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Abstract: A new method is presented, to derive an algorithm that provides a forecast of one-
day-ahead electricity consumption of a building. The approach aims to obtain high accuracy
with a small dataset of 1-2 weeks, motivated by practical situations where the building is new
or subject to relatively frequent changes, and/or limited local computation and memory are
available. The method introduces a fictitious input signal that captures the prior information
on the periodic behavior of building load time series. Moreover, the use of a linear model
structure enables the derivation of guaranteed accuracy bounds on the forecast error, which can
be used in day-ahead energy scheduling and optimization. Using an experimental dataset with
measurements collected from an office building, it is found that the fictitious input can largely
improve the prediction accuracy of the model, outperforming linear predictors and scoring a
performance similar to that of nonlinear ARX models, such as recurrent neural networks, while
retaining the capability to provide guaranteed accuracy bounds.

Keywords: Load Forecasting, Smart grid, Smart Buildings, Energy Prediction, System
Identification

1. INTRODUCTION

Buildings are major energy consumers worldwide, account-
ing for 20%-40% of the total energy demand (EIA, 2015;
Pérez-Lombard et al., 2008). Energy consumption fore-
casts allow system operators to plan the energy use over
time, shift demand to off-peak periods, and make more
favorable energy purchase plans. This motivates the in-
creasing interest in building load forecasting (Bourdeau
et al., 2019), at different time-scales. Approaches in the
literature range from autoregressive models (AR, ARX,
ARIMA, Seasonal ARIMA) (Espinoza et al., 2005; Fan and
McDonald, 1994; Yun et al., 2012; Taylor and McSharry,
2007), to Support Vector Machines (SVM) (Chen et al.,
2004), Artificial Neural Networks (ANN) (González and
Zamarreño, 2005; Rahman et al., 2018; Cai et al., 2019)
and Genetic Algorithms (GA). For a more comprehensive
list see e.g. Ahmad et al. (2014); Deb et al. (2017), and
the references therein. These black-box models are entirely
developed from historical data, of which they require a
relatively large amount (typically 1-2 years). Buildings also
feature daily/weekly/monthly/seasonal trends in their en-
ergy consumption, in addition to an influence from weather
(Massana et al., 2015). Forecasting methods were proposed
to take into account such periodic trends, resorting for
example to Fourier Series (Dhar et al., 1998), periodic
AR models (Taylor and McSharry, 2007), or indexed ARX
models (Yun et al., 2012). These approaches obtain compa-
rable results to those of Neural Networks (NN) (Yun et al.,
2012), with the advantage of having a simpler and more
easily understandable model structure. Still, they require
the availability of big datasets to identify seasonal trends
only from data.
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Such a need for large datasets represents a first poten-
tial problem of the mentioned approaches, making them
unreliable when only recent energy consumption data are
available, or when the memory for data storage is limited.
In fact, even in the era of Big Data there is still an
interest in the development of accurate forecasting mod-
els for industrial applications with limited memory and
computational power, without resorting to cloud services
and large databases. In addition, one can be interested in
a ready-to-go forecasting algorithm to predict the energy
consumption of a newly constructed or renovated building.
Finally, it is of interest to derive an accurate forecasting
model from a small, recent dataset also when the building
may be subject to relatively frequent changes in purpose,
number of occupants, or installed/used equipments. The
development of a forecasting algorithm able to achieve
state-of-the-art performance using a small dataset is thus
a relevant open problem. A second problem of the exist-
ing approaches is the fact that prediction uncertainty is
seldom considered in the algorithm derivation phase. Yet,
algorithms that can provide both a nominal forecast and
an associated error interval are extremely important when
taking decisions on the basis of the load prediction. In
particular, deriving tight error bounds for complex nonlin-
ear models, such as ANNs, is currently an open problem,
while recent results have been developed for linear models
(Lauricella and Fagiano (2020)).
In this paper, we propose a novel method that aims to solve
both problems. On the one hand, we inject the available
prior information on the periodicity of energy consumption
trends by constructing a fictitious input signal that is fed
to the model, in addition to weather forecast. The fictitious
input mimics a frequency decomposition of the periodic
part of the load behavior, but does not require any data
to be constructed. On the other hand, it captures well
the nonlinearity in the load behavior, and allows us to
resort to a linear ARX predictor which, identified with
a short dataset (e.g., two weeks), achieves on our test-



