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Abstract
Motivated by the increasing demand of mass customisation in production systems, 
this paper proposes a robust and adaptive scheduling and dispatching method for 
high-mix human-robot collaborative manufacturing facilities. Scheduling and dis-
patching rules are derived to optimally track the desired production within the 
mix, while handling uncertainty in job processing times. The sequencing policy is 
dynamically adjusted by online forecasting the throughput of the facility as a func-
tion of the scheduling and dispatching rules. Numerical verification experiments 
confirm the possibility to accurately track highly variable production requests, 
despite the uncertainty of the system.

Keywords Dynamic resource scheduling and allocation · Simulation-based control 
of stochastic systems · High-mix production · Flexible manufacturing systems

1 Introduction

Agile manufacturing is a relatively new term adopted to describe a production 
approach able to respond quickly to unforeseen customer demands, market volatili-
ties, or other factors of high manufacturing impact such as changing lot sizes, vari-
ants, process technologies. In contrast to lean manufacturing, one of the main prin-
ciples of agile manufacturing is how to leverage the impact of production assets and 
data, while maintaining the lowest production costs. In such Flexible Manufacturing 
Systems (FMS) optimisation of the production capacity, as well as proper schedul-
ing (see Pinedo (2012)) and dispatching strategies are paramount, see e.g. Shi et al. 
(2019); Ouelhadj and Petrovic (2009), and Blazewicz et al. (2019).
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Due to the inherent complexity of the problem of dynamically allocating 
resources in the shop-floor, metaheuristics have been widely adopted in the literature 
as in Dörmer et al. (2015) and Saif et al. (2019). In particular, Genetic Algorithms 
(GA), see Filho et al. (2014); Yu et al. (2018); Bhosale and Pawar (2019), and Lin 
et al. (2019), have been very popular, especially in the last decade, to efficiently han-
dle the combinatorial complexity of scheduling and dispatching problems. Gom-
bolay et al. (2013) and Ivanov et al. (2016b) also report complete results, based on 
accurate mathematical modelling and optimisation algorithms. Stimulated by the 
novel reference paradigms of digital factories, the adoption of digital replicas of 
the shop-floor constantly updated with production analytics, i.e. the so-called digi-
tal twins, see Tao et al. (2018), are motivating the development of new approaches 
based on online simulation. Originally introduced in Wu and Wysk (1989), the pos-
sibility to online evaluate the current performance of the production facility using 
software-mediated data is a promising direction, Morel et al. (2003) and Wang et al. 
(2019). This possibility has been also exploited for the enhancement of both Manu-
facturing Operation Management (MOM) and Enterprise Resource Planning (ERP) 
systems, see Meyer et al. (2009) and Moon and Phatak (2005), respectively.

For a long time, automation has been an all or nothing solution, and automation 
has been a possible solution only for large OEM, especially in the automotive indus-
try. Flexible as well as reconfigurable manufacturing systems are surely relevant in 
high-mix low volume production settings. On the other hand, their flexibility and 
reconfigurability are far from being enough in cases requiring flexibility compara-
ble with craft production. Close cooperation between workers and partly automated 
assembly systems has been introduced as the best strategy to respond to the need 
for flexibility and quick changeability of manufacturing processes as described in 
Krüger et al. (2009), Karaulova et al. (2019) and Schlette et al. (2020). A new gen-
eration of industrial collaborative robots, those sharing their workspace with people 
without the need of safety fences, is allowing manufacturers to redesign their pro-
cesses as suggested in Mateus et al. (2018), to achieve higher levels of efficiency as 
in Morioka and Sakakibara (2010). According to the work of Dianatfar et al. (2019), 
there are multiple trade-offs to be considered, between the high performance of ded-
icated robots, the great flexibility of human operators, and the compromise solution 
of collaborative robots. On the other hand, as Ding et al. (2014) and Messner et al. 
(2019) noticed, benefits arising from human-machine or human-robot collaboration 
are not offered without a significant increase in the complexity of scheduling and 
dispatching systems. More in detail, the synchronisation between humans and robots 
has to be handled by explicitly accounting for the stochasticity of the resulting work-
flow, as well as the reasons behind that, as described in Ferreira et al. (2018) and 
Ostermeier (2019), respectively. In order to properly handle the inherent stochastic-
ity of collaborative production facilities, the combination of reactive and proactive/
predictive methods, e.g. based on the estimation of the future performance, has to be 
further exploited as suggested in Cardin et al. (2017), or by using control strategies 
(see Ivanov et al. (2021) for an example and Ivanov et al. (2018) for an overview), 
like Model Predictive Control (MPC) as in Cataldo et al. (2015).

Make-to-order manufacturing processes are typically characterised by high-mix 
and low volume productions. In this context it might be beneficial to fully exploit 
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the flexibility of collaborative solutions by dynamically assign tasks to humans or 
robots in order to guarantee a continuous and sustained flow. On the other hand, the 
high variability of customers’ requests, would make hardly possible to rely on a pre-
prepared assignment table covering all the possible production mixes and volumes.

