
 

Permanent link to this version 

http://hdl.handle.net/11311/1142032 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
Y. Wang, F. Topputo 
Robust Bang-Off-Bang Low-Thrust Guidance Using Model Predictive Static Programming 
Acta Astronautica, Vol. 176, 2020, p. 357-370 
doi:10.1016/j.actaastro.2020.06.037 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.actaastro.2020.06.037 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  



Robust Bang-Off-Bang Low-Thrust Guidance Using

Model Predictive Static Programming

Yang Wang a,1,∗, Francesco Topputoa,2

aDepartment of Aerospace Science and Technology, Politecnico di Milano,
Via La Masa 34, Milano, 20156, Italy.

Abstract

Model Predictive Static Programming (MPSP) has been always used under
the assumption of continuous or impulsive control, but never in low-thrust
transfers featuring bang-off-bang control. Following the observation that the
sensitivity matrix (SM) is discontinuous across the switching time, this work
introduces a two-loop MPSP guidance scheme using fuel-optimal trajectories
as nominal solutions. In our method, the equations of motion are augmented
by the mass costate equation, while the velocity costate is the MPSP control,
expressed by a weighted sum of Fourier basis functions. The SM is computed
at the switching time by using calculus of variations. Both the MPSP con-
trol and the initial mass costate are updated in an inner loop using Newton’s
method, and continuation is employed in an outer loop to face large per-
turbations. A sample interplanetary CubeSat mission to an asteroid is used
as study case to illustrate the effectiveness and robustness of the method
developed.
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1. Introduction

Highly efficient propulsion systems, such as electric thrusters and solar
sails, have made low-thrust propulsion an alternative to enable ambitious
space missions. Extensive works have focused on open-loop optimal low-
thrust trajectory design [1–4]. However, in real-world flight, disturbances
such as solar radiation pressure and unmodeled accelerations, require to con-
tinuously update the control profile. The commonly used strategy is to up-
link control commands from ground. This involves massive off-line computa-
tions and frequent communications with ground, with a consequent increase
of operation costs. Due to rapid proliferation of miniaturized interplanetary
space probes, this strategy hardly meets the always-increasing demand for
operation cost reduction through autonomy [5].

Nonlinear optimal control problem (NOCP) theory is used to design guid-
ance and control laws: it allows satisfying constraints while simultaneously
optimizing a performance index. Neighboring optimal control (NOC) is the
widely used NOCP-based technique to track a nominal solution. NOC for-
mulates the feedback control by optimizing a second-order performance index
[6]. Several works have investigated NOC methods for bang-off-bang control
problems. Kornhauser and Lion [7] derived the corrective controller by estab-
lishing and solving an accessory minimum problem. Zheng [8, 9] investigated
the NOC from a geometric point of view, for both fixed terminal time and
free terminal time multi-burn transfer problems. Di Lizia et al [10] designed
high-order NOC using differential algebra.

Nonlinear model predictive control (NMPC) is another tracking strat-
egy, which employs iterative and finite-horizon optimization. For low-thrust
transfers, Gao [11] designed NMPC using orbit averaging techniques to track
the mean orbit elements. Huang et al [12] proposed a NMPC strategy that
utilizes differential transformation in optimization to track the nominal tra-
jectory. The tracking strategy enforces the spacecraft to be in close vicinity
of the nominal solution for any flight conditions [13]. In bang-off-bang con-
trol problems, the controller design is usually based on the assumption that
the bang-off-bang structure is unchanged under perturbations [8, 10, 14].
Therefore, this strategy lacks operational flexibility.

In order to overcome this drawback, algorithms that allow re-computing
the entire nominal trajectory at the beginning of each guidance interval
have been sought. One strategy involves solving a two-point boundary value
problem (TPBVP). Pesch [15, 16] applied multiple shooting method to re-
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compute the trajectory for general optimal control problems. Wang [17]
used convex programming to compute fuel-optimal spacecraft trajectory, yet
costate estimation is required to accurately capture the bang-off-bang struc-
ture [18]. Recently, Furfaro and Mortari [19] developed an energy-optimal
guidance method by using the theory of function connections (TFC). John-
ston et al [20] further extended the TFC-based guidance to fuel-optimal land-
ing problems, based on a prescribed thrust sequence. The drawback of solving
a TPBVP is that it employs iterative methods, and thus it requires consistent
computational capabilities and exposes to convergence risks [13].

Alternatively, dynamic programming relies on Hamilton–Jacobi–Bellman
(HJB) equation [6]. Beard [21] approximated the solution to HJB equation
by using Galerkin’s spectral method. Park and Scheeres [22] employed gen-
erating functions to design feedback control laws. Vadali and Sharma [23]
formulated feedback control law by power series expansion of the cost-to-go
function with time-dependent gains. Heydari and Balakrishnan [24] devel-
oped a neural-network-based control method, where the dynamical program-
ming theory is used to train the network. Sharma and York [25] used a
pseudo-linear dynamical system to design state-dependent feedback control
for problems with linear terminal constraints. In summary, few works deal
with guidance and control laws for low-thrust transfers with bang-off-bang
policy through dynamical programming.

Model Predictive Static Programming (MPSP), a NOCP-based technique
that combines model predictive control and dynamic programming [26], is a
possibly promising technique. The innovation of MPSP is threefold [27].
Firstly, it successfully converts a dynamic programming problem to a static
programming problem, and thus it requires only a static costate vector for
the control update. Secondly, the symbolic costate vector has a closed-form
solution, which reduces the computational load. Thirdly, the sensitivity ma-
trix (SM) that is necessary to compute the static costate vector can be cal-
culated recursively. These advantages favor applications of the MPSP in
various contexts [13, 28–30]. Some variations of MPSP have also been pro-
posed. For example, the generalized MPSP [27] formulated the problem in
continuous-time framework, not requiring any discretization process to begin
with. Quasi-Spectral MPSP [31] expressed the control profile as a weighted
sum of basis functions, enabling the method to optimize only a set of coeffi-
cients instead of optimizing the control variable at every grid point. Recently,
Sakode and Padhi [32] extended MPSP to impulse control, but with fixed
impulse time instance and continuous impulse magnitude. Nevertheless, to
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the best of the authors knowledge, MPSP has not been investigated for low-
thrust transfers with bang-off-bang control. This is because, as shown in the
present paper, the SM across the switching time is discontinuous and com-
pensation is thus required. Therefore, since state-of-the-art MPSP methods
always assume continuous or impulsive control, they fail to get accurate SM.

In this work, a robust two-loop MPSP guidance scheme is presented for
low-thrust transfers with bang-off-bang control. Firstly, the fuel-optimal low-
thrust problem is stated in Cartesian coordinates, and the fuel-optimal solu-
tion is used as the nominal solution. Inspired by the natural feedback con-
troller given by Pontryagin minimum principle, the unconstrained velocity
costate vector is treated as MPSP control. In order to ensure the continu-
ity of the switching function at the switching time, dynamical equations are
augmented by the mass costate equation. Moreover, the SM is calculated
recursively, and switches are compensated using calculus of variations. This
validates our assumption that the SM is discontinuous across the switching
time. In order to ensure the continuity of the thrust angle profile, the MPSP
control is represented by a weighted sum of Fourier basis functions, where the
weights are initialized based on the nominal trajectory using a least square
method. Finally, a two-loop MPSP method is designed for both small and
large perturbations, where Newton’s method and continuation are imple-
mented in inner and outer loops, respectively. For the first time, a MPSP
guidance scheme handling bang-off-bang control in low-thrust transfers is
designed. A number of numerical simulations demonstrate the effectiveness
and robustness of the proposed method.

