entropy of the system.21

IV. THE AMBIGUITY

In Sec. 9 of his 1909 Paper, devoted to irreversible proc-
esses, Carath�eodory introduced a terse argument related to 
simple systems that has often been repeated and/or elabo-rated 
in the literature.22 The conclusion of the argument is that, given 
the inaccessibility principle and certain continuity 
assumptions,23 then for any two points p and p0 not con-nected 
by a reversible quasi-static path, when p0 is adiabati-cally 
accessible from p, always either S(p0) > S(p) or  S(p0) < 
S(p). (Quasi-static adiabatic processes involve no change in 
entropy.) Regarding this ambiguity, Carath�eodory emphasized 
both that it persists even when the entropy is defined so as to 
make the absolute temperature positive, and that it can only be 
resolved by appeal to experiment:

Experience (which needs to be ascertained in 
relation to a single experiment only) then teaches 
that entropy can never decrease.24

It is important for our purposes to note first that the prior 
existence of an entropy function is not in fact intrinsic to the 
argument or rather that a related ambiguity can be derived in a 
more general way. The single thermal coordinate for the 
simple system in question could be chosen instead to be in-
ternal energy (whose existence is a consequence of the first 
postulate in Carath�eodory’s Paper). In this case, the inacces-
sibility principle and the same continuity assumptions can be 
shown to result in the existence of a foliation of C (subject to 
a qualification to be clarified below), such that on each 
hypersurface of the foliation any continuous curve represents 
a reversible, quasi-static adiabatic process involving a con-
tinuous change in the deformation coordinates. In the case of 
an arbitrary adiabatic process from p to a distinct state p0, the 
final state p0 will generally not lie on the same hypersur-face 
as p, but it can be shown from Carath�eodory’s postu-lates that 
all possible final states p0 must lie on the same side

of this hypersurface. In particular, when p and p0 share the 
same deformation coordinates, p0 will either always have 
greater internal energy than p, or always have less internal 
energy, independently of the choice of the initial state p. Let 
us call this the energy ambiguity for adiabatic processes.

A related ambiguity holds when the thermal coordinate is 
chosen to be temperature (empirical or absolute in 
Carath�eodory’s terms, but assumed to be positive). Indeed, 
the underlying ambiguity in Carath�eodory’s formulation of 
thermodynamics—prior to the performance of the “single 
experiment” referred to above and given the positivity of 
temperature—can also be stated as: Either heat always flows 
from a hot body to a cold body or the converse. When con-
sidering cyclic processes, the ambiguity can be expressed in 
two further ways:

(1) Either it is always impossible to create a cyclic process 
that converts heat entirely into work or it is always 
impossible to create a cyclic process that converts work 
entirely into heat;25 and

(2) In relation to a Carnot cycle, any other type of cyclic 
process either always has lower efficiency or always has a 
greater efficiency.26

Statement 1 is clearly weaker than the traditional Kelvin-
Planck form of the second law in thermodynamics; indeed 
Carath�eodory’s inaccessibility principle above is easily seen 
to be a consequence of the latter (the first possibility in 1), but 
the converse implication does not hold.27

The argument in Sec. 9 of Carath�eodory’s Paper presup-
poses that adiabatic accessibility is a transitive relation 
between states (so that if state q is adiabatically accessible 
from state p, and r is adiabatically accessible from q, then r is 
adiabatically accessible from p). It is obviously reflexive (any 
p is adiabatically accessible from itself), so it satisfies the 
conditions for being a preorder. The qualification men-tioned 
earlier in relation to Sec. 9 is that, as originally noted by 
Bernstein,28 the argument is of a local, not global, nature in 
the state space; indeed entropy itself is a local notion in 
Carath�eodory’s approach.29 Hence, the adiabatic accessibil-
ity for Carath�eodory is locally, not globally, a preorder.

Returning to Carath�eodory’s point that experiment is 
needed to determine the sign of the entropy gradient, it should 
be clear that the notion only makes sense if a back-ground 
arrow of time is specified. Indeed, it is easily seen that the two 
possible Carath�eodory worlds are not simply the temporal 
inverses of each other, because, to repeat, the adia-batic 
(in)accessibility relations that are postulated to hold 
themselves are defined with respect to a background arrow of 
time. Again, we suggest it can be that defined by the equil-
ibration principle. Whether in adiabatic processes entropy is 
universally non-decreasing or non-increasing relative to the 
arrow defined by spontaneous equilibration is a clear-cut em-
pirical matter and not a matter of convention.