In summary, the simultaneous adoption of digital twins, possibly fed with 
advanced analytics coming from the field as in Li et  al. (2015), and predictive 
approaches, seems to represent the cornerstone to robustly manage the execution of 
flexible and collaborative production layouts.

1.1  Novel contribution and related works

With the aim of gaining a competitive advantage in terms of speed to react to these 
market volatilities, companies are leveraging on advanced components and Informa-
tion Technologies. By simulating the working conditions of operators, robots, and 
eventually of the whole plant, a scheduler can be sure that the real production will 
run as in- tended. In other words, a manufacturing scheduling system can leverage 
high-fidelity Digital Twins to accurately predict the future performance of the pro-
duction facility by efficiently run several what-if analyses, and by simulating differ-
ent scenarios to identify the best set of decisions to be applied on the physical plant.

This work presents a closed-loop control approach to robustly balance the time-
varying high-mix production requirements in manufacturing systems. The high-mix 
multi-product scenario poses a series of challenges in finding an optimal scheduling 
solution, see e.g. Sprodowski et al. (2020). The balancing problem cannot be solved 
once and for all, as the mix is expected to change frequently. Frequent reallocations 
of resources are then foreseen and erroneous decisions can severely compromise 
the efficiency of the production system. The control strategy developed in this work 
relies on a forecasting technique based on a digital twin of the entire shop-floor. It 
selects the best scheduling and dispatching decisions to be executed, while robustly 
accounting for possible variabilities in the processing times. An outer control loop is 
finally responsible for tracking the desired production plans, typically coming from 
high-level management systems.

The main features of the algorithm are (1) the capability of handling a a time-var-
ying mix in a multi-product scenario, (2) the robustness with respect to uncertainty, 
and (3) the adoption of a predictive strategy. The state-of-the-art of scheduling algo-
rithms is rich of solutions. For example, Casalino et al. (2019) introduced an optimi-
sation strategy to reduce the idle time (i.e. the amount non-value added activities), 
while dealing with uncertainty. Unfortunately, the method is not capable of han-
dling multiple products. Prediction capabilities have been exploited in Cataldo et al. 
(2015), still for a single product, with limited contributions on robustness. Variable 
mix has been considered, in turn, Dörmer et al. (2015); Saif et al. (2019), and Wang 
et al. (2019), without characterising the expected robustness in face of uncertainty. 
The works in Ivanov et al. (2016a); Lin et al. (2019), and Shi et al. (2019), in turn, 
are specifically focused on robustness with respect to uncertain processing times. 
The present work differs from them mainly for the adoption of a predictive strategy, 
and the possibility to handle high-varying production mix.
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In addition, the present work address the problem of scheduling by defining an 
optimisation problem that tries to minimise the discrepancy of the actual production 
from a reference one (i.e. the tracking error), instead of maximising the throughput 
or, equivalently, minimising the idle time as suggested in other works. In summary, 
Table 1 reports a comparison of the analysed works, based on the three aforemen-
tioned features proposed in this work. As one can notice, none of the existing work 
is apparently capable of simultaneously handle the three main characteristics of the 
algorithm described in the following. Moreover, looking at the main objectives of 
the listed methods, the method proposed in this work is the sole introducing the 
means squared value of the production error as a cost function to be optimised (see 
again Table 1).

1.2  Structure of the paper

The reminder of the paper is structured as follows. Section  2 depicts the overall 
architecture of the system, and describes the modelling principles of Discrete EVent 
Systems (DEVS) specification. Section  3 introduces the optimal scheduling algo-
rithm, while Sect. 4 contains further details regarding the resolution of the optimisa-
tion problem that will eventually select the best policy to be applied. Finally, Sect. 5 
presents the outcome of a verification scenario, consisting in two multiple-product 
assembly lines and discusses the outcome of the numerical validation.

2  Modelling principles

This Section sketches the overall picture of the developed method, as well as the 
modelling principles adopted throughout the paper. The list of the adopted symbols 
and their meanings is given in the Appendix.

The scheduling and despatching algorithm is mainly composed of three func-
tional blocks: 

1. the Plant Digital Twin contains a replica of the Manufacturing Plant; its state 
is updated based on Events coming from the plant, whilst its parameters are 
identified from Analytics (i.e. processing times of jobs collected from previous 
executions) obtained from an Events Logger which is, in turn, stored within an 
Enterprise Resource Planning (ERP) system;

2. the Throughput controller exploits the Plant Digital Twin to forecast the produc-
tion of the manufacturing system as a function of the possible dispatching and the 
scheduling decisions and is responsible for selecting the best activities to execute, 
i.e. the input u(t) to the plant;

3. the Production controller finally compares, for all products p ∈ ℙ , the actual 
production �p(t) with the desired one �0

p
(t) and computes the reference throughput 

�0
p
(t).
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Figure 1 depicts the overall architecture of the proposed system and details the inter-
connections between the three components.