ing data much better performance than nonlinear models
trained with the same dataset, and comparable to those of
nonlinear models trained with much larger datasets (e.g.,
two years). Furthermore, the model being linear, we apply
the Set Membership (SM) approach proposed in Lauricella
and Fagiano (2020) to compute tight guaranteed bounds
on the forecasting error.
After describing the method, we test and compare it with
established ones using an experimental dataset with mea-
surements collected in an office building hosting around
200 employees, equipped with electrical heating and cool-
ing (Fig. 1).

Fig. 1. ABB office building providing the measurements of
the adopted experimental dataset.

2. PROBLEM DESCRIPTION AND FORECASTING
PROCEDURE

We assume to have a dataset containing the time series
of electric power consumed by a building, averaged every
quarter-hour, for a number N of subsequent days in the
recent past. Specifically, the measured values ỹi(k) are
available, k = 1, . . . , 96, each one representing the average
electric power consumed in the k-th quarter-hour of day
i, i = 1, . . . , N . Moreover, for the same days we assume
that weather measurements are available as a sequence of
vectors uw,i(1), . . . , uw,i(96), uw,i(k) ∈ RnW . Components
of the weather vector in each time interval typically
include the external temperature, relative humidity, solar
irradiation and wind speed, measured by a weather station
close to the considered building.
The problem we address can be classified as a short-term
load forecasting one. Using the available dataset covering
N days, we want to derive a one-day-ahead forecasting
algorithm. Namely, at the beginning of each day, we want
the algorithm to predict the course of quarterly electricity
consumption for the same day, together with prediction
error bounds. The algorithm will entail the simulation, for
one day, of a discrete-time autoregressive model of order
ny with suitable predicted input signals, and we allow the
model to be initialized with the first ny load measurements
of the day. Thus, the derived forecasting algorithm will
produce 96−ny predicted values of electricity consumption
at time step ny of each day. As an example, with ny = 3
the algorithm will generate, at time 0 : 45 of the considered
day, the estimated electricity consumption from time 1 : 00
every 15 minutes up to time 24 : 00. We anticipate that
this choice is arbitrary and without loss of generality, since
in our approach the derived model is time-invariant and
can be initialized at any instant to predict the load at any
future time step.
Finally, in our setup it is intended that the forecasting
algorithm is used for a limited number M of days, after
which a new one is derived from a new dataset of N most

recent past days and used for further M days, in a moving
horizon fashion. For example, with N = 14 and M = 7,
we obtain the following procedure.

1) At the beginning of each week, use the two most
recent past weeks of data to derive the one-day-ahead
forecasting algorithm valid for that week;

2) At the beginning of each day of the week, compute the
one-day-ahead load forecast and uncertainty interval,
using the forecasting algorithm obtained at step 1),
initialized with first ny load measurements of the
considered day;

3) At the end of the week, update the dataset with
the most recent measurements, adopting a moving
window criterion with a fixed length of two weeks,
and go to 1).

As anticipated in the introduction, the use of a small
dataset is seldom considered in the literature and poses
problems to established techniques, such as those based
on neural networks and Fourier series, which need large
amount of data in the training phase. On the other hand,
the capability to produce accurate forecasts with a few,
recent past data enables the load prediction function on
industrial equipment, with limited memory and compu-
tational power, and allows one to employ the above-
described moving horizon approach, which is able to adapt
to changes in the building (e.g. renovation works, installa-
tion/replacement of equipment, change of purpose, etc.),
and can be used on new buildings where no historical data
is available.
The key point of the procedure is the method employed to
derive the forecasting algorithm, introduced next.

