
 

Permanent link to this version 

http://hdl.handle.net/11311/1170566 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
C.A. Yan, R. Vescovini, E.L. Jansen 
A Semi-Analytical Framework for Nonlinear Vibration Analysis of Variable Stiffness Plates 
Composite Structures, In press - Published online 20/04/2021 
doi:10.1016/j.compstruct.2021.113954 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.compstruct.2021.113954 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  



A Semi-Analytical Framework for Nonlinear Vibration Analysis of

Variable Stiffness Plates

C.A. Yan1, R. Vescovini1∗and E.L. Jansen2

1Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Via La Masa 34, 20156 Milano, Italy

2 Rotterdam University of Applied Sciences

G.J. de Jonghweg 4-6, 3015 GG Rotterdam, Netherlands

Abstract

Focus of this paper is the development of a fast semi-analytical framework to address the nonlinear

vibration response of plates with Variabile Stiffness (VS) configuration. A formulation is developed based

on a mixed variational theorem. A Ritz-like approach is employed for handling the spatial dependence,

whilst several techniques are developed and compared for the temporal dependence: the method of

averaging, a perturbation approach, an iterative procedure based on the Harmonic Balance Method

(HBM) and a direct integration method. The proposed framework allows fast parametric studies to be

performed for assessing the nonlinear vibration response of VS plates. The comparison against reference

results demonstrates the validity of the proposed formulations in capturing the nonlinear free and forced

responses with relative computational ease. This aspect is further exploited by presenting parametric

studies, where the role of fiber path and boundary conditions is assessed. These studies aim at providing

further understanding into the underlying mechanical response and illustrate the potential of the proposed

semi-analytical approaches as a valuable mean to assist the design of VS plates.

Keywords: Nonlinear vibrations; Semi-analytical methods; Variable Stiffness composites.

1 Introduction

An emerging and promising class of composite laminates relies upon the variable stiffness (VS) concept; the

idea dates back to the late sixties [1], although just recently the development of key technologies, such as

automated fiber placement and continuous tow shearing, are making these solutions potential candidates

for the structures of the next generation. In VS laminates, stiffness properties are not constant along the

∗Corresponding author. Email address: riccardo.vescovini@polimi.it (Riccardo Vescovini)
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in-plane directions, but can be tailored to meet design requirements with improved efficiency. A possible

way to achieve stiffness variability consists in allowing fibers to run along curvilinear paths, with orientation

angles varying according to different laws. Linear variations [2], Lagrange [3, 4], Lobatto [5] and piecewise

polynomials [6] are few but examples of common choice employed to describe the fiber path. The effects of

fiber misalignment due to the manufacturing processes were recently investigated by Pagani and Sanchez-

Majano [7, 8]. The advantages of VS structures are manifold, ranging from improved buckling [2, 9, 10]

and post-buckling response [11, 12] to enhanced bending [13], thermal performance [14, 15, 16], and damage

resistance [17]. Potential advantages exist even in terms of nonlinear vibration behaviour [18], although rel-

atively less attention has been devoted in the literature to this aspect. Space applications could particularly

benefit from improved nonlinear vibration response, as they are commonly realized with thin panels forced

to vibrate at large amplitude by their operating environment. It is not by chance that early works in the

field of nonlinear vibrations date back to the fifties, with growing interest especially in the early stages of

space era [19].

Many strategies have been proposed in the years, combining different strategies for handling the spatial

and time dependence of the equations governing the nonlinear, dynamic equilibrium [20]. A comprehensive

review of the topic can be found in Ref. [21]. Early works focused on the analytical approach to the subject,

referring to elliptic functions [22], Galerkin method [23] and Navier-type expansion [24, 25] for the spatial

part; perturbation-like approaches were employed for dealing with the problem time-dependency. While

advantageous from a computational perspective, analytical solutions are generally restricted to specific con-

figurations, both in terms of material properties and boundary conditions.

In general, these restrictions can be overcome referring to the Finite Element Method (FEM). Early at-

tempts are found in Ref. [26] and, since then, numerous investigations have been carried out. The direct

integration scheme of Ref. [27] and the application of the Harmonic Balance Method (HBM) of Refs. [28, 29]

are few but examples of FEM-based procedures for nonlinear vibration problems. Despite inherent accuracy

and versatility, standard FE procedures are generally characterized by relatively large number of degrees

of freedom, this feature being undesirable when multiple nonlinear analyses must be run, such as in case

preliminary optimizations or parametric studies. Attempts to mitigate these restrictions promoted the use

of the p-version of the FEM, the main idea consisting in adopting higher-order shape functions, which, in

turn, allows coarser meshes to be used. In this context, the work of Refs. [30, 31, 32] are worth of mention,

the first focusing on isotropic plates, the two others on VS configurations; time dependence is taken care of

using the HBM method.