In the following, modelling principles for the Plant Digital Twin are given, while 
details regarding both the Production controller and the Throughput controller are 
given in the following Section.

Without lack of generality, the behaviour of the Manufacturing plant as well as 
its replica within the Plant Digital Twin will be described in terms of DEVS speci-
fication, see e.g. Zeigler et al. (2000); Tendeloo and Vangheluwe (2018). Other for-
malisms, like pcTPN (partially controllable Time Petri Nets) Ramadge and Won-
ham (1987) or any other paradigm, see e.g. Cassandras and Lafortune (2009), can be 
equivalently adopted.

Based on the definition of DEVS proposed in Zeigler et al. (2000), we here define 
a partially controllable DEVS (pcDEVS) to represent the Plant Digital Twing as the 
model expressed by the following tuple:

where U is the set of inputs and represents all the possible scheduling commands, 
while S represents the possible states of the system. The set of states is partitioned 
into Sint and Sext (i.e. S = Sint ∪ Sext,Sint ∩ Sext = � ). A state s̄ ∈ Sext represents 
the situation when a scheduling command in U can be selected to steer the evolu-
tion of the system, which happens, for example, when a certain job is completed. 
In turn, a state s ∈ Sint stands for the case when no control input can be selected, 
i.e. when all the agents are occupied in processing their jobs and no command can 
be executed. Function ta ∶ Sint → ℝ

+
0
= [0,+∞) stands for the time advance func-

tion and determines the lifespan of an internal state. Finally �int ∶ Sint ×ℝ
+
0
→ S 

and �ext ∶ Sext × U → S stand for the internal and the external transition functions, 
respectively. The former identifies autonomous timed state transitions, while the lat-
ter identifies immediate command-driven state transitions.

As an example, Fig. 2 exemplifies the case of a pair of machineries. State s̄1 ∈ Sext 
represents the first machine being idle, while the second machine is processing a part. 
As the first machine is able to operate a new part, a control command, u1 can be used 
to start process a new job, triggering a state change from s̄1 to s2 ∈ Sint (external, i.e. 

pcDEVS = ⟨U,S, ta, �int, �ext⟩

Fig. 1  Architecture of the developed method and its three main components: the Production controller, 
the Throughput controller, and the Plant Digital Twin 
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controllable, state transition). In state s2 no control command is available as the two 
machines are both operating. When the system is in this state, two possible events can 
occur. In case the first machine finishes its job before the second one, the state changes 
to s̄1 (an internal, uncontrollable, transition). In turn, if the second machine finishes ear-
lier than the other, that state will be updated to s̄3 . In this state, decision on the job to 
assign to the second machine can be taken. Consistently the state s̄3 is an external one, 
i.e. s̄3 ∈ Sext.

When the evolution of a pcDEVS is seen only within Sext , the corresponding behav-
iour can be equivalently described by a Markov Decision Process (MDP). For the same 
example, Fig.  3 reports the equivalent MDP. From state s̄1 , the control input u1 can 
bring the system to either state s̄3 or to state s̄1 . The former transition (from s̄1 to s̄3 ) will 
happen in case the first machine will finish the job before the other, while the latter ( ̄s1 
to s̄1 ) will happen in case the operation of second machine will be concluded before the 
one assigned to the first machine.

Summarising, the Plant Digital Twin of a flexible manufacturing process can be 
characterised by a MDP. Its states s̄ ∈ Sext are conditions of the production process cor-
responding to one or more agents available to start processing new jobs. Therefore, if 
a scheduling command u ∈ U is selected in certain state of the MDP, the system can 
evolve stochastically to a new state.

3  Development of the scheduling algorithm

A scheduling and dispatching policy � is a function � ∶ Sext → U that maps thea ctual 
state ū ∈ Sext to a scheduling and dispatching decision u ∈ U . This Section defines the 
optimality principle for finding the best scheduling and dispatching policy �∗ that, for 
each product p within the mix ℙ , will ensure the minimum deviation from the desired 
throughput. Assume that the scheduler is requested to operate at current time instant 
t, given the desired throughput �0

p
(t) . Then the quantity �0

p
(t)(� − t) represents the 

desired production of products of type p, i.e. the number of products of type p to be 
produced in the interval [t, �] , and Δ̂�p,�(�) = �̂p,�(�) − �p(t) the desired increment in 
the number of available products of the same type, i.e. the ones that will be actually 
produced under policy � during the same interval, the quantity

�0
p
(t)(� − t) − Δ̂�p,�(�)

Fig. 2  A partially controllable Discrete EVent System (pcDEVS)

Fig. 3  Markov Decision Pro-
cess (MDP) equivalent to the 
pcDEVS of Fig. 2
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stands for the production error at time instant � ∈ [t, t + Γ] for product p ∈ ℙ , see 
Fig. 4.