This paper is structured as follows: Section 2 states the guidance problem
by using MPSP method. Section 3 depicts the detailed MPSP guidance
design. Section 4 presents numerical simulations for a CubeSat mission to
an asteroid. Final remarks are given in Section 5.

2. Problem Statement

2.1. Equations of Motion

This work considers the heliocentric phase of an interplanetary transfer
mission, where the spacecraft is subject to the gravitational attraction of the
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Sun. The equations of motion of the spacecraft are

ẋ = f(x,α, u)⇒

 ṙv̇
ṁ

 =


v

g(r) + u
Tmax

m
α

−uTmax

c

 (1)

where µ is the Sun gravitational parameter, g(r) := −µr/r3, r := [x, y, z]>,
and v := [vx, vy, vz]

> are the gravitational vector field, the spacecraft position
vector, and its velocity vector, respectively; m is the spacecraft mass, Tmax is
the maximum thrust magnitude, c = Isp g0 is the exhaust velocity (Isp is the
engine specific impulse, g0 is the gravitational acceleration at sea level), u is
the thrust throttle factor, α is the thrust pointing vector. The state vector
is x := [r,v,m]>. Both Tmax and c are assumed constant during flight.

2.2. Fuel-Optimal Problem

The nominal solution is a fuel-optimal trajectory. The performance index
is

J =
Tmax

c

∫ tf

t0

u dt (2)

where t0 and tf are initial and terminal time, both fixed. The initial state
is known, i.e., x(t0) = x0. For an interplanetary mission, the final position
and velocity are known, i.e.,

r(tf ) = rf , v(tf ) = vf (3)

The inequality constraint for the thrust throttle factor is

0 ≤ u ≤ 1 (4)

The Hamiltonian function reads [6]

H =
Tmax

c
u+ λ>r v + λ>v

[
g(r) + u

Tmax

m
α

]
− λmu

Tmax

c
(5)

where λ := [λr,λv, λm] is the costate vector associated to x. Dynamical
equations for λ are

λ̇ = −
(
∂H

∂x

)>
⇒

λ̇rλ̇v
λ̇m

 =

 −G(r)>λv
−λr

uTmax/m
2λ>v α

 (6)
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where G(r) := ∂g(r)/∂r. Since the final mass is free, there exists

λm(tf ) = 0 (7)

According to Pontryagin minimum principle, the optimal thrust direction
is [33]

α∗ = −λv
λv
, if λv 6= 0 (8)

where λv = ‖λv‖2. Substituting Eq. (8) into Eq. (5) yields

H = λ>r v + λ>v g(r) +
uTmax

c
S (9)

where the switching function S is defined as

S = −λv
c

m
− λm + 1 (10)

The optimal u∗ is determined by S through

u∗ =

{
0, if S > 0

1, if S < 0
(11)

which is a bang-off-bang control type, forming the thrust sequence.
In indirect methods the problem is to find λ0 that (together with x0)

allows integrating Eqs. (1) and (6) with the control law in Eqs. (8) and (11)
and verifies the terminal constraints (3) and (7) [2]. Singular thrust arcs are
not considered here since they have been shown to be non-optimal in general
[34]. Once optimal α∗(t) and u∗(t) are determined, the nominal spacecraft
trajectory can be generated by integrating Eqs. (1) and (6).

2.3. MPSP Dynamics and Control

In real-world flight, it would be desirable to enable the spacecraft to au-
tonomously update the control profile to cancel unmodeled perturbations or
to achieve new mission goals. Model Predictive Static Programming (MPSP)
is a promising technique to do so. Differently from indirect methods whose
aim is to find λ0, MPSP directly manipulates and updates the control history
through an iterative process [26]. However, the original MPSP for uncon-
strained problems [26] cannot be used in the present context because of the
constraint in Eq. (4) and the control structure in Eq. (11).
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Let x∗(t) and λ∗(t) denote the nominal state and costate profiles, re-
spectively, and let x(t) and λ(t) be their associated, off-nominal values. Let
∆λ(t) be the costate deviation. Then, the two functions [8]

u(x,λ∗ −∆λ) =
1

2
{1− Sgn [ S(x,λ∗ −∆λ) ]}

α(x,λ∗ −∆λ) = − λ∗v −∆λv
‖λ∗v −∆λv‖2

, if ‖λ∗v −∆λv‖2 6= 0
(12)

define the feedback controller associated with x at t, where Sgn is defined as

Sgn(z) =

{
1, if z > 0

−1, if z < 0
(13)

From Eq. (12) it is clear that updating u and α can be achieved by
updating the unconstrained costate vector, thus this work treats the costate
vector as the MPSP control variable. This idea also has been utilized in NOC
design [8] and Lyapunov guidance design [35]. Notice from Eqs. (10) and (12)
that the costate components affecting u and α are λv and λm. However, only
λv is used as the MPSP control, based on three facts. Firstly, it can be seen
from λ̇m and λ̇v in Eq. (6) that λ̇m is dependent on λv, but λ̇v is independent
on λm. Secondly, if λm is used as a control variable, λ̇m cannot be expressed
by Eq. (6). Indeed, the time derivative of the switching function S

Ṡ = −λ̇v
c

m
− λv

uTmax
m2

− λ̇m (14)

would hardly be continuous because of the presence of u. On the other hand,
if λm is augmented to the state vector, λ̇m is the same as Eq. (6). Then Ṡ
simply becomes

Ṡ = −λ̇v
c

m
= − c

mλv
λ>v λ̇v (15)

which is implicitly dependent on u. Thirdly, λ̇m is discontinuous due to the
presence of u. Since continuous basis functions are used to approximate the
MPSP control profile in this work, they may be inappropriate to efficiently
capture the discontinuity [19].
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Thus, the MPSP dynamical equations used are

Ẋ = F(t,X,U)⇒


ṙ
v̇
ṁ

λ̇m

 =



v

g(r)− uTmax

mλv
λv

−uTmax

c

−uTmax

m2
λv

 (16)

whereX := [x, λm], U := λv. The optimal thrust direction Eq. (8) is already
embedded into Eq. (16), and u is computed by Eq. (11). The thrust angles
are 

α = arctan

(
λv,2
λv,1

)
β = arcsin

(
λv,3
λv

) (17)

where α ∈ [0, 2π] is the in-plane angle3, β ∈ [−π/2, π/2] is the out-of-plane
angle, and λv,i is the ith element of λv. Once X(t) and U(t) are determined,
the profile of S is known, which then determines u and α through Eqs.
(11) and (8). Suppose that the off-nominal trajectory is given, the task of
the MPSP guidance is to determine ∆U(t) and ∆λm0 such that the future
solution obtained by integrating Eq. (16) satisfies the boundary conditions
Eqs. (3) and (7), while undergoing a bang-off-bang control.