3. LOAD FORECASTING METHOD

The proposed approach combines the use of: a) a fictitious
input signal, aimed to capture the nonlinear and periodic
trend of electricity consumption; b) the identification of a
discrete time autoregressive model with exogenous input
(ARX) using a simulation error method (SEM); and c)
the use of Set Membership methods to estimate bounds
on the simulation error of the model, which will provide
the forecast error interval. Each one of these ingredients is
described in the following sub-sections.

3.1 Fictitious input

Buildings have daily, weekly and seasonal patterns in
their consumption profile (Massana et al., 2015). Several
literature contributions employ this knowledge in different
ways, some of which are reported in Section 1. All these
approaches share the common need for a large-enough
dataset, to be able to identify all the seasonal trends
that are present in the analyzed time series. Here, we
propose a method to exploit this prior knowledge even with
short datasets. We introduce an artificial signal, named
fictitious input, to excite the system model according to
the expected periodic behavior of the energy consumption.
The fictitious input is simply a linear combination of sine
and cosine functions with unitary amplitude. The idea is
similar to that of Fourier series, but the harmonics of the
signal are not computed from the data: rather, they are a
priori chosen as fractions of days and weeks based on an
expert choice of the relevant frequency contributions.
Thus, at each time step k = 1, . . . , 96 of each day i ≥ 1,
the fictitious input can be written as:



uf,i(k) =



cos (ω1(k + 96(i− 1)))
...

cos (ωnω
(k + 96(i− 1)))

sin (ω1(k + 96(i− 1)))
...

sin (ωnω (k + 96(i− 1)))


(1)

where nω is the number of considered frequency contri-
butions, and each ωj = 2πfj corresponds to one of the
selected harmonics. Thus, we have uf,i(k) ∈ Rnf with
nf = 2nω.
Here, considering that the sampling period is 15 minutes,
we define fj = j

4·24·7 , so that, for example, with nω = 14
one would consider sine and cosine waves with periods in
the interval between 7 days (j = 1) and 12 hours (j = 14).
As anticipated, the multivariable signal (1) is given as in-
put to a linear ARX model to be identified. The subsequent
model identification phase will then shape the amplitude
of each component in order to match the resulting power
consumption with the one measured and stored in the
training dataset, as detailed next.

3.2 Model structure and parameter identification

Let us denote with ŷi(k|ny) the load predicted at time
step k + ny of day i, given the information available at
time ny of the same day. The one-day-ahead load forecast
is computed by simulating a dynamical model of the form:

ŷi(k + 1|ny) = φi(k|ny)
T θ, k = 0, . . . , (95− ny) (2)

where T denotes the matrix transpose operation, ny is
the model order, θ ∈ Rny+nu (nW+nf ) is the vector of
model parameters to be identified, and vector φi(k|ny) ∈
Rny+nu (nW+nf ) (“regressor”) is given by:

φi(k|ny) =
[
Y T
i (k|ny) U

T
i (k)

]T
. (3)

If k ≥ ny, vector Yi(k|ny) ∈ Rny in (3) is built as:

Yi(k|ny) = [ŷi(k|ny), ŷi(k − 1|ny), . . . , ŷi(k − ny + 1|ny)]
T

(4)
otherwise, for each k = 0, . . . , ny − 1, the estimated values
ŷi(k − j|ny) in (4), j = k, . . . , ny − 1, are replaced by the
measured values ỹi(k−j+ny), which are available at time
step ny of day i (initial conditions).
Finally, vector Ui(k) ∈ Rnu(nW+nf ) in (3) contains the
input signals as:

Ui(k) =
[
uw,i(k)

T , . . . , uw,i(k − nu + 1)T ,

uf,i(k)
T , . . . , uf,i(k − nu + 1)T

]T
,

(5)

where nu is a value between 1 and ny. We adopt the same
value of nu for both the weather inputs and the fictitious
input for the sake of simplicity, without loss of generality.
Having defined the model structure, the parameter iden-
tification is carried out by solving the following uncon-
strained nonlinear program:

θ̂ = argmin
θ

N∑
i=1

∥∥∥Ỹ i − Ŷ i(θ)
∥∥∥2
2

(6)

where N denotes the number of days in the considered
simulation horizon (i.e. N = 14 for a two weeks long
dataset), and