This quantity clearly depends on the policy � , which in turn returns the scheduling 
and dispatching commands, as well as on the processing times of all activities involved 
in the production of p. In order to account for the future evolution of the manufactur-
ing process, the squared value of the production error is integrated along the prediction 
horizon, i.e.

thus to require the mean square production error to be as small as possible. Since 
the processing times, and therefore the lifespan of each state s ∈ Sint , are regarded 
as stochastic variables, the mean square production error is a stochastic variable as 
well. In order to robustly select the optimal scheduling and dispatching policy �∗ , 
the following optimisation problem is finally introduced:

where

The optimisation problem in (2) attempts to find optimal set of scheduling and dis-
patching policy �∗ at present time instant t by minimising, for all products p ∈ ℙ , 
the conditional expectation ��[⋅] , under � , of the mean square production error, once 
the reference throughputs �0

p
(t) , one per each product in the mix, are given. Notice, 

that the Throughput controller is exploiting the Plant Digital Twin of the manufac-
turing plant for the prediction of the increment in the number of available product 
of type p as a function of the scheduling and dispatching policy � , i.e. Δ̂�p,�(�) . For 

(1)1

Γ ∫
t+Γ

t

(
�0
p
(t)(� − t) − Δ̂�p,�(�)

)2

d�

(2)�∗ = argmin ���

[
J�
]

(3)J� =
∑
p∈ℙ

1

Γ∫
t+Γ

t

(
�0
p
(t)(� − t) − Δ̂�p,�(�)

)2

d�

Fig. 4  Typical result of a simulation in terms of predicted increment in the number of available product 
of type p, Δ̂�p,�(�) , and corresponding reference value �0

p
(t)(� − t) - vertical ticks represent time instants 

corresponding to production events of product p 
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this reason, the Plant Digital Twin is constantly updated with the last available pro-
duction analytics retrieved from the ERP System (see Fig. 1).

At the present time instant t, the desired throughput �0
p
(t) in (2) is computed so 

to be proportional to the actual production error �0
p
(t) − �p(t):

thus implementing the actual closed-loop production control law, where K > 0 
represents the proportional gain. Differently from the Throughput controller that 
exploits the digital replica of the manufacturing plant for prediction purposes, the 
Production controller in (4) implements a closed-loop regulation strategy using 
actual production data coming from the manufacturing plant. As commanding 
a negative throughput has clearly no physical meaning, when the actual produc-
tion exceeds the desired one (i.e. when 𝜃p(t) > 𝜃0

p
(t) ), the corresponding reference 

throughput �0
p
(t) is set to zero, so to temporarily stop the production of p.

Finally, the desired number of product of type p at time instant t, �0
p
(t) , is 

assumed to be computed based on the orders of product p stored in the ERP Sys-
tem as follows:

where ΔTi,p is the takt-time associated to the i-th order of product p, ti,p is the corre-
sponding order arrival time, Qi,p is the ordered quantity, while finally ⌈⋅⌉ denotes the 
ceil function. An example of the application of Eq. (5) is reported in Fig. 5.

Optionally, the following feedforward term �̇�0
p
(t) can be included:

(4)𝜔0
p
(t) =

{
K
(
𝜃0
p
(t) − 𝜃p(t)

)
𝜃0
p
(t) > 𝜃p(t)

0 otherwise

(5)𝜃0
p
(t) =

⎡⎢⎢⎢⎢

�
ip

⎧⎪⎨⎪⎩

0 t < ti,p

Qi,p

t−ti,p

ΔTi,p
ti,p ≤ t ≤ ti,p + ΔTi,p

Qi,p otherwise

⎤⎥⎥⎥⎥

Fig. 5  Graphical explanation of Eq. (5), at time ti,p an order to produce Qi,p products in ΔTi,p arrives. The 
corresponding desired number of product of type p to be available is increased to account for the newly 
arrived order. The increase is applied gradually until the desired quantity Qi,p is reached at the requested 
delivery time ti,p + ΔTi,p
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Consistently, the reference throughput in (4) has to be redefined as follows:

So far, a high-level picture of the scheduling method has been sketched. The role of 
simulations performed on the Plant Digital Twin as well as their stochastic nature 
has been described. In the next Section, further details will be given on how to actu-
ally solve the scheduling problem that will eventually decide which action should be 
executed next, in order to guarantee the reference production, despite the possible 
variabilities in the processing times.

4  Optimisation algorithm

In the following, the algorithm adopted to solve the optimisation problem in (2) is 
further detailed. A detailed and formal discussion on the robustness of the algorithm 
follows at the end of this section. Given the definition introduced in the previous 
Section, it is now possible to introduce Algorithm 1 that computes the cost c asso-
ciated to a given trajectory. Throughout the reminder of the manuscript, the term 
trajectory 

{
ei
}
=
{
e1, e2, e3,…

}
 is used to identify the sequence of states and cor-

responding timestamps, i.e. ei = ⟨s̄i, 𝜏i⟩ identifies a certain pair S × � . For a given 
trajectory, Algorithm 1 simply evaluates the corresponding cost in (3).