Other attempts to keep the computational burden at minimum focused on semi-analytical techniques, where

equations are derived analytically, while their solution is sought numerically. In many cases, these models

can be understood as a single-domain FEM p-version, although the expansion is not necessarily polynomial,

as it is most common in FEM.
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In this context, applications of Galerkin-like approaches are developed in Refs. [33, 34]. Prabhakar and

Chia [33] proposed the use of eigenbeam functions and HBM, while the technique of Ref. [34] relies upon

a two-mode trigonometric expansion and the method of averaging. A similar approach is adopted in more

recent works due to Amabili [35], where use is made of a mathematical software to manipulate the analytical

expressions of the governing equations which are then solved numerically through direct integration and

an arc-length method. The Galerkin method in combination with the method of averaging and a Fourier

semi-discretization in combination with a perturbation approach were proposed by Jansen [36] for analyzing

the nonlinear vibrations of cylindrical shells.

Starting from this background, this paper aims at extending the current semi-analytical capabilities to ad-

dress nonlinear vibrations of VS plates. Earlier works have focused on p-FEM approaches [18, 31, 13], while

semi-analytical strategies are relatively scarce, and are believed of crucial importance for maximizing the

efficiency of the analysis process. This aspect is of particular interest for handling VS configurations, where

several design variables need to be handled and more tailoring opportunities are available. Furthermore,

the underlying structural behaviour of VS plates is inherently complex, thus simple analysis methods allow

deeper understanding of the mechanical response to be gathered. With this purposes in mind, a formula-

tion based on the combined use of a mixed approach [37, 38, 39] and the Ritz method is developed. This

approach is an extension of the post-buckling formulations presented earlier in Refs. [39, 12] to the case of

nonlinear vibration analysis. To the best of the authors’ knowledge, no previous attempts can be found in

the literature to face the nonlinear vibrations of VS plates with a similar procedure.

A second goal of this work consists in presenting different strategies for solving the ordinary differential

equations arising from the spatial discretization. Most of the work in the literature focus on specific imple-

mentations, while comparison among different approaches for handling the time-dependence are quite rare

and believed of interest. For this scope, four methods are considered here, i.e. the method of averaging, a

perturbation procedure analogous to Koiter’s initial postbuckling theory, iterative procedures based on the

HBM and a direct time integration approach. The four methods are compared in terms of computational

time and accuracy of predictions.

The paper is organized as follows: Section 2 provides the theoretical background to the formulation, pre-

senting the variational framework and the semi-discretization of the governing partial differential equations

via Ritz approximation; Section 3 is devoted to the description of the methods for solving the ordinary

differential equations resulting from the Ritz approximation. Four strategies are presented for this scope;

the results are discussed in Section 4. Firstly, the comparison against literature results is presented, then

parametric studies are conducted to illustrate a potential use of the formulation developed here.
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2 Formulation

In this section, a formulation is presented for the analysis of thin composite plates obtained by the stacking

of plies with curvilinear fibers. With no loss of generality, the fiber angles are assumed to exhibit linear

variation along an arbitrary direction. Referring to Figure 1, the function expressing the fiber angle as a

function of x′ is given by [10]:

θ(x′) = φ+ (T1 − T0)
|x′|
d

+ T0 (1)

where φ is the angle between the reference path and the x axis, while T0 and T1 are the angles at the

reference points A and B, respectively. In the formulation presented hereinafter, the point A is taken to

be at the center of the plate, while B is taken at a characteristic distance d from A by moving along

x′. Each layer is specified through the compact notation φ〈T0|T1〉, while the laminate as a whole by[
φ1〈T 1

0 |T 1
1 〉, φ2〈T 2

0 |T 2
1 〉, ..., φNp〈TNp

0 |T
Np

1 〉
]
. In this notation, the superscripts are the ply-related indices,

and Np is the number of plies composing the laminate.

Still referring to Figure 1, a Cartesian coordinate system is taken over the plate midsurface, whose origin is

located at the center of the plate. The x and y axes run along the longitudinal and the transverse direction,

respectively, while the z axis is obtained to form a right-handed system. For future developments, it is useful

to introduce the nondimensional coordinates ξ and η, defined as ξ =
2

a
x, η =

2

b
y, where a and b denote the

longitudinal and the transverse dimensions, respectively. The total laminate thickness is h.

The in-plane conditions are those of movable – edges free to move, but forced to remain straight –, immov-

able or free edges, a summary of which is reported in Figure 1(a); any flexural boundary condition can be

considered, i.e. free (F), simply-supported (S) and clamped (C) – see Figure 1(b). Owing to the inherent

nonlinear coupling between in-plane and out-of-plane response, any problem requires the combined definition

of both flexural and in-plane conditions.

Following von Kármán nonlinear thin plate theory [40], the strain–displacement relation is given in the form:

ε = ε0 + zk (2)

where the vector of strains is ε = {εxx εyy γxy}T, while the membrane strains ε0 and plate curvatures k are

defined as:

ε0 =
{
u,x + 1

2w
2
,x v,y + 1

2w
2
,y u,y + v,x + w,xw,y

}T

k =
{
−w,xx −w,yy −2w,xy

}T

(3)

In Eq. (3), u, v and w are the middle surface displacement components along the three coordinate directions;

the comma followed by an index denotes differentiation with respect to that index.