Ỹ i = [ỹi(ny + 1), . . . , ỹi(96)]
T

Ŷ i(θ) = [ŷi(1|ny) . . . ŷi(96− ny|ny)]
T ,

with ŷi(k|ny) computed via recursion of (2)-(5), hence the
dependence of vector Ŷ i on θ. Notice that, to compute
ŷi(k|ny), weather forecast should be used in place of
future weather input measurements. Problem (6) shall be
formulated and solved at step 1) of the procedure outlined
in Section 2. Standard sequential quadratic programming
algorithms, such as the Gauss-Newton one, are well-suited
for this problem class and very efficient in terms of required
computational time. Then, the obtained parameter vector
θ̂ is used in step 2) of the procedure to compute the wanted
load forecasts, by simply iterating the model (2)-(5) for the
future days.

3.3 Accuracy bounds

Besides simplicity and the availability of a well-established
theory, the advantage of using a linear ARX model like
(2) is the possibility to apply the Set Membership (SM)
approach presented in Lauricella and Fagiano (2020) to
compute guaranteed accuracy bounds for the one-day-
ahead load forecast over the considered horizon. Originally
developed for linear time-invariant systems subject to
output disturbances, whose input is perfectly known or
measured without noise, this SM approach can be in fact
applied in the framework considered here. By doing so, the
computed bounds will account both for model mismatch
and for the inaccuracy of the employed weather forecast.
For the sake of completeness, the method is briefly recalled
in the following. For a more complete description the
interested reader is referred to Lauricella and Fagiano
(2020).
We start by considering the one-step-ahead ARX predictor
defined in (2), and all the multi-step predictors obtained
by its recursion for all the considered time steps in the
one-day-ahead forecasting horizon, which are denoted by:

ŷi(k|ny) = φ̄T
k,iθ̄k. (7)

Note that, in (7), the regressor φ̄k,i is now a vector whose
size increases with k, since it contains the initial conditions
and all the subsequent input values applied to the system.
Similarly, the parameter vector θ̄k increases in size with k,
and its elements are polynomial functions of the elements
of the model parameters θ in (2), obtained by the k-step
model recursion. Then, for each k we can estimate the
disturbance bound ε̄k through the following linear program
(LP):

ε̄k = min
θ̄k, ε∈R+

ε subject to∣∣∣ỹi(k + ny)− φ̄T
k,iθ̄k

∣∣∣ ≤ ε, i = 1, . . . , N,

It is customary to employ a scaling factor α > 1 on the
obtained value, to account for the use of a finite dataset:

ˆ̄εk = αε̄k, α > 1.
Then, we define the set of multi-step parameter values
that are consistent with the measured data and with the
estimated disturbance bound for each k-step predictor,
called Feasible Parameter Set (FPS):

Θk
.
=

{
θ̄k :

∣∣ỹi(k)− φ̄T
k,iθ̄k

∣∣ ≤ ˆ̄εk, i = 1, . . . , N
}

Now, consider that the forecast algorithm obtained through
the approach of Section 3.2 exploits the model parameters
θ̂ (6). We indicate the corresponding multi-step param-
eters, obtained by iterating k times the one-step-ahead
model (2), as ˆ̄θk. Then, for a given regressor φ̄k,i, the
local error bound for the computed forecast algorithm is
estimated as:

τ̂k,i(φ̄k,i) = γ
(

max
θ̄k∈Θk

∣∣∣φ̄T
k,i(θ̄k − ˆ̄θk)

∣∣∣ )+ ˆ̄εk, γ > 1, (8)



where γ, like α, is a scaling parameter that accounts for
the uncertainties due to the usage of a finite dataset.
The computation of τ̂k,i entails the solution of 2 LPs.
The obtained forecast accuracy bound, τ̂k,i, holds for the
ny + k time step of the considered day. Repeating the
computation for k = 1, . . . , 96 − ny yields the forecast
error bounds along the whole day. In the next Section, we
illustrate the performance of the method and the tightness
of the computed bounds on an experimental dataset.