(6)�̇�0
p
(t) =

∑
ip

{
Qip

ΔTi,p
tip ≤ t ≤ tip + ΔTi,p

0 otherwise

𝜔0
p
(t) =

{
�̇�0
p
(t) + K

(
𝜃0
p
(t) − 𝜃p(t)

)
𝜃0
p
(t) > 𝜃p(t)

0 otherwise
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As stated previously, due to the stochastic nature of the Plant Digital Twin, the 
trajectory 

{
ei
}
 is a stochastic process, and therefore the associated cost c is a sto-

chastic variable. Therefore, in order to attain a robust decision regarding the sched-
uling and the dispatching rules, a high number N of trajectories are generated by the 
Plant Digital Twin using a Monte Carlo sampling. The outcome of these simulations 
is in terms of the dataset D =

�
dj
�
, dj = ⟨�si

�
j
, J�j⟩ , i.e. a sequence of states together 

with the corresponding cost J�j . In order to minimise the expected cost in (2), and 
therefore to evaluate the best scheduling and dispatching policy �∗ and the corre-
sponding command(s) u(t) to be used at the present time instant t, an agglomerative 
(i.e. bottom-up) hierarchical clustering method of the data set D is adopted.

Assume that N sampled trajectories are available, each in its own cluster with the 
corresponding cost, and assume that a subset of them only differs in the last state. If 
the last states are internal ones, i.e. s ∈ Sint , the corresponding clusters are merged 
together, moving up the hierarchy. The cost associated to this new bigger cluster 
is composed by the union of the costs of the trajectories in the subset, and the last 
states are cancelled. For example, consider at iteration k the two following clusters:

Assume that the last state are internal ones, i.e. 3, 7 ∈ Sint . Then, at iteration k + 1 a 
new cluster is generated containing the common part of the two trajectories and the 
union of the costs, i.e.

Costs are merged together as the corresponding states are internal one, and cannot 
be controlled using the input command.

In turn, if the last states are external ones, i.e. s ∈ Sext , the cluster with higher 
expected cost will be simply deleted (i.e. not propagated to the next iteration), 
and the last states are cancelled. Consider for example:

where 5, 9 ∈ Sext , then at the next iteration k + 2 , the following clusters will be 
considered

This procedure will continue, until only one cluster remains that will represent the 
optimal command, in the sense of the cost function in (2). This action corresponds 
to a possible scheduling decision that will influence the future behaviour of the 

C
(k)

1
= ⟨⟨0, 1, 11, 2,⋯ , 3, 5, 3⟩, 31.6⟩

C
(k)

2
= ⟨⟨0, 1, 11, 2,⋯ , 3, 5, 7⟩, 34.6⟩

C
(k+1)

1
= �

C
(k+1)

2
= ⟨⟨0, 1, 11, 2,⋯ , 3, 5⟩, ⟨31.6, 34.6⟩⟩

C
(k+1)

2
= ⟨⟨0, 1, 11, 2,⋯ , 3, 5⟩, ⟨31.6, 34.6⟩⟩

C
(k+1)

3
= ⟨⟨0, 1, 11, 2,⋯ , 3, 9⟩, ⟨35.1⟩⟩

C
(k+2)

2
= ⟨⟨0, 1, 11, 2,⋯ , 3⟩, ⟨31.6, 34.6⟩⟩

C
(k+2)

3
= �
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manufacturing process. As the state is an external one, and therefore it depends on 
the policy � , the clustering algorithm neglects future evolution of the manufactur-
ing process with higher costs as they can be avoided by an alternative selection the 
scheduling policy. The overall procedure is formally explained in Algorithm 2.

At the end of the iterative procedure in Algorithm  2, the unique remaining 
cluster will contain the optimal external state s happening at present time instant t 
that, for all products p in the mix ℙ , will ensure, at least for N → ∞ , a robust and 
optimal tracking of the reference throughput �0

p
(t) within the prediction horizon. 

The same algorithm will be invoked cyclically every time a new scheduling or 
dispatching rule can be applied. 

The approach described in Algorithm 2 is similar to the one proposed in Casalino 
et al. (2019), but here adapted to a different cost function and a generic modelling for-
malism. In particular, the work in Casalino et  al. (2019) introduced an algorithm to 
maximise the throughput of the production of a single product, while here the objective 
is rather to minimise the production error in high-mix productions.