V. LIEB AND YNGVASON

A. Introduction

In 1999, Lieb and Jakob Yngvason proposed11 a new axio-
matization of thermodynamics, which owed much to the 
work of Carath�eodory and that of later writers such as Robin 
Giles. The central concept is again the binary relation on the 
state space associated with adiabatic accessibility,30 now 
designated by �, and assumed to be globally a preorder. An



attempt is made by the authors to provide a treatment of en-
tropy and its essential properties based on “maximum princi-
ples instead of equations among derivatives,” so that real 
systems where some of these derivatives fail to be well-
defined at certain points (such as the triple point of water 
mentioned above) pose no special problems for the theory. 
Another notable and unusual feature is the attempt to provide 
a proof of the comparison hypothesis, normally tacitly 
assumed to be an essential property of a well-behaved ther-
modynamic system, which states that for any states X and Y in 
the state space, then either X � Y (Y is adiabatically acces-
sible from X) or Y � X. The Lieb-Yngvason (L-Y) formula-
tion of thermodynamics is a tour de force of physical and 
mathematical reasoning.

It should be noted that two further incentives behind the 
formulation are the desire to banish the notion of heat alto-
gether from thermodynamics, and a shift of emphasis from 
impossible processes (as in traditional formulations) to possi-
ble ones.31

B. Entropy

Our main concern lies more with energy than entropy, but a 
word about the L-Y treatment of the latter is in order. This 
treatment, remarkably, provides what is effectively a repre-
sentation Theorem for the preorder � on the state space in 
terms of a numerical “entropy” function on the space. It will 
be recalled that adiabatic accessibility is a temporally or-
dered concept, and the question arises whether and how the 
monotonic temporal behavior of entropy in adiabatic proc-
esses is connected with natural constraints on this preorder, 
without appeal to an assumption as strong as Carath�eodory’s 
inaccessibility principle. Lieb and Yngvason introduce six 
plausible axioms governing the � relation holding for single 
and compound systems, and assuming (without proof at this 
stage) the comparison hypothesis, show that there exists a 
real-valued function S on all states of all systems such that X 
� Y if and only if S(X) � S(Y). Furthermore, S has the 
properties of additivity and extensivity that one expects of the 
entropy function. “In a sense it is amazing,” Lieb and 
Yngvason write (p. 14), “that much of the second law fol-
lows from certain abstract properties of the relation among 
states, independent of physical details (and hence of concepts 
such as Carnot cycles).”11 It should not be overlooked, how-
ever, that the very definition of entropy in this construction 
requires the existence of at least one pair of states X0 and X1 
such that X0 �� X1, i.e., X0 � X1 but not the converse. Like 
the traditional notion of entropy, the L-Y notion is not mean-

ingful in a world without irreversibility of some sort.32

The “entropy principle” is striking, and its proof is inge-
nious. But it is important to note that the temporal monoto-
nicity associated with this numerical representation of � does 
not resolve the kind of ambiguity found in Carath�eodory’s 
system. The question, recall, is whether the physical entropy 
is non-increasing or non-decreasing relative to the arrow of 
time determined by the equilibration princi-ple. In the L-Y 
formulation, a formal definition of S is con-structed such that, 
given all the assumptions, S cannot decrease in adiabatic 
processes. But the representation Theorem of course holds 
just as well for the function S~ � �S, in which case X � Y if 
and only if S~ðXÞ �  S~ðYÞ. There is nothing in the theorem per 
se that distinguishes between S and S~ in terms of physical 
import.

C. The ambiguity again

The L-Y framework takes on a different, more geometrical 
tone after the treatment of the entropy principle. The system-
atic treatment of irreversibility in simple systems requires 
additional axioms in order to derive an analog of 
Carath�eodory’s inaccessibility principle and notably the 
global foliation of the state space defined by adiabats. Recall 
now the energy ambiguity in Carath�eodory’s theory outlined 
in Sec. III above for simple systems. Precisely this issue is 
addressed in Sec. III C of the L-Y Paper (Ref. 11). The 
authors first adopt the view that within their framework of 
axioms, it is “conventional” whether in an adiabatic process 
between states with the same deformation (work) coordinates 
the internal energy never decreases, or never increases.33 

(Unsurprisingly, they adopt the former option.) This is a cu-
rious stance, difficult to reconcile with subsequent remarks 
that take into account the definition of adiabatic accessibility 
peculiar to Lieb and Yngvason (p. 44):

From a physical point of view there is more at 
stake, however. In fact, our operational 
interpretation of adiabatic processes involves 
either the raising or lowering of a weight in a 
gravitational field and these two cases are 
physically distinct. Our convention, together with 
the usual convention for the sign of energy for 
mechanical systems and energy conservation, 
means that we are concerned with a world where 
adiabatic process at fixed work coordinate can 
never result in the raising of a weight, only in the 
lowering of a weight. The opposite possibility 
differs from the former in a mathematically trivial 
way, namely by an overall sign of the energy, but 
given the physical interpretation of the energy 
direction in terms of raising and lowering of 
weights, such a world would be different from the 
one we are used to.11