4. EXPERIMENTAL RESULTS

In this paper, we use a dataset of measurements collected
during two years in an office building of ABB SpA in
Bergamo, Italy. The dataset consists of measurements of
the overall building load, averaged every 15 minutes, and of
weather variables measured every 15 minutes, specifically,
ambient temperature, relative humidity, solar irradiation
and wind speed. The considered building hosts around
200 employees, and it features an electric heating and
cooling system, elevators, lighting system, a kitchen with
fridges, computers and printers, a UPS, an e-vehicles
charging station, and electronic laboratories. In Fig. 2, all
the available building load measurements are illustrated
through a box-plot, while Fig. 3 depicts the load measured
during two weeks between August and September 2017.
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Fig. 2. Box-plot of the building load measured over the
entire dataset.
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Fig. 3. Building load measurements over a two weeks
interval (28 Aug 2017 to 10 Sep 2017).

The available measurements are then rearranged into two
different sets, named Set A and Set B. Set A is a collection
of nine randomly selected testing weeks, reported in Table
1, and of the corresponding training weeks, i.e. the two
weeks preceding each considered testing week. During the
random selection, all the weeks including a non-working
day happening outside the weekend were excluded from
the dataset. Set A is then used to train and test forecasting
models with a limited amount of data. Set B is composed
of two full years of training data (from 1 March 2017 to
28 February 2019), and of the four weeks of testing data
listed in Table 2. The data used during the training and
testing phases are previously normalized to zero mean
and unitary variance, where the mean and the standard
deviation are computed over the available training dataset.

The obtained load forecast is then denormalized using
the same mean and standard deviation used for the data
normalization.

Table 1. Test sets for Group (A)

2017 2018 2019
Start Jun19 Sep11 Nov20 Feb19 Jun18 Sep17 Dec10 Feb4 Mar18
End Jun25 Sep17 Nov26 Feb25 Jun24 Sep23 Dec16 Feb10 Mar24

Table 2. Test sets for Group (B)

2019
Start Mar4 Mar11 Mar18 Mar25
End Mar10 Mar17 Mar24 Mar31

In this section, we compare the forecasting performance
of the proposed prediction model, described in Section
3.2, with that of four different forecasting approaches. In
particular, we use as benchmark an ARX predictor trained
with the SEM approach, i.e., minimizing the simulation
error across the considered prediction horizon, see e.g.
Söderström and Stoica (1989), where the only inputs
are the weather variables, which provides a baseline for
standard linear regression models without fictitious input,
and a nonlinear autoregressive network with exogenous
input (NARX), which is the nonlinear counterpart of ARX
predictors. A NARX architecture is a mixture of neural
networks and autoregressive time series methods, where
the output is computed based on its previous values,
and on previous values of the exogenous variables. In the
literature, NARX neural networks are often considered to
be one of the best performing machine learning approaches
for building load forecasting (Yildiz et al., 2017). Their
training can be done both in open loop, if the load
values used as input for the regression are the measured
ones, or in closed loop, if the forecasted load is fed back
to the network as input. The one-day-ahead forecast is
always obtained in closed loop. The structure of the
considered models, and the training procedures adopted
for the different predictors are detailed in the following.

ARX models Model 1 is the ARX predictor with ficti-
tious input described by (2), while model 2 is an ARX
predictor without fictitious input, that corresponds to (2)
where, in the regressor defined by (3), Ui(k) contains only
the weather variables uw,i(k). Both models are trained
solving (6) using a two weeks long dataset, with an hand-
made optimizer coded on MatLab to solve unconstrained
nonlinear programs (NLPs), employing a line search algo-
rithm based on the Gauss-Newton method (Nocedal and
Wright, 2006). The model order is then tuned to minimize
cross-validation error and model complexity, trying differ-
ent combinations of ny and nu on a randomly chosen sub-
set of data. We found that ny = 3 and nu = 1 minimize
the weekly average prediction error, while providing a suf-
ficiently low standard deviation of the hourly forecasting
error, with a limited model complexity.