4.1  Notes on the robustness of the algorithm

Based on the described algorithm, it is worth understanding its robustness, i.e. how 
the probability of actually selecting the best policy is related to how simulations are 
distributed within the space of available policies. The Monte Carlo strategy will uni-
formly explore the space of possible decision policies. Assume that a certain policy 
�i has been evaluated Ni ≥ 1 times, and that the corresponding sampled costs are J(k)�i

 , 
k = 1,… ,Ni . Then, as anticipated, the expected cost of each policy �i = �

[
J�i

]
 will 
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be evaluated through its empirical mean, i.e. �̂�
�
J�i

�
= 1∕Ni

∑Ni

k=1
J
(k)
�i

 (see Algorithm 2, 
line 11). The same applies for another policy �j, i ≠ j . Define P0 the probability to pre-
fer policy �i to �j , given that �i guarantees better performance than �j , i.e. 𝜇i < 𝜇j , in 
terms of the cost function in (3). Such a probability, that clearly indicates how effective 
the scheduler is in recognising that policy �i outperforms �j , can be formally defined as 
follows

which stands for the probability to take the correct decision in Algorithm 2, line 11. 
Assume that the two distributions J�i and J�j have variances �ar

[
J�i

]
= �2

i
 and 

�ar
[
J�j

]
= �2

j
 , respectively. Therefore the two empirical means �̂�

[
J�i

]
 and �̂�

[
J�j

]
 

have means �i and �j , respectively, and variances

Then, the quantity �̂�
[
J�i

]
− �̂�

[
J�j

]
 has mean �i − �j (which is negative under the 

assumption 𝜇i < 𝜇j ) and variance

Assume that the same quantity is normally distributed, i.e.

Then, probability P0 can be evaluated as follows:

where

Defining � = Ni∕Nj , the probability P0 to prefer policy �i to �j , given that �i guaran-
tees better performance than �j according to (3), is finally given by

where k, which is positive under the assumption 𝜇i < 𝜇j , is defined as follows

P0 = P

(
�̂�
[
J𝜋i

]
< �̂�

[
J𝜋j

]|||𝜇i < 𝜇j

)

𝕍 ar
[
�̂�

[
J�(i,j)

]]
=

𝕍 ar
[
J�(i,j)

]

N(i,j)

=
�2
(i,j)

N(i,j)

�2 = 𝕍 ar
[
�̂�
[
J�i

]]
+ 𝕍 ar

[
�̂�

[
J�j

]]
− 2ℂ ov

[
J�i , J�j

]

�̂�
[
J�i

]
− �̂�

[
J�j

]
∼ N

(
�i − �j, �

2
)

P0 = P

(
N(0, 1) <

𝜇j − 𝜇i

𝜎

)

� =

√√√√�2
i

Ni

+
�2
j

Nj

− 2ℂ ov
[
J�i , J�j

]

P0 = P(N(0, 1) < k)
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For given values of �i,�j,ℂ ov
[
J�i , J�j

]
 and Ni + Nj , the probability P0 has its maxi-

mum for � = �i∕�j , and therefore the Monte Carlo approach that uniformly explores 
the space of available policies, i.e. � ≈ 1 , corresponds to the most promising method, 
at least when �i ≈ �j . Without increasing the overall number of samples N ≥ Ni + Nj , 
the sole way to improve the performance of the optimisation algorithm in selecting 
the best policy is to maximise ℂ ov

[
J�i , J�j

]
 , resorting to variance reduction tech-

niques, such as Common Random Numbers (CRN), see Glasserman and Yao (1992). 
More specifically, with the aim of maximising k and hence P0 , samples from the 
same pool of possible durations will be sampled for each possible activity and con-
sistently used within all of the N Monte Carlo simulations.

5  Verification

In order to verify the presented approach, a validation scenario consisting in a hybrid 
human-robot assembly plant is assumed.

5.1  Verification scenario

The manufacturing layout (see Fig.  6) allows to assemble 3 variants of the same 
product, i.e. ℙ = {#1, #2, #3}.

Two parallel lines are arranged, the first (top of Fig. 6) for product #1 and #2, 
the other (bottom) for products #2 and #3. Product #2, that is assumed the one hav-
ing the highest demand, can be produced in parallel on the two lines. Each line is 
divided in three nearly balanced jobs, each performed in a dedicated station: sta-
tions #A, #B and #C for the first line, #D, #E and #F for the second. The workflow 
follows the alphabetical order (i.e. from #A to #C and from #D to #E, see again 
Fig. 6). Between each pair of consecutive stations, two buffers with limited capacity 
are placed to temporarily store the work-in-progress (WiP).

Two robots on mobile bases and two human operators are allowed to move along 
the two lines and to occupy different stations, so as to maximise the flexibility. Oper-
ations within stations #A and #D can only be performed by human workers, while 
those in stations #C and #F are for robots only. The others (those in stations #B and 
#E) can be performed by either one operator, or one robot, thought with different 
level of efficiency. Similarly, operations performed by robots are also characterised 
by different cycle times, depending on the robot allocated to the corresponding task. 
Table 2 reports the processing times, both in case of manual execution or robotic 
execution. As for simulation purposes, distributions of the processing times are 
assumed to be Gaussian (Table 2 reports the standard deviations, as well). Finally, 

k =

√
Ni + Nj

�
�j − �i

�
��

1 + �−1
�
�2
i
+ (1 + �)�2

j
− 2

√
Ni + Njℂ ov

�
J�i , J�j

�
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in case the requested production will result to be significantly lower than the maxi-
mum capacity of the production plant, a fictitious activity has been added, that cor-
responds to an idle time. In order to give the reader a taste regarding the combina-
torial complexity of the scheduling and dispatching problem, the total number of 
possible commands is 96, and millions of possible states. This number identifies the 
maximum number of possible decisions for the scheduler at each iteration.