3. MPSP Algorithm Design

3.1. Sensitive Matrix Calculation

Differently from problems with continuous control profile, dynamical dis-
continuity happens at switching points. After the integration of Eq. (16), the
obtained trajectory is split into multiple segments. The time instants bound-
ing each segment are {t0, t1,j, · · · , tMj−1,j, tMj

}, where Mj is the number of
segments, t0 and tMj

= tf are initial and final time, respectively, and tk,j, k =
1, 2, · · · ,Mj−1 are switching times; the subscript j denotes the jth iteration,

3α is mathematically defined in [−π/2, π/2] because of “arctan” function. Here, the
quadrant is considered to better resolve α.
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our method being iterative. Let {t0−k,j, t
0+
k,j, t

1
k,j, ...t

Nk,j

k,j }, k = 0, 1, ...,Mj−1 de-

note an evenly-spaced time grid within [tk,j, tk+1,j], where t
0−
k,j and t

0+
k,j are the

time instants across the instantaneous switch-on or off of the engine, and

Nk,j = Ceil

(
tk+1,j − tk,j

hmax

)
(18)

where “Ceil” is the round up operator and hmax is the prescribed maximum
discretization interval. To ease notation, Nk,j and Mj are denoted N and M .

Note that tNk,j = t
0−
k+1,j, thus they label the same time instant, but belong to

adjacent segments. Suppose there is no switching at the initial time; then,
t
0−
0 = t

0+
0 = t0.

Consider the kth segment [tk,j, tk+1,j], the discretized system dynamics
and its output are

X i+1
k,j = F i

k,j(X
i
k,j,U

i
k,j), Y i

k,j = O(X i
k,j) (19)

where Y i
k,j, is the output at tik,j andO is the output operator. F i

k,j(X
i
k,j,U

i
k,j)

is the discretized dynamics, which can be obtained from Eq. (16) using stan-
dard integration formulae [26]. High-order integration formulae result in
higher accuracy, but larger computational load. In this work, the standard
4th order Runge–Kutta integration scheme is used, see Appendix A.

Given the initial state x0, the primary objective is to update the control
history U i

k,j and the initial mass costate λm0,j such that the output Y i
k,j at

tf , i.e., Y N
M−1,j, reaches the desired value Y d. Writing Y N

M−1,j about Y d

in Taylor series expansion and neglecting high-order terms, the error at the
terminal output ∆Y N

M−1,j = Y N
M−1,j − Y d is approximated as

∆Y N
M−1,j

∼= dY N
M−1,j =

[
∂Y N

M−1,j

∂XN
M−1,j

]
dXN

M−1,j (20)

The derivation of dX i+1
k,j should consider whether a discontinuity appears

or not. For the intervals [tik,j, t
i+1
k,j ], i = 1, · · · , N − 1, where there is no

switching time, there exists

dX i+1
k,j =

[
∂F i

k,j

∂X i
k,j

]
dX i

k,j +

[
∂F i

k,j

∂U i
k,j

]
dU i

k,j (21)

See Appendix A the computation of ∂F i
k,j/∂X

i
k,j and ∂F i

k,j/∂U
i
k,j.
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For the interval [t
0−
k,j, t

1
k,j] that contains a switching point, we have

dX1
k,j =

[
∂F

0+
k,j

∂X
0+
k,j

]
dX

0+
k,j +

[
∂F

0+
k,j

∂U
0+
k,j

]
dU

0+
k,j

=

[
∂F

0+
k,j

∂X
0+
k,j

][
∂X

0+
k,j

∂X
0−
k,j

]
dX0−

k,j +

[
∂F

0+
k,j

∂X
0+
k,j

][
∂X

0+
k,j

∂U
0−
k,j

]
dU

0−
k,j +

[
∂F

0+
k,j

∂U
0+
k,j

]
dU

0+
k,j

=

[
∂F 0

k,j

∂X0
k,j

]
dX0

k,j +

[
∂F 0

k,j

∂U 0
k,j

]
dU 0

k,j

(22)
where dU 0

k,j := dU
0−
k,j = dU

0+
k,j due to continuity of the thrust angle, dX0

k,j :=

dX
0−
k,j, and[

∂F 0
k,j

∂X0
k,j

]
:=

[
∂F

0+
k,j

∂X
0+
k,j

][
∂X

0+
k,j

∂X
0−
k,j

]
,

[
∂F 0

k,j

∂U 0
k,j

]
:=

[
∂F

0+
k,j

∂X
0+
k,j

][
∂X

0+
k,j

∂U
0−
k,j

]
+

[
∂F

0+
k,j

∂U
0+
k,j

]
(23)

Based on calculus of variations, the expressions of ∂X
0+
k,j/∂X

0−
k,j and

∂X
0+
k,j/∂U

0−
k,j are (see Appendix B for the derivation of Eqs. (24) and (25))[

∂X
0+
k,j

∂X
0−
k,j

]
= I +

(
Ẋ

0+
k,j − Ẋ

0−
k,j

)
SX/Ṡ (24)

[
∂X

0+
k,j

∂U
0−
k,j

]
=
(
Ẋ

0+
k,j − Ẋ

0−
k,j

)
SU/Ṡ (25)

where SX and SU are row vectors that are the partial derivative of S w.r.t.

X and U , respectively, i.e., SX =
[
01×6,

c

m2
λv,−1

]
and SU = − c

mλv
λ>v ,

and Ṡ is calculated according to Eq. (15).
Combining Eq. (21) with Eq. (22) yields the unified form of dX i+1

k,j as

dX i+1
k,j =

[
∂F i

k,j

∂X i
k,j

]
dX i

k,j +

[
∂F i

k,j

∂U i
k,j

]
dU i

k,j, i = 0, 1, · · · , N − 1 (26)

Substituting Eq. (26) into Eq. (20) yields

dY N
M−1,j =

[
∂Y N

M−1,j

∂XN
M−1,j

]{[
∂FN−1

M−1,j

∂XN−1
M−1,j

]
dXN−1

M−1,j +

[
∂FN−1

M−1,j

∂UN−1
M−1,j

]
dUN−1

M−1,j

}
(27)
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Similarly, dXN−1
M−1,j at tN−1

M−1,j can be expanded in terms of dXN−2
M−1,j and

dUN−2
M−1,j at tN−2

M−1,j. Next, dXN−2
M−1,j can be expanded in terms of dXN−3

M−1,j

and dUN−3
M−1,j. For the (M−1)th segment, this process goes back to dX0

M−1,j.