This seems to be an admission that, as Carath�eodory 
claimed (admittedly in the context of entropy not energy), 
two distinct physical possibilities are at stake, so it is hard to 
see how the issue is merely one of convention, in the usual 
sense of the term. It is noteworthy that Lieb and Yngvason 
state as a Theorem, which they call Planck’s principle, that:

If two states, X and Y, of a simple system have the 
same work coordinates, then X � Y if and only if 
the energy of Y is no less than the energy of X.34

The authors make a point of saying (p. 46) that this princi-
ple (or rather a consequence of it) is “clearly stronger than 
Carath�eodory’s principle, for it explicitly identifies states that 
are arbitrarily close to a given state, but not adiabatically 
accessible from it.”11 Note that Lieb and Yngvason give as the 
reason for calling the mentioned Theorem “Planck’s 
principle” that “Planck emphasized the importance for ther-
modynamics of the fact that “rubbing” (i.e., increasing the 
energy at fixed work coordinate) is an irreversible process.”

It is quite true that the Planck principle is stronger than 
anything derivable from Carath�eodory’s inaccessibility prin-
ciple along with the continuity assumptions mentioned in Sec. 
III above. Indeed, within some Carath�eodory-inspired 
formulations of thermodynamics, the empirical fact appealed 
to by Planck that frictional rubbing under fixed deformation 
coordinates leads to an increase of internal energy is chosen



as precisely the extra empirical ingredient needed to resolve 
the ambiguity in Carath�eodory’s original theory.35 On p. 46 
of their 1999 Paper, Lieb and Yngason claim that Planck’s 
principle, and as a consequence the standard Kelvin-Planck 
version of the second law, follow from their first nine 
axioms.11 (These include the convex combination axiom A7 
to which we return below.) But this is not strictly the case. 
We now attempt to further clarify the nature of the extra 
factual (not conventional) ingredient needed over and above 
the first nine axioms required in order to recover the 
standard second law of thermodynamics within the L-Y 
scheme.

D. The ambiguity exposed

If the question is whether there is any component of the L-
Y scheme that favors one side of the adiabats over the other, 
then the answer is actually yes. A key assumption in the L-Y 
treatment of simple systems and their irreversible behavior is 
their convex combination axiom A7. This asserts that for any 
two states X1 ¼ (U1, V1) and X2 ¼ (U2, V2) of a simple system 
(U being the internal energy), a fraction t of X1 can be adia-
batically combined with a fraction (1 – t) of  X2 to form a 
new state Y ¼ ½tU1 þ ð1 � tÞU2; tV1 þ ð1 � tÞV2�.36 This 
axiom leads immediately to the theorem that in the case of a 
single simple system the set of points in the state space adia-
batically accessible from a given point X—the “forward 
sector” associated with X—must be a convex set.37 That is, if 
X1 and X2 as just defined are in the set, then Y is also in the set. 
(Indeed, this is the main consequence of A7, although A7 is 
needed to derive several of the key geometric proper-ties of 
the forward sectors.)

Consider then a continuous curve in a UV diagram corre-
sponding to the boundary of the set of states adiabatically acces-
sible from a given state, which as expected in the L-Y scheme 
turns out to be a curve of constant entropy (see Fig. 1).38

For a standard thermodynamic system with positive pres-
sure, U decreases on this curve with increasing deformation 
coordinate V. The dotted line between states X1 and X2 repre-
sents the locus of all convex combinations of these states 
obtained by ranging over the parameter t (0 � t � 1). Both X1 
and X2 are adiabatically accessible from Y0, and it follows 
from Axiom A7 that Y is too. In the figure, the adiabat is rep-
resented as a convex function, so ð@2U=@V2ÞS � 0. So the 
forward sector defined relative to any state X on the adiabatic

is “upward pointing” in Lieb and Yngvason’s terms: the pro-
jection on the energy axis of the normal to the tangent plane at 
X pointing to the interior of the forward section is positive.39 

This is a necessary condition for the Planck prin-ciple to hold. 
(Note in the figure that for the state Y there is a state Y0 on the 
adiabat with the same deformation coordi-nates, and U(Y) � 
U(Y0).) However, if the adiabat is concave, then the forward 
sector will be downward pointing. So apart from the special 
case of a flat boundary, owing to Axiom A7 the shape of the 
adiabat will determine where the forward sector lies 
unambiguously.40

However, the shape of the adiabat, and hence the upward 
or downward pointing nature of the forward sector, are not 
determined by the L-Y axioms. The original energy ambigu-
ity in Carath�eodory’s 1909 formulation has reappeared. Lieb 
and Yngvason are clearly aware, as we saw in Sec. V D, that 
two worlds are consistent with their axioms, but prefer to say 
that the choice of the familiar Kelvin world is one of 
“convention.” In our opinion, Carath�eodory’s view of the 
matter is the correct one: it is nature, not the observer, that 
makes the choice, and given some background arrow of 
time, experiment is needed to see what nature prefers.