The assumption of symmetric layup is introduced, as most of laminates used in real applications are so. In
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this case, the semi-inverse constitutive law is block-wise diagonal and reads:ε0

M

 =

a(x, y) 0

0 D(x, y)

N

k

 (4)

with a and D denoting the in-plane compliance and bending stiffness matrices available from Classical

Lamination Theory (CLT), while N = {Nxx Nyy Nxy}T and M = {Mxx Myy Mxy}T are the vectors

collecting the stress and moment resultants [40].

The formulation is developed by referring to a mixed variational approach, where the unknowns of the

problem are the out-of-plane deflection w and the Airy stress function F , the latter defined as:

F,yy = Nxx F,xx = Nyy F,xy = −Nxy (5)

The stress function F allows the in-plane equilibrium equations to be identically satisfied. The problem is

then reduced to the fulfillment of the out-of-plane equilibrium and the in-plane compatibility requirements.

In this work, these two conditions are enforced in a weak-form by referring to the unified variational principle

due to Giavotto [37, 41]:

Π∗ =− 1

2

∫
S

FTaF dS +
1

2

∫
S

kTDk dS +
1

2

∫
S

(
F,yyw

2
,x − 2F,xyw,xw,y + F,xxw

2
,y

)
dS+

+
1

2

∫
S

I0ẇ
2 dS−

∫
S

wq dS

(6)

where the second derivatives of the stress function F are collected in the vector F = {F,yy F,xx −F,xy}T, while

I0 is the inertia term corresponding to the out-of-plane displacement and q the external load in the form of a

pressure; the dot denotes differentiation with respect to time. By application of the techniques of variational

analysis, it is straightforward to demonstrate that the Euler-Lagrange equations of Eq. (6) are indeed the

dynamic out-of-plane equilibrium and the compatibility equations [42]. The weak-form formulation of the

problem as per Eq. (6) is particularly suited for applying direct solution techniques, such as the Ritz method.

For this reason, this is the approach pursued here.

It is worth noting that the effects of in-plane and rotary inertia are not included in Eq. (6). Indeed they can

be reasonably assumed to be negligible for most thin plate applications, especially when flexural vibrations

in the low/mid frequency range are of concern.

The Hamilton principle,
∫ t2
t1
δΠ∗ dt = 0, is imposed after introducing the Ritz method. With this purpose,

Legendre polynomials Li are used for expanding the problem’s unknowns. Specifically, their expression

reads:

Li(x) =

J∑
j=0

(−1)j
(2i− 2j)!

2ij!(i− j)!(i− 2j)!
xi−2j with: J =


i
2 if i = 0, 2, 4...

i−1
2 if i = 1, 3, 5...

(7)

Following Wu et al.[39, 43], the Airy stress function is conveniently expressed as:

F (ξ, η) = F0(ξ) + F1(η) + F2(ξ, η) (8)
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where a split is operated between the terms representing the membrane force resultants at the boundaries,

i.e. F0 and F1, and those inside the domain, i.e. F2. Specifically, the first two terms are expanded as:

Nyy(ξ) =
4

a2
F0,ξξ(ξ) =

4

a2

J∑
j=α

djLj(ξ)

Nxx(η) =
4

b2
F1,ηη(η) =

4

b2

K∑
k=α

ckLk(η)

(9)

The coefficient α in the summatories above is chosen according to the in-plane boundary conditions at the

edges, which can be movable (α = 1) or immovable (α = 0) [39]. Free in-plane edges are retrieved by

dropping the terms F0 and F1 from Eq. (8).

The contribution F2 of Eq. (8) – the one describing the membrane stress distribution in the plate domain –

is expressed as:

F2(ξ, η) =

PQ∑
pq=0

ΦpqXp(ξ)Yq(η) (10)

where Xp(ξ) and Yq(η) are obtained as:

Xp(ξ) = (1− ξ2)2Lp(ξ), Yq(η) = (1− η2)2Lq(ξ) (11)

Accordingly, the out-of-plane deflection is expanded as:

w(ξ, η) =

MN∑
mn=0

wmnXm(ξ)Y n(η) (12)

where the polynomial series along the longitudinal and the transverse directions are obtained as the product

between boundary functions and Legendre polynomials:

Xm(ξ) = (1 + ξ)i1(1− ξ)j1Lm(ξ), Y n(η) = (1 + η)i2(1− η)j2Ln(η) (13)

The coefficients ik and jk are introduced to guarantee the fulfillment of the essential boundary conditions.

In particular, they are taken as 0, 1 and 2 for free (F), simply supported (S) and clamped (C) conditions,

respectively.

Upon substitution of Eqs. (8)-(12) into Eq. (6), the approximation of the functional Π∗ is obtained as:

Π∗ =
1

2

(
djS

dd
(j)(j)

dj + cjS
cc
(k)(k)

ck + ΦpqS
ΦΦ
(pq)(pq)Φpq

)
+ ckS

cd
(k)(j)dj + ΦpqS

Φd
(pq)(j)dj + ΦpqS