Notice that dXN
M−2,j = dX0

M−1,j, and thus the same process can be extended

back for the (M−2)th segment. Extending the process untilX0
0,j, one obtains

dY N
M−1,j = Aj dX0

0,j +B0
0,j dU 0

0,j +B1
0,j dU 1

0,j + · · ·+BN−1
M−1,j dUN−1

M−1,j

= Aj dX0
0,j +

M−1∑
k=0

N−1∑
i=0

Bi
k,j dU i

k,j

(28)
The compact form of coefficients Aj and Bi

k,j in Eq. (28) are

Aj =

[
∂Y N

M−1,j

∂XN
M−1,j

]
0∏

k=M−1

0∏
i=N−1

[
∂F i

k,j

∂X i
k,j

]

Bi
k,j =

[
∂Y N

M−1,j

∂XN
M−1,j

]{
k+1∏

p=M−1

0∏
q=N−1

[
∂F q

p,j

∂Xq
p,j

]}{
i+1∏

q=N−1

[
∂F q

k,j

∂Xq
k,j

]}[
∂F i

k,j

∂U i
k,j

]
(29)

where

Ω∏
q=i

[
∂F q

k,j

∂Xq
k,j

]
=


1, if Ω > i[
∂F i

k,j

∂X i
k,j

][
∂F i−1

k,j

∂X i−1
k,j

]
· · ·

[
∂F Ω

k,j

∂XΩ
k,j

]
, if Ω ≤ i

(30)

Ω∏
k=i

[
∂F q

k,j

∂Xq
k,j

]
=


1, if Ω > i[
∂F q

i,j

∂Xq
i,j

] [
∂F q

i−1,j

∂Xq
i−1,j

]
· · ·

[
∂F q

Ω,j

∂Xq
Ω,j

]
, if Ω ≤ i

(31)

Note that the initial state x0 is known and fixed (dx0 = 0), while the
initial value of λm0 can be adjusted. Then, Eq. (28) is modified as

dY N
M−1,j = Aλ,j dλm0,j +

M−1∑
k=0

N−1∑
i=0

Bi
k,j dU i

k,j (32)

where

Aλ,j = Aj

[
∂X0

0

∂λm0

]
= Aj [01×7, 1]> (33)
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The outcome of Eq. (33) is to assign the last column vector ofAj toAλ,j. The
coefficient Bi

k,j is called sensitivity matrix (SM) [13]. The MPSP technique
is desirable because the computation of SM can be reduced to an iterative
calculation. Define

BN
M−1,j,0 =

[
∂Y N

M−1,j

∂XN
M−1,j

]
(34)

there exists

Bi
k,j,0 = Bi+1

k,j,0

[
∂F i+1

k,j

∂X i+1
k,j

]
, Bi

k,j = Bi
k,j,0

[
∂F i

k,j

∂U i
k,j

]
(35)

In traditional MPSP technique, dU i
k,j is linear with Bi

k,j [13]. However,
it is clearly that the SM is discontinuous across the switching time due to
Eq. (22). Applying the classic MPSP will result in a discontinuous thrust
angle, which is meaningless from a physical point of view.

3.2. MPSP Control Representation and Update

In this work, the MPSP control profile is expressed by using a weighted
sum of continuous basis functions. The advantages are twofold. Firstly, the
continuity of the thrust angle profile can be ensured automatically due to the
continuity of basis functions. Secondly, Ṡ as in Eq. (15) can be calculated
analytically. The MPSP control is then expressed as

U i
k,j(η) = P i

k,j(η)εj (36)

where εj is the weight to the basis functions. In Eq. (36),

P (η) =


h>(η)

h>(η)
. . .

h>(η)

 (37)

where h(η) is the collection of different orders of basis functions, and η ∈
[η0, ηf ] is the independent variable for them.

According to Eq. (36), the update of U i
k,j(η) can be achieved by updating

εj. The differential of Eq. (36) w.r.t. εj is

dU i
k,j(t) = P i

k,j(t)dεj (38)
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where η is replaced by t using the linear projection as

η =
ηf − η0

tf − t0
(t− t0) + η0 (39)

Substituting Eq. (38) into Eq. (32) yields

dY N
M−1,j = Aλ,j dλm0,j +

M−1∑
k=0

N−1∑
i=0

Bi
k,,jP

i
k,jdεj (40)

The performance index is set as

J =
1

2
dε>j Rεdεj +

1

2
Rλ dλ2

m0,j (41)

Since the MPSP control used is unrelated to the thrust throttle factor u,
Eq. (41) is set in order to update the solution in the neighborhood of the
nominal path.

Let Bv,j =
∑M−1

k=0

∑N−1
i=0 B

i
k,jP

i
k,j, the augmented performance index is

Ĵ =
1

2
dε>j Rεdεj+

1

2
Rλ dλ2

m0,j+p
>
j

(
dY N

M−1,j −Aλ,j dλm0,j −Bv,jdεj
)

(42)

where pj is the static costate vector associated to Eq. (40). The necessary
conditions of optimality read(

dĴ

d (dεj)

)>
= Rε dεj −B>v,jpj = 0

dĴ

d(dλm0,j)
= Rλ dλm0,j −A>λ,jpj = 0

(43)

Substituting Eq. (43) into Eq. (40) yields

pj =
(
Aλ,jA

>
λ,j/Rλ +Bv,jR

−1
ε B

>
v,j

)−1
dY N

M−1,j (44)

with the assumption that Aλ,jA
>
λ,j/Rλ +Bv,jR

−1
ε B

>
v,j is regular. Substitut-

ing Eq. (44) into Eq. (43) gives the Newton gradient dεj and dλm0,j at jth

iteration, as
dεj = R−1

ε B
>
v,jpj

dλm0,j = A>λ,jpj/Rλ

(45)
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An iterative update is implemented: εj and λm0,j are updated using New-
ton’s method as

εj+1 = εj − dεj

λm0,j+1 = λm0,j − dλm0,j

(46)

where ε0 and λm0,0 are the nominal solution. Then, ∆U i
k and ∆λm0 satisfy

∆U i
k = P i

k,0dε0 + P i
k,1dε1 + · · ·

∆λm0 = dλm0,0 + dλm0,1 + · · ·
(47)

Through MPSP technique, the feedback control of u and α in Eq. (12) is
achieved by an iterative process in Eqs. (46) and (47). This process converges
when the terminal error satisfies the prescribed tolerance. Note that at jth

iteration, u and α profiles are updated using εj, λm0,j, α in Eq. (8) and u
in Eq. (11) through integration, which is then used to calculate the Newton
gradient dεj and dλm0,j, and further εj+1 and λm0,j+1. In order to maintain
the algorithm stability, Newton’s method is executed if the thrust sequence
is varied within a given tolerance. This problem is addressed in Section 3.4.

3.3. Nominal Solution Generation

The open-loop, fuel-optimal problem requires to find a zero of the shoot-
ing function associated with the TPBVP [2]. This work adopts a robust
method that combines analytic derivatives, switching detection technique
and homotopy method to find the fuel-optimal low-thrust trajectory; see
[2]. Specifically, a smoothing technique is implemented to gradually enforce
bang-off-bang discontinuity. The performance index is set as

J̃ =
Tmax

c

∫ tf

t0

[u− ζu(1− u)] dt (48)

where ζ is the continuation parameter. The strategy is to solve an energy-
optimal problem (ζ = 1) and to continue the solution manifold while grad-
ually reducing ζ, until the fuel-optimal problem (ζ = 0) is solved. To solve
the energy-optimal problem, the algorithm generates the initial guess solu-
tion using the Adjoint Control Transformation [36], and the shooting method
is used to find the solution. The main feature of this method is the accurate
calculation of state transition matrix which enhances its robustness.

As stated in Section 3.1, the evenly-spaced time grid is used for each
segment. Let N̂ be the total number of discrete points, and denote the
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nominal discrete control sequence as U k,nom, k = 1, · · · , N̂ . The nominal
λm0,0 can be directly obtained from the open-loop solution. The nominal
weight ε0 is computed by solving the following linear algebraic equation

P̂ ε0 = Û (49)

where

P̂ =


P 1

P 2
...
P N̂

 Û =


U 1,nom

U 2,nom
...