E. The flow of energy (heat)

It is perhaps worth comment that the convex combination 
Axiom A7 does not seem to be required to obtain important 
variants of the second law. Consider the simple derivation 
Lieb and Yngvason give of the proposition that energy (heat) 
spontaneously flows from hot to cold bodies, and not the 
converse (recall the related ambiguity in Sec. III).41 A body A 
is defined to be hotter than another body B if the absolute 
temperature TA is greater than TB, where temperature TA(B) is 
defined as ð@SAðBÞ=@UAðBÞÞ�1; SAðBÞ being the entropy of A(B). 
Note that this definition of “hotter than” is reasonable only if 
TA(B) is everywhere positive, and this constraint is a 
consequence42 of the upward-pointing nature of the forward 
sectors and the choice of the function S and not S~ � �S in 
defining temperature in this way (see the end of Sec. V B). It 
is easy now for Lieb and Yngvason to obtain the desired irre-
versible flow of energy (heat) from A to B, given the conser-
vation of total energy for the joint system, and the
monotonicity of UA(B) with respect to TA(B). We won’t repeat 
the details, other than to make two remarks.

First note that the spontaneity of this energy flow process 
(once thermal contact is achieved) leading to a common tem-
perature can be secured by appeal to a special case of the 
equilibration principle.43 Second, and more to the point, the
strict monotonicity condition between UA(B) and TA(B) is a 
consequence of the concavity and differentiability of the en-
tropy for simple systems. Concavity of entropy in general 
terms is established by Lieb and Yngvason’s Theorem 2.8, 
which relies on the convex combination Axiom A7. However, 
what is actually required in the heat flow argument is the 
weaker claim that entropy is concave relative to the in-ternal 
energy, and Lieb and Yngvason had earlier established (p. 53) 
that this does not depend on Axiom A7.11 It seems then that 
this axiom is not crucial to the argument, whereas the 
upwards pointing condition certainly is.

Finally, a word of caution about over-simplistic inferences 
as to what an anti-Kelvin world would be like according to the 
L-Y scheme. Suppose that the adiabat is strictly concave (not 
convex as depicted in Fig. 1), the Planck principle is false, 
and ð@2U=@V2ÞS < 0. Now pressure P by definition

Fig. 1. A constant-entropy curve joining states X1, Y0, and X2. State Y is a

convex combination of X1 and X2 (see text).



satisfies the equation P ¼ �ð@U=@VÞS.
44 Thus ð@P=@VÞS 

¼ �ð@2U=@V2Þ > 0. Suppose a weight is placed on top of a 
piston with the pressure exactly set to balance the weight. It 
would seem that any bump involving the least increase of 
volume would increase the pressure and lead to a runaway 
process propelling the weight upwards; conversely a pertur-
bation decreasing the volume would cause a continual col-
lapse of the piston to zero volume. By Le Chatelier’s 
principle, this means that all the states of the system are 
unstable equilibria, analogous to points on the upwards-
sloping region of a van der Waals isotherm.45 (This instabil-
ity argument also holds for negative-pressure systems with U 
as an increasing function of V on the adiabats. In either case, 
whether any such instability threatens the validity of the 
equilibration principle is a moot point.) However, such a 
conclusion presupposes that the pressure P is interpreted as 
force per unit area, and that a force acting on a body at rest 
produces, as in our world, a motion in the same direction as 
the force. However, in a counterfactual anti-Kelvin world, 
this latter assumption may be false; how thermodynamical 
systems interact with mechanical systems is not established 
on the basis of the L-Y axioms alone.46

VI. CONCLUSIONS

We have argued that to understand aspects of 
Carath�eodory’s, or indeed any approach to the second law in 
thermodynamics, a background arrow of time needs to be 
specified, and we suggest defining it by way of the equilibra-
tion principle (minus first law). The L-Y approach, compared 
to Carath�eodory’s, requires weaker assumptions in order to 
derive a monotonic entropy function but needs considerably 
more axioms in order to establish a recognizable version of 
the second law. In part this reflects an admirable attention to 
detail and an attempt to make every step transparent while 
using less differential structure; one must also not overlook 
the ambitious program of deriving the comparison hypothe-
sis. However, a strict analog of the energy ambiguity in 
Carath�eodory’s approach reappears in the L-Y scheme. The 
upward pointing nature of forward sectors (and hence the 
Planck principle) appears not to be a consequence of the L-Y 
axioms, nor is it a mere convention; it plays the role of an 
appeal to experience, over and above the axioms, of the kind 
Carath�eodory needed in order to derive the standard Kelvin-
Planck version of the second law.
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