5.2  Simulation and outcomes

Thirty minutes (1800 seconds) of manufacturing execution have been numerically 
simulated on a 2.9 GHz Intel Core i5, with 16 GB 1867 MHz DDR3 of memory. 
The N simulations are performed independently exploiting the multithreading func-
tionalities of the CPU. Reported execution times for the whole procedure are of 
475 ± 49 milliseconds. The list of orders, with arbitrarily generated arrival times, are 
shown in Table 3, together with the corresponding quantity and due dates, and are 
stored within the ERP System. The orders are accessible via mySQL queries that are 
performed at each cycle of the scheduling algorithm. The references �0

p
(t) , computed 

according to (5), are reported in Fig. 7. Significant fluctuation of the takt-times and 
of the overall production request can be appreciated. Finally, the parameters of the 
control strategy adopted within the simulation experiments are reported in Table 4.

At each iteration, the scheduler executes a query on the mySQL database to 
retrieve the updated list of orders and, for each product, updates the correspond-
ing reference production �0

p
(t) using (5) as well as the reference throughput �0

p
(t) 

according to (4). Then, it performs N Monte Carlo simulations on the Plant Digital 
Twin, whose parameters are retrieved from the mySQL database, through runtime 
analytics. Each simulation is then evaluated in terms of the corresponding cost in 
(3) by applying Algorithm 1. The whole set of simulations and corresponding costs 
are clustered according to Algorithm 2 and the corresponding optimal and robust 
dispatching and scheduling policy �∗ , i.e. the one satisfying the optimality of (2), is 
obtained.

The outcome of the experiment is shown in Fig. 9, which reports the actual pro-
duction �p(t) as well as the Gantt chart that is incrementally generated by the sched-
uling algorithm. As the reader can see, the manufacturing facility is able to adjust 
its pace as well as the resource allocation strategy based on the actual demand (see 
again Table  3). For example, since the request for products of type #3 increases 
in the last 5 minutes, the scheduler correctly decides to allocate more resource on 
the corresponding jobs. Moreover, it is worth to mention that these capabilities 
are robustly achieved with respect to the variability of processing times, see again 
Table 2.

5.3  Analysis of robustness

Finally, in order to evaluate the robustness of the optimisation algorithm, which has 
been formally discussed in Subsection 4.1, eight additional executions of the same 
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scenario has been collected, using the same parameters listed in Table 4. The corre-
sponding behaviours are reported in Fig. 8.

Several Key Performance Indicator (KPIs) have been introduced for the evalua-
tion of the corresponding output. Table 5 reports the average lateness for each order 
together with the corresponding standard deviation. It is worth noticing that the 
algorithm tends to anticipate the production (i.e. to have a negative lateness). This 
fact is surely related to the contribution �̇�0

p
 given by the feedforward action to the 

reference throughput �0
p
 , as defined in (6).

With reference to Fig. 8, for each product p in the mix, the root means square 
error (RMSE), defined as

which quantifies the variability of production with respect to the desired value, has 
an average of 0.3522 parts (for product #1), 0.5698 (# 2), and 0.5620 (product # 3).

RMSEp =

√
1

1800 ∫
1800

0

(
�0
p
(�) − �p(�)

)2

d�

Fig. 6  Layout for the validation scenario composed of 2 lines with 3 stations to assemble N
ℙ
= 3 variants 

of the same product

Table 3  List of orders Order ID Arrival time Deliver in 
(min)

Product Qty

#1 2019-12-01 12:00:00 20 #1 12
#2 2019-12-01 12:00:00 20 #2 19
#3 2019-12-01 12:10:00 10 #3 2
#4 2019-12-01 12:10:00 20 #2 14
#5 2019-12-01 12:15:00 10 #1 6
#6 2019-12-01 12:25:00 5 #3 11
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In turn, the average span, evaluated as the value of the maximum variability of 
the production (i.e. the thickness of the shaded areas in Fig. 8) has been evaluated as 
0.3728 parts (for product #1), 1.0711 (product #2), and 0.3378 (#3).

Overall, as expected, the proposed scheduling strategy is able to effectively miti-
gate the variability of the durations of the different activities and to produce good 
tracking capabilities of the desired production �0

p
 , even in case of a highly variable 

mix (see Fig. 7).