U N̂,nom


The least-square solution is

ε0 = (P̂
>
P̂ )−1P̂

>
Û (50)

3.4. Two-Loop MPSP Guidance Scheme

The integration of Eq. (16) is conducted using a 4th order Runge–Kutta
fixed step scheme, with time step hmax. Also, the switching detection tech-
nique [2] is embedded into integration process. The switching time is required
to be detected accurately, based on two facts. Firstly, if the switching time is
not detected, the integration error will accumulate around the switching time.
Secondly, since SM is discontinuous across the switching time, the detection
of the switching time is necessary for accurate calculation of SM. The detec-
tion occurs when the switching function S traverses zero within [tik,j, t

i+1
k,j ].

The bisection method is used to find the switching time ts ∈ [tik,j, t
i+1
k,j ] at jth

iteration, such that |S(ts)| ≤ 10−12.
The variation of thrust sequence is not restricted while updating ε and

λm0. However, for large perturbations, the change of thrust sequence during
the iteration amplifies the terminal error and then deteriorates the conver-
gence. In order to stabilize the algorithm, a two-loop MPSP algorithm is
designed made of an inner loop and an outer loop. The inner loop MPSP
is illustrated in Algorithm 1, which consists of updating ε and λm0 for the
given perturbed conditions using Newton’s method. It is worth stressing
what follows. Firstly, Newton’s method is implemented only when the L2

norm of terminal error at jth iteration is less than a threshold ∆max, i.e.,
‖∆Y N

M−1,j‖2 ≤ ∆max. Sign is used to label the success (Sign = 1) or
failure (Sign = 0) of the inner loop MPSP. Secondly, the interpolation is
required since evenly-spaced state and control for each segment is used. The
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shape-preserving piecewise cubic interpolation which corresponds to “pchip”
in Matlab’s “interp1” is used. Thirdly, denote Nseg,j and Nseg,nom as the
sum of thrust segments and coast segments for the updated trajectory and
the nominal trajectory at jth iteration. The solution is updated only when
|Nseg,j − Nseg,nom| ≤ Nseg,tol, where Nseg,tol is the restriction on variations of
thrust sequence. Otherwise, Sign = 0 is returned.

The outer loop MPSP is shown in Algorithm 2, which is triggered when
Sign = 0 of the inner loop MPSP is returned. In the outer loop MPSP, the
continuation from nominal conditions to perturbed conditions is conducted.
Denote Cnom as nominal conditions, Cper as perturbed conditions and τ as
continuation parameter. Starting from τ = 0 that corresponds to Cnom,
continuation proceeds with step δτ until τ = 1 that corresponds to Cper. At
each step, the inner loop MPSP is applied to find the solution corresponding
to the conditions

Cτ = (1− τ)Cnom + τCper (51)

Note thatCnom andCper denote nominal and perturbed conditions, including
boundary conditions and parameters, but not the entire history of perturbed
control or state.

Beside, Nseg,tol is initially set to 0 in the outer loop MPSP. Thus, the pre-
sented MPSP algorithm tries to find the updated solution with the nominal
thrust sequence first. The value of Nseg,tol increases once the continuation
fails with current Nseg,tol. The outer loop MPSP fails if δτ ≤ 0.1 before τ
reaches 1, or Nseg,nom −Nseg,tol < −1. The value of δτ threshold is based on
numerical experiments.

The proposed two-loop MPSP guidance logic restricts the variation of
thrust sequence in the inner-loop, to enhance algorithm robustness. As a
side effect, more iterations are needed when the thrust sequence changes.

4. Numerical Simulations

4.1. Nominal Trajectory

An interplanetary CubeSat mission to the asteroid 99942 Apophis leaving
from the Sun–Earth L2 Lagrange point is considered. The physical constants
are listed in Table 1. Moreover, m0 = 25 kg, Tmax = 1.5 × 10−3 N, and
Isp = 3000 s. The transfer duration is 1156 days, from 1 October 2020
to 1 December 2023. The boundary conditions are given in Table 2. The
fuel-optimal transfer orbit is shown in Fig. 1, where the red line denotes the
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Algorithm 1 Inner Loop MPSP Algorithm

Require: Cτ , ε, λm0, ∆max, Nseg,tol, Nseg,nom and hmax.
Ensure: εj, λm0,j and label Sign

1: Integrate Eq. (16) using Cτ , ε, λm0, α in Eq. (8), u in Eq. (11) and
λv = ‖λv‖2, with time step hmax and switching time detection.

2: Set j = 0, εj = ε, λm0,j = λm0.
3: while The terminal error does not satisfy requirements do
4: Extract {t0, t1,j, · · · , tM−1,j, tM}. Interpolate the trajectory.
5: if ‖∆Y N

M−1,j‖2 > ∆max then
6: Return Sign = 0, εj and λm0,j.
7: end if
8: Calculate Aλ,j in Eq. (33), Bv,j in Eq. (29), pj in Eq. (44), dεj and

dλm0,j in Eq. (45). Then calculate εj+1 and λm0,j+1 in Eq. (46).
9: Integrate Eq. (16) using Cτ , εj+1, λm0,j+1, α in Eq. (8), u in Eq. (11)

and λv = ‖λv‖2, with time step hmax and switching time detection. Then
compute Nseg,j.

10: if |Nseg,j −Nseg,nom| ≤ Nseg,tol then
11: j := j + 1.
12: else
13: Return Sign = 0, εj and λm0,j.
14: end if
15: end while
16: Return Sign = 1, εj and λm0,j.
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Algorithm 2 Outer Loop MPSP Algorithm

Ensure: εk and λm0,k.
1: Set ∆max, hmax, δτ0, Nseg,tol. k = 0.
2: Solve the fuel-optimal low-thrust transfer problem [2].
3: Calculate ε0, Cper, λm0,0 and Nseg,nom.
4: Implement inner loop MPSP with input Cper, εk, λm0,k, ∆max, Nseg,tol,
Nseg,nom, hmax, and output εk+1, λm0,k+1, Sign1.

5: if Sign1 = 0 then
6: while Nseg,nom −Nseg,tol ≥ −1 do
7: Set τ = δτ0, δτ = δτ0, τold = 0, k = 0.
8: while δτ > 0 do
9: Calculate Cτ in Eq. (51).

10: Implement inner loop MPSP with input Cτ , εk, λm0,k, ∆max,
Nseg,tol, Nseg,nom, hmax, and output εk+1, λm0,k+1, Sign2.

11: if Sign2 = 0 then
12: δτ := δτ/2.
13: else
14: δτ := min(1− τ, 2δτ), τold = τ , k := k + 1.
15: end if
16: τ = τold + δτ .
17: if δτ ≤ 0.1 and τold 6= 1 then
18: Break.
19: end if
20: end while
21: if δτ = 0 then
22: Return εk, λm0,k.
23: else
24: Nseg,tol := Nseg,tol + 2.
25: end if
26: end while
27: Return failure information.
28: else
29: Return εk, λm0,k.
30: end if
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Table 1: Physical constants.