NARX models Model 3 is a NARX network trained in
open loop over a two-weeks-long dataset, with inputs given
by weather variables and the fictitious input signal. Model
4 is equivalent to model 3 , but its training is performed
in closed loop. In both cases, the NARX network is char-
acterized by a single hidden layer with one neuron having
an hyperbolic tangent (sigmoid) activation function, with
autoregressive order equal to 3, where the output layer
is given by one neuron with linear activation function.



The training is performed using the Bayesian Regulation
Backpropagation algorithm provided with the MatLab 9.5
Deep Learning Toolbox (ver. 12.0), that minimizes a com-
bination of mean squared forecasting error and weights.
More details can be found in Foresee and Hagan (1997).
The chosen network structure is the one providing the best
performance in cross-validation among several trials.
Model 5 is a ‘state-of-the-art’ NARX network, whose
structure emulates the best performing forecasting model
among the ones reviewed in Yildiz et al. (2017). This
network is then trained with Bayesian Regulation Back-
propagation using two weeks of training data (Set A),
and it is used as a term of comparison for the proposed
forecasting approach when the amount of data available for
model training is limited. The same model is also trained
using the full length dataset (Set B) in order to obtain the
best forecasting performance, as commonly done in the
literature. Here, as in Yildiz et al. (2017), the inputs are
given by weather variables, time indexes (week of the year,
day of the week, hour of the day), holiday/business-day
binary indicator, previous day peak and minimum load,
previous week peak and minimum load, and the autore-
gressive order is 3. The optimal network structure, result-
ing from a preliminary phase where the cross-validation
performance of several different network structures were
compared, is given by 2 hidden layers with respectively 4
and 6 neurons when using Set A, and by two hidden layers,
having respectively 10 and 4 neurons, when using Set B,
with hyperbolic tangent (sigmoid) activation function. The
output layer consists of one neuron which is activated by
a linear regression function.
For the training of the NARX models, the training dataset
was randomly split into a training part (85%), and a vali-
dation part (15%), and for each testing week, every model
is trained 50 times with a different initialization, and the
one providing the best performance in cross-validation was
selected for the forecasting of the testing week.

Here, we employ R2 and Mean Absolute Percentage Error
(MAPE) as performance metrics of the forecasting models,
since they are commonly adopted in the related literature.
The R2 is a metric that measures the fitting performance
of a model on the training data, and it is defined as

R2 = 1−
∑Nt

j=1 (ỹ(j)− ŷ(j))
2∑Nt

j=1 (ỹ(j)− ȳ)
2

, with ȳ =
1

Nt

Nv∑
j=1

y(j),

where ỹ represents the measured building energy consump-
tion, ŷ is its forecast, and Nt is the number of data samples
used for training. The MAPE measures the forecasting
performance on the testing data, and it is defined as:

MAPE =
100

Nv

Nv∑
t=1

∣∣∣∣ ỹ(t)− ŷ(t)

ỹ(t)

∣∣∣∣
where Nv is the number of data samples used for testing.
Table 3 reports a comparison of the forecasting perfor-
mance of models 1 - 5 , all trained with a two-weeks-long
dataset, for each of the nine testing weeks of Set A. It
is possible to notice that the ARX model fed with the
proposed fictitious input signal (model 1 ) has an average
MAPE close to that of the two NARX network models
fed with the same fictitious input (models 3 and 4 ), and
it is able to achieve a comparable, and sometimes better,
forecasting performance across the nine weeks, as can be
seen from the MAPE values. It is important to observe
that the predictors based on the fictitious input signal
perform significantly better than the other models ( 2 and
5 ), when the amount of data available for the training

Table 3. Fitting and forecasting performance
for the training and testing weeks

of data Set A.