Fig. 7  Reference production for the 3 products (#1: solid blue, #2: dashed red, and #3: dotted yellow, 
respectively) with exception for the ceil function (top), and corresponding throughput (bottom) (Color 
figure online)

Table 4  Parameters for the 
verification scenario

Parameter Description Value

N Number of simulations 1000
Γ Prediction horizon 120 s
K Controller gain 0.5 Hz
fs Scheduling frequency ∼ 2.0 Hz
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Fig. 8  Variability of the actual production in 8 simulations (shaded areas) and the corresponding refer-
ence (dashed)

Table 5  List of orders, actual 
delivery lateness (tardiness, if 
positive, earliness, otherwise) 
averaged among the 8 runs, 
and corresponding standard 
deviations

Order ID Deliver in 
(min)

Avg. lateness (s) Std. 
lateness 
(s)

#1 20 7 27
#2 20 8 26
#3 10 −233 26
#4 20 −50 35
#5 10 −76 7
#6 5 43 27

Fig. 9  Actual production for the 3 products (#1: solid blue, #2: dashed red, and #3: dotted yellow, respec-
tively) compared to the corresponding reference (top), and Gantt chart of the operations (empty spaces 
correspond to either an idle time or a transfer between a station to another) (Color figure online)
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6  Conclusions

A simulation-based robust scheduling and dispatching algorithm has been proposed 
in this paper to control high-mix production systems. The manufacturing system 
is regarded as a stochastic process and its simulation-based model is continuously 
updated using real-time analytics. Through simulations, the proposed algorithm is 
able to robustly select the optimal production strategy by dynamically allocating 
resources to jobs in the shop-floor. A simulated experiment consisting in an assem-
bly layout with six stations and four resources has been introduced to validate the 
approach. The algorithm has been shown able to respond quickly to varying pro-
duction requests, lot sizes, and variable takt-times, despite the variabilities in job 
processing times.

6.1  Managerial insights

Agile manufacturing is a broad term used to describe a production approach able to 
respond quickly to highly-varying customer demands or other factors such as chang-
ing lot sizes, variants, while still being able to maintain low production costs. In the 
case of high-mix and highly variable low-volumes production settings, collaborative 
robotics can surely help in providing the desired level of flexibility. On the other 
hand, the operation level requires fast evaluation of the production process in order 
to promptly dispatch and scheduler jobs to the available resources. The high number 
of variants prevents traditional systems based on static assignments and balancing 
to process orders in an optimal way. In this context, this research has developed an 
algorithm for optimal scheduling and dispatching rules that allow a production facil-
ity to leverage on human-robot collaboration and digitalisation to timely react to pos-
sible market volatilities. In particular, a digital twin of the manufacturing site is used 
to process many scenario analyses and decide which job assignment and sequencing 
policy are the most suited to be executed. The best policy is then selected in order to 
robustly minimise the deviation of future production with respect to the desired one, 
as retrieved from an ERP system. The main features of the developed method are:

– the possibility to schedule jobs in high-mix scenarios;
– the possibility to systematically handle uncertainties in the durations of jobs;
– the possibility to handle highly variable production requests thanks to the predic-

tive approach.

6.2  Limitations and future directions

The methodology proposed in this work surely suffers from being completely agnos-
tic about costs. It is worth noticing, in fact, that decisions regarding the next jobs to 
start and the corresponding dispatching is taken only based on a performance metric, 
and without considering its cost. This clearly sounds like a limitation in case alterna-
tive decisions might have significantly different costs, tough similar performance. 
This limitation should be handled introducing a more suitable definition of the cost 
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function, still relying on the same optimisation algorithm. For example, in case a 
reduced production request, moving around stations and waiting idle in a station are 
regarded as completely interchangeable alternatives, though the former requires a 
cost (in terms of energy), while the latter probably does not.

The main limitation of the method is probably due to the modelling part. The 
method requires a model of the production environment to be available. Though 
the method does not require a specific modelling paradigm, as the complexity of 
the plant increases, the modelling task becomes even more time consuming. The 
availability of engineering tools to speed-up this task can be clearly beneficial for 
the applicability of the method.

As for future research directions, when dealing with mobile platforms, a better 
and possibly automatically designed traffic management system will be a scope 
of possible further investigations. Moreover, the incorporation within the digi-
tal twin of non-nominal execution of jobs (including errors, re-work, need for 
programmed stops for maintenance, etc.) will be also worth of future studies. In 
fact, one of the assumptions of the method as described in the paper, is that every 
job can terminate in a finite time. While for manual activities this is surely true, 
automated tasks without a complete coverage in terms of error-recovery strate-
gies cannot be considered by the method, at current stage.

Appendix

List of symbols adopted throughout the paper: 

t  current time instant (s)
�  generic (future) time instant (s)
ℙ  set of products, ℙ =

{
0, 1,… ,N

ℙ

}
ti,p  timestamp of the i-th order of product p ∈ ℙ (s)
Qi,p  requested quantity of product p ∈ ℙ within the i-th order (#)
ΔTi,p  takt-time of the i-th order of product p ∈ ℙ (s)
Γ  duration of the prediction horizon (s)
�p(t)  number of products of type p available at time t (#)
�0
p
(�)  desired number of products of type p available at time � (#)

�̂p,�(�)  predicted number of products of type p available at time instant � according 
to policy � (#)
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