Physical constants Values

Mass parameter µ 1.327124× 1011 km3/s2

Gravitational field, g0 9.80655 m/s2

Length unit, LU 1.495979× 108 km
Time unit, TU 5.022643× 106 s
Velocity unit, VU 29.784692 km/s
Mass unit, MU 25 kg

Table 2: Boundary Conditions.

Boundary Conditions Values

Initial position vector (LU) r0 = [1.001367, 0.140622,−6.594513× 10−6]>

Initial velocity vector (VU) v0 = [−0.155386, 0.986258,−4.827818× 10−5]>

Terminal position vector (LU) rf = [−1.044138,−0.122918,−0.018183]>

Terminal velocity vector (VU) vf = [0.222668,−0.875235, 0.051944]>

thrust segment (u = 1), and the blue dashed line denotes the coast segment
(u = 0). The thrust throttle u, the switching function S and the mass m
as function of time are shown in Fig. 2. The optimal trajectory consists of
five thrust segments and four coast segments, and the final spacecraft mass
is 21.062 kg.

In the following numerical simulations, Fourier basis functions (see Ap-
pendix C) up to the 15th order are used to approximate the MPSP control
profile. The convergence conditions to terminate the algorithm are such that
the terminal position error ‖∆rf‖2 ≤ 500 km, the terminal velocity error
‖∆vf‖2 ≤ 0.1 km/s and |λmf | ≤ 10−6. For the other parameters settings,
hmax = 5× 10−4 tf , η0 = −π, ηf = π, ∆max = 1, initial δτ as δτ0 = 0.5, Rε is
identity matrix and Rλ = 1. In the open-loop solver, the step of ζ in Eq. (48)
is set to 0.05. All simulations are conducted under an Intel Core i7-9750H,
CPU@2.6GHz, Windows 10 system with MATLAB R2019a. The inner loop
MPSP code is converted to MEX file to speed up simulations.

4.2. Perturbations on Initial Conditions

The proposed MPSP guidance scheme is tested by assuming pertur-
bations on the initial conditions. Different perturbation magnitudes for
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Figure 1: Fuel-optimal trajectory for boundary conditions in Table 2; SEL2 denotes Sun–
Earth L2 Lagrange point and AST denotes the asteroid position upon arrival.
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Figure 2: Thrust throttle u, switching function S, and mass m profiles corresponding to
the fuel-optimal trajectory in Fig. 1.
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the same basic perturbation case are simulated. The basic case is ran-
domly generated, with perturbations on initial position and velocity as δr0 =
[1.6712,−1.0659,−4.1460] × 10−2 LU and δv0 = [1.0876, 2.3763, 4.6092] ×
10−2 VU. The perturbed initial conditions are r̂0 = r0 + κ δr0 and v̂0 =
v0 + κ δv0 with κ ∈ [−3,−2.5,−2,−1, 1, 2, 2.5, 3, 3.5], which corresponds to
9 cases. Cases 1–4 have opposite perturbation direction w.r.t. cases 5–9.
The simulation results are summarized in Table 3 which gives the terminal
position and velocity errors, the total Newton’s iteration4 in the inner loop
MPSP (NI), the percentage of fuel increase w.r.t. the corresponding optimal
solutions (FI), the computational time for both the MPSP (MPSP-CT) and
indirect method (TPBVP-CT). The same abbreviations are used in the re-
mainder. It can be observed that the algorithm works successfully since the
terminal errors are all within the tolerance.

The comparisons of thrust angles between the MPSP solutions and the
nominal solution are shown in Fig. 3. It can be seen that the variations
of α for cases 5–9 are more obvious than that of cases 1–4, while the β
oscillations for all cases remain in the vicinity of the nominal solution. Note
that in Fig 3a, the abrupt changes of α are caused by the definition of angle
range. Since most of them are locate inside the coast arcs, these variations
contain no useful information to the analysis.

The comparisons of thrust sequences among the MPSP solutions, the
corresponding fuel-optimal solutions and the nominal solution are shown in
Fig. 4. We can see that the optimal solutions gradually produce new coast
segments from case 4 to 1, while the MPSP solutions retain the nominal
thrust sequence. However, for cases 1–4, it is clear from Fig. 4 that the
time duration of each thrust segment is updated to satisfy the perturbed
conditions. From case 5 to 9, the initial conditions are becoming tighter, and
more actuation is required to drive the spacecraft to the target. The MPSP
solutions and optimal solutions show a similar trend, i.e., they gradually
increase the number of the thrust segments.

The deviations between the MPSP solutions and the nominal solution on
coordinates are shown in Fig. 5. It is interesting to see that the deviations are
symmetric for the two groups with opposite directions of initial perturbations.

From Table 3, case 4 requires the fewest NI and the outer loop MPSP
is not triggered. On the other hand, case 9 requires the highest NI, since

4 Specifically, it refers to the computational times of Eq. (45).
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Figure 3: In-plane angle α and out-of-plane angle β of the converged MPSP trajectories
for variations of initial conditions in Table 3.

the thrust profile changes considerably compared with the nominal thrust
sequence as shown in Fig. 4. For cases κ = −3 and κ = 3, even though the
perturbation magnitudes are the same, case κ = 3 requires nearly twice NI
than case κ = −3, because case κ = 3 requires two coast segments fewer than
that of the nominal thrust sequence, whereas the thrust sequence of MPSP
solution for case κ = −3 retains the nominal thrust sequence. Case 1 is the
most expensive featuring FI by 6.09%, while the cheapest is case 5 with FI
just 0.16%. As for computational time, MPSP-CT has a positive correlation
with iterations. TPBVP-CT is steady, except for cases 2 and 5 where the
nearly impulsive segment requires smaller continuation step and thus more
iterations. In case 4 where only inner loop MPSP is used, MPSP-CT is much
faster than TPBVP-CT. From Table 3, MPSP-CT is faster than TPBVP-CT
if MPSP converges within 25 NI.

4.3. Perturbations on Terminal Conditions

Different variations on terminal positions are simulated to test the devel-
oped method. 8 perturbed terminal positions are taken on the vertex of a
cube centered at the nominal terminal position. The side length of the cube
is set to 0.04 LU. The corresponding 8 cases for δrf = [δxf , δyf , δzf ]

> are
shown in Table 4. The simulation results are shown in Table 5. It can be
observed that all obtained terminal values are within the tolerance.

Fig. 6 represents the variations of thrust angles α and β. It can be seen
that the obtained angle variations are smooth and close to the nominal case.
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Figure 4: Comparison of optimal thrust sequences and thrust sequences of MPSP solutions
for cases in Table 3. Red dashed line: optimal thrust sequences; Blue line: thrust sequences
of MPSP solutions; Grey dash-dot line: nominal thrust sequences.
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Figure 5: Deviations between converged MPSP trajectories and the nominal trajectory on
coordinates for cases in Table 3.