Model 1 2 3 4 5 1 2 3 4 5
Week R2 MAPE

1 0.92 0.54 0.93 0.93 0.97 8.86 19.47 8.84 8.60 26.73
2 0.95 0.61 0.95 0.96 0.98 12.91 30.81 9.97 11.71 18.29
3 0.84 0.58 0.85 0.86 0.97 7.49 10.35 7.62 7.77 12.52
4 0.85 0.48 0.86 0.87 0.95 7.19 10.96 7.48 7.38 10.66
5 0.84 0.44 0.83 0.84 0.90 8.45 13.09 9.53 9.13 24.08
6 0.91 0.58 0.92 0.93 0.95 6.87 12.34 6.07 6.31 19.09
7 0.80 0.46 0.81 0.83 0.94 8.03 11.03 7.66 7.97 14.01
8 0.78 0.46 0.78 0.77 0.91 7.94 15.48 7.28 10.35 14.23
9 0.89 0.58 0.88 0.89 0.96 6.91 10.51 6.02 6.20 21.28

Avg. 0.86 0.53 0.87 0.88 0.95 8.29 14.89 7.83 8.38 17.88

Table 4. Fitting and forecasting performance
for the training and testing weeks

of data Set B.

Model 1 2 3 4 5 1 2 3 4 5
Week R2 MAPE

1 0.85 0.49 0.83 0.85 0.98 12.14 15.97 8.84 8.55 7.61
2 0.88 0.54 0.87 0.87 0.98 8.81 12.89 11.46 10.40 8.86
3 0.89 0.58 0.88 0.89 0.98 6.28 10.51 6.02 6.20 7.73
4 0.92 0.66 0.91 0.92 0.98 10.15 12.93 9.26 9.18 9.24

Avg. 0.88 0.57 0.88 0.88 0.98 9.35 13.08 8.89 8.59 8.36

phase is limited. Fig. 4 depicts the forecasted load for the
testing week 6 of data Set A obtained with model 1 , with
the associated bounds τ̂k,i computed solving (8) for every
quarter-hour of all the days of the considered week, with
α = 1.01, γ = 1.05. Fig. 5 reports a comparison between
the forecasting error of model 1 , computed as absolute
value of the difference between measured and forecasted
load, and the corresponding accuracy bounds, detailed for
a couple of days of testing week 6 of Set A.
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Fig. 4. Measured and forecasted load for testing week 6
of data Set A. Solid black line: measured load; red
dashed line: model 1 forecast; gray area: accuracy
interval given by bounds τ̂k,i.

Table 4 presents another performance comparison of the
prediction models obtained using Set B, where model 5
uses the full two years long dataset for the training phase,
while the other models only use the two weeks preceding
every testing week for their training. Clearly, model 5
achieves the best forecasting performance, thanks to its
ability to model nonlinear dynamics, and to the usage of
a large amount of data, but the proposed ARX predictor
(model 1 ) obtains a close enough prediction error, as mea-
sured by the MAPE, with a much simpler model structure,
and using less data for the training. Finally, Fig. 6 shows
the load measured during the testing week 3 of Set B, and
the corresponding predictions obtained with models 1 , 3
and 5 .
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Fig. 5. Detail of forecasting error and accuracy bounds
for testing week 6 of data Set A. Solid black line:
forecasting error; gray area: accuracy interval bounds.
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Fig. 6. Measured and forecasted load for testing week 3
of data Set B. Solid black line: measured load; red
dotted line with □: model 1 ; blue dash-dotted line
with ⋄: model 3 ; yellow dashed line with ◦: model 5 .

5. CONCLUSION

We presented a new approach to forecast one-day-ahead
electricity consumption of non-residential buildings, based
on the usage of linear models, that is able to obtain high
accuracy with a small set of data. To do so, we introduced
a fictitious input signal able to capture the nonlinear and
periodic trend of building load time series from prior infor-
mation. Moreover, the use of a linear prediction model lets
us derive guaranteed accuracy bounds on the forecasting
error resorting to the Set Membership framework. Experi-
mental results obtained from a dataset with measurements
collected from an office building illustrate the validity
of the proposed approach, showing that the use of the
fictitious input signal significantly improves the forecasting
accuracy of linear models. The presented ARX predictor
achieves performance comparable to that of NARX neural
networks, while retaining a simpler model structure and
the capability to provide guaranteed accuracy bounds on
its load forecast.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to Dr.
Enrico Ragaini and to ABB Italia SpA, for providing
the dataset with weather and load measurements, and
for the support during the development of the forecasting
approach.