23



Table 3: Simulation results for perturbations on initial conditions.
Case κ ‖rf − r(tf )‖2 ‖vf − v(tf )‖2 |λm(tf )| NI FI MPSP-CT TPBVP-CT

(km) (km/s) (–) (%) (s) (s)

1 −3 15.37 3.07× 10−6 1.43× 10−8 28 6.09 6.88 6.31
2 −2.5 41.38 1.74× 10−5 4.21× 10−7 23 2.81 5.56 19.08
3 −2 101.18 1.77× 10−5 2.51× 10−7 16 3.42 3.87 6.23
4 −1 11.94 3.85× 10−6 1.21× 10−7 5 2.28 1.12 6.57
5 1 16.48 3.40× 10−6 2.34× 10−8 32 0.16 8.15 12.53
6 2 2.57 5.48× 10−7 1.54× 10−9 25 5.02 5.94 6.26
7 2.5 2.38 4.78× 10−7 9.38× 10−10 32 1.11 7.62 6.58
8 3 53.97 1.45× 10−5 2.05× 10−7 60 2.55 14.51 6.63
9 3.5 226.28 4.21× 10−5 1.56× 10−7 99 1.96 22.89 6.92

The comparison of thrust sequences among the MPSP solutions, the corre-
sponding optimal solutions and the nominal solution are shown in Fig. 7.
We notice that the MPSP solutions coincide with the optimal solutions well
for most cases. For cases 1 and 3, the optimal thrust sequences feature more
coast segments than the nominal solution. For cases 2, 4 and 8, MPSP so-
lutions capture the main structure of optimal thrust sequences except some
near-impulse segments. For cases 5, 6 and 7, MPSP solutions perfectly coin-
cide with the optimal thrust sequences.

The deviation between nominal solution and the MPSP solutions on co-
ordinates are shown in Fig. 8. The x deviation for case 1–4 and case 5–8 are
nearly symmetric. The y deviations also show similar symmetry except the
last 200 days. The z deviations tend to oscillate and gradually amplify.

From Table 4, it can be observed that the fuel consumption of the MPSP
solutions is very close to the corresponding optimal solutions. The minimum
FI is in case 2, which is only 0.78%, while the maximum one is in case 6,
which is only 2.40%. Cases 1, 3 and 7 where MPSP solutions retain the
nominal thrust sequence, require around 10 NI. For cases 4, 5 and 8, MPSP
requires around 20 NI since one fewer coast segment is required. Case 2 is
exceptional as it only requires 13 NI. In case 6, MPSP requires the most NI
because two coast segments fewer than nominal thrust sequence are required,
but FI is just 2.4%. As for the computational time, MPSP-CT is superior to
TPBVP-CT, except for case 6 where thrust sequence of MPSP solution has
two coast segments fewer than the nominal thrust sequence.

4.4. Perturbations on Thruster Parameters

The perturbations on the thruster parameters are simulated. Specifically,
the perturbations on Tmax are tested. The percentages of the perturbations
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Table 4: Cases study for perturbations on terminal positions.

Case δxf (LU) δyf (LU) δzf (LU)

1 0.02 0.02 0.02
2 0.02 0.02 −0.02
3 0.02 −0.02 0.02
4 0.02 −0.02 −0.02
5 −0.02 0.02 0.02
6 −0.02 0.02 −0.02
7 −0.02 −0.02 0.02
8 −0.02 −0.02 −0.02

Table 5: Simulation results for perturbations on terminal positions.

Case ‖rf − r(tf )‖2 ‖vf − v(tf )‖2 |λm(tf )| NI FI MPSP-CT TPBVP-CT
(km) (km/s) (–) (%) (s) (s)

1 43.88 9.40× 10−6 6.93× 10−8 11 1.05 2.51 6.34
2 2.04 4.66× 10−7 2.53× 10−9 13 0.78 3.15 6.27
3 72.21 1.33× 10−5 1.69× 10−8 13 2.22 3.08 6.59
4 40.69 8.65× 10−6 2.75× 10−8 22 1.00 5.41 7.10
5 74.73 1.28× 10−5 1.50× 10−7 20 1.28 5.03 6.46
6 5.05 8.55× 10−7 1.37× 10−9 38 2.40 9.02 5.67
7 8.69 1.43× 10−6 6.27× 10−9 9 1.27 2.09 6.47
8 2.73 4.39× 10−6 4.46× 10−9 24 2.10 5.72 10.17
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Figure 6: In-plane angle α and out-of-plane angle β of the converged MPSP trajectories
for perturbations of terminal positions in Table 4.

25



0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

0 500 1000
0

0.5

1

Figure 7: Comparison of optimal thrust sequences and thrust sequences of MPSP solutions
for cases in Table 4. Red dashed line: optimal thrust sequences; Blue line: thrust sequences
of MPSP solutions; Grey dash-dot line: nominal thrust sequences.
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Figure 8: Deviations between converged MPSP trajectories and the nominal trajectory on
coordinates for terminal position variation cases in Table 4.
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Table 6: Simulation results for perturbations on Tmax.
Case η ‖rf − r(tf )‖2 ‖vf − v(tf )‖2 |λm(tf )| NI FI MPSP-CT TPBVP-CT

(%) (km) (km/s) (–) (%) (s) (s)

1 −10 0.41 6.60× 10−8 2.67× 10−9 43 1.28 10.30 5.85
2 −6 0.79 1.30× 10−7 3.03× 10−9 31 0.19 7.60 6.29
3 −3 4.19 9.58× 10−7 6.09× 10−9 9 0.081 2.11 6.61
4 3 2.70 6.42× 10−7 3.25× 10−9 4 0.062 0.90 6.32
5 6 4.48 1.01× 10−6 4.37× 10−9 5 0.48 1.08 6.75
6 10 6.61 1.47× 10−6 5.76× 10−9 10 0.55 2.37 6.57

w.r.t. the nominal solution are set to η = [−10%, −6%, −3%, 3%, 6%, 10%],
which corresponds to 6 simulation cases. It is assumed that the percentage
of the perturbation on Tmax remains the same throughout the flight. The
simulation results are summarized in Table 6. For all cases, MPSP algorithm
converges successfully.

In Fig. 9, we notice that the variations of α and β are smooth, and they
lie in the vicinity of nominal values. Fig. 10 illustrates the comparisons of
thrust sequences among the MPSP solutions, the corresponding fuel-optimal
solutions and the nominal solution. The thrust sequences of MPSP solutions
coincide well with that of fuel-optimal solutions for all cases.

Fig. 11 depicts the trajectory deviations between converged MPSP tra-
jectories w.r.t. the nominal trajectory on coordinates. The deviations for
case 1 and 6 are the most obvious since the perturbations on Tmax are the
largest. Differently from Figs. 5 and 8, the deviations are not symmetry
between cases 1 and 6.

From Table 6, it can be seen that the FI for all cases are negligible. As
expected, the highest NI occurs in case 1 since the variation of the thrust
sequence is maximum. It is also noticed that few NI are required when the
thrust sequence remains the same as the nominal one. As for the computa-
tional time, MPSP-CT is superior to TPBVP-CT for cases 3–6 where nominal
thrust sequence is remained. Competitive MPSP-CT in case 2 is achieved
where one coast segment fewer than nominal thrust sequence is obtained.