REFERENCES
Ahmad, A., Hassan, M., Abdullah, M., Rahman, H.,

Hussin, F., Abdullah, H., and Saidur, R. (2014). A
review on applications of ANN and SVM for building
electrical energy consumption forecasting. Renewable
and Sustainable Energy Reviews, 33, 102–109.

Bourdeau, M., qiang Zhai, X., Nefzaoui, E., Guo, X.,
and Chatellier, P. (2019). Modeling and forecasting
building energy consumption: A review of data-driven
techniques. Sustainable Cities and Society, 48, 101533.

Cai, M., Pipattanasomporn, M., and Rahman, S. (2019).
Day-ahead building-level load forecasts using deep
learning vs. traditional time-series techniques. Applied
Energy, 236, 1078–1088.

Chen, B.J., Chang, M.W., and Lin, C.J. (2004). Load
forecasting using support vector machines: A study on
EUNITE competition 2001. IEEE Transactions on
Power Systems, 19(4), 1821–1830.

Deb, C., Zhang, F., Yang, J., Lee, S.E., and Shah, K.W.
(2017). A review on time series forecasting techniques
for building energy consumption. Renewable and Sus-
tainable Energy Reviews, 74, 902–924.

Dhar, A., Reddy, T.A., and Claridge, D.E. (1998). Mod-
eling hourly energy use in commercial buildings with
fourier series functional forms. Journal of Solar Energy
Engineering, 120(3), 217–223.

EIA (2015). Electric power monthly: with data for January
2015. Technical report, US Energy Inf Adm.

Espinoza, M., Joye, C., Belmans, R., and Moor, B.D.
(2005). Short-term load forecasting, profile identifica-
tion, and customer segmentation: a methodology based
on periodic time series. IEEE Transactions on Power
Systems, 20(3), 1622–1630.

Fan, J.Y. and McDonald, J.D. (1994). A real-time imple-
mentation of short-term load forecasting for distribution
power systems. IEEE Transactions on Power Systems,
9(2), 988–994.

Foresee, F.D. and Hagan, M. (1997). Gauss-Newton ap-
proximation to Bayesian learning. In Proceedings of In-
ternational Conference on Neural Networks (ICNN'97).
IEEE.

González, P.A. and Zamarreño, J.M. (2005). Prediction
of hourly energy consumption in buildings based on a
feedback artificial neural network. Energy and Build-
ings, 37(6), 595–601.

Lauricella, M. and Fagiano, L. (2020). Set Membership
identification of linear systems with guaranteed simula-
tion accuracy. IEEE Transactions on Automatic Con-
trol.

Massana, J., Pous, C., Burgas, L., Melendez, J., and
Colomer, J. (2015). Short-term load forecasting in
a non-residential building contrasting models and at-
tributes. Energy and Buildings, 92, 322–330.

Nocedal, J. and Wright, S. (2006). Numerical optimization.
Springer.

Pérez-Lombard, L., Ortiz, J., and Pout, C. (2008). A
review on buildings energy consumption information.
Energy and Buildings, 40(3), 394–398.

Rahman, A., Srikumar, V., and Smith, A.D. (2018). Pre-
dicting electricity consumption for commercial and res-
idential buildings using deep recurrent neural networks.
Applied Energy, 212, 372–385.

Söderström, T. and Stoica, P. (1989). System identifica-
tion. Prentice-Hall.

Taylor, J.W. and McSharry, P.E. (2007). Short-term load
forecasting methods: An evaluation based on european
data. IEEE Transactions on Power Systems, 22(4),
2213–2219.

Yildiz, B., Bilbao, J., and Sproul, A. (2017). A review and
analysis of regression and machine learning models on
commercial building electricity load forecasting. Renew-
able and Sustainable Energy Reviews, 73, 1104–1122.

Yun, K., Luck, R., Mago, P.J., and Cho, H. (2012). Build-
ing hourly thermal load prediction using an indexed
ARX model. Energy and Buildings, 54, 225–233.