4.5. Discussion

The outcome of the three simulation studies indicate that: 1) the pro-
posed MPSP is robust to various kinds of perturbations; 2) the thrust angles
of the converged MPSP trajectories remain smooth; 3) the thrust sequences
of MPSP solutions tends to retain the nominal thrust sequence; 4) a few New-
ton’s iterations are required if the thrust sequences of MPSP solutions are
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Figure 9: Variations of the in-plane angle α and out-of-plane angle β for the converged
MPSP trajectories for variations of Tmax in Table 6.
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Figure 10: Comparison of optimal thrust sequences and thrust sequences of MPSP solu-
tions for cases in Table 6. Red dashed line: optimal thrust sequences; Blue line: thrust
sequences of MPSP solutions; Grey dash-dot line: nominal thrust sequences..
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Figure 11: Deviations between converged MPSP trajectories and the nominal trajectory
on coordinates for cases of perturbations on Tmax in Table. 6.

not or slightly changed w.r.t. the nominal thrust sequence; 5) even though
the fuel consumption is not included in the MPSP performance index as
Eq. (41), MPSP solutions are near-optimal in terms of fuel consumption even
when the thrust sequence changes. 6) MPSP-CT is superior to TPBVP-CT
if NI ≤ 25. However, the real-time capability should be further verified using
processor-in-loop simulations [37]. Overall, evidence is given that the devel-
oped bang-off-bang MPSP method is effective in providing robust guidance
laws.

5. Conclusion

This paper extended applications of model predictive static programming
to low-thrust transfers with bang-off-bang control. Based on the fact that
the sensitive matrix is discontinuous across the switching times, a robust
two-loop MPSP guidance scheme is designed. The main feature of the pro-
posed MPSP method is its capability to generate near fuel-optimal solutions
featuring bang-off-bang control, even when the thrust sequence changes. Be-
sides, few iterations are required if the thrust sequence is not or slightly
changed compared to the nominal thrust sequence. A number of simulations
demonstrated the robustness of the proposed method for various kinds of
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perturbations.
Future works will focus on 1) including the fuel consumption into MPSP

design to further improve its performance and robustness, 2) reducing the
computational time and iterations especially when the thrust sequence changes,
and 3) validating the real-time capability through processor-in-loop simula-
tions [37].
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Appendix A. System Discretization

The classic 4th order Runge–Kutta formulae is used to discretize the tra-
jectory. Suppose the solution Xn is known at tn, the issue is to compute
Xn+1 at tn+1 = tn + h, where h is the time step. The dynamics in Eq. (16)
can be written in the discretized form as follows

Xn+1 = Xn +
h

6
(K1 + 2K2 + 2K3 +K4)

K1 = F(tn,1,Xn,1,Un), tn,1 = tn, Xn,1 = Xn

K2 = F(tn,2,Xn,2,Un), tn,2 = tn +
h

2
, Xn,2 = Xn +

h

2
K1

K3 = F(tn,3,Xn,3,Un), tn,3 = tn +
h

2
, Xn,3 = Xn +

h

2
K2

K4 = F(tn,4,Xn,4,Un), tn,4 = tn + h, Xn,4 = Xn + hK3

(A.1)
The discretized system dynamics is written as

Xn+1 = F n(tn,Xn,Un) (A.2)

where

F n(tn,Xn,Un) = Xn +
h

6
(K1 + 2K2 + 2K3 +K4)
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The differential of F n(tn,Xn,Un) w.r.t. Xn is

dF n(tn,Xn,Un)

dXn

= In +
h

6

(
dK1

dXn

+ 2
dK2

dXn

+ 2
dK3

dXn

+
dK4

dXn

)
(A.3)

where
dKi

dXn

=
∂F(tn,i,Xn,i)

∂Xn,i

dXn,i

dXn

, i = 1, 2, 3, 4

dXn,1

dXn

= I8×8,
dXn,2

dXn

= I8×8 +
h

2

dK1

dXn

,

dXn,3

dXn

= I8×8 +
h

2

dK2

dXn

,
dXn,4

dXn

= I8×8 + h
dK3

dXn

,

∂F(t,X,U)

∂X
=


03×3 I3×3 03×1 03×1

G(r) 03×3 u
Tmax

m2λv
λv 03×1

01×3 01×3 0 0

01×3 01×3 2u
Tmax

m3
λv 0


The differential of F n(tn,Xn,Un) w.r.t. Un is

dF n(tn,Xn,Un)

dUn

=
h

6

(
dK1

dUn

+ 2
dK2

dUn

+ 2
dK3

dUn

+
dK4

dUn

)
(A.4)

where

dKi

dUn

=
∂F(tn,i,Xn,i,Un,i)

∂Un,i

+
∂F(tn,i,Xn,i,Un,i)

∂Xn,i

dXn,i

dUn,i

, i = 1, 2, 3, 4

dXn,1

dUn

= 08×3,
dXn,2

dXn

=
h

2

dK1

dUn

,

dXn,3

dXn

=
h

2

dK2

dUn

,
dXn,4

dXn

= h
dK3

dUn

,

∂F(t,X,U)

∂U
=


03×3

u
Tmax

m

(
− 1

λv
I3×3 +

1

λ3
v

λvλ
>
v

)
01×3

−u Tmax

m2λv
λ>v
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Appendix B. Derivation of Eqs. (24) and (25)

Suppose that at the switching time ts, the switching function S satisfies
S(X(ts),U(ts), ts) = 0. On the perturbed solution, it must be S(X(ts +
dts),U(ts + dts), ts + dts) = 0. Expanding S at ts yields

dS =
∂S

∂X
dX− +

∂S

∂U
dU− +

∂S

∂ts
dts

=
∂S

∂X
δX− +

∂S

∂X
Ẋ
−
δts +

∂S

∂U
δU− +

∂S

∂U
U̇
−
δts +

∂S

∂ts
δts

=
∂S

∂X
δX− +

∂S

∂U
δU− + Ṡδts

= 0

(B.1)

where δX− and δU− are the state and control variations immediately before
the switching time. Then we have

δts =

(
∂S

∂X
δX− +

∂S

∂U
δU−

)
/(−Ṡ) (B.2)

For the case of dynamical discontinuity caused by control discontinuity,
the state variation immediately after the switching time is [36]

δX+ = δX− +
(
Ẋ
− − Ẋ+

)
δts

=

[
I +

(
Ẋ

+ − Ẋ−
) ∂S

∂X
/Ṡ

]
δX− +

[(
Ẋ

+ − Ẋ−
) ∂S
∂U

/Ṡ

]
δU−

(B.3)
Thus

∂X+

∂X−
= I +

(
Ẋ

+ − Ẋ−
)
SX/Ṡ (B.4)

∂X+

∂U−
=
(
Ẋ

+ − Ẋ−
)
SU/Ṡ (B.5)

Equations (B.4) and (B.5) require X(ts) and U(ts) at the switching time
ts. Since the switching time detection is embedded into dynamical integra-
tion (see Section 3.4), the values of X(ts) and U (ts) are obtained after the
integration of Eq. (16).
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Appendix C. Fourier Basis Functions

The Fourier series expansion for scalar x(η) with maximum order nx is

x(η) =
a0

2
+

nx∑
n=1

{an cos(nπη) + bn sin(nπη)} = h(η)>ε (C.1)

where

h(η) = [
1

2
, cos(πη), sin(πη), · · · , cos(nxπη), sin(nxπη)]> ∈ R2nx+1

ε = [a0, a1, b1, · · · , anx , bnx ]> ∈ R2nx+1

are used in Eqs. (36) and (37).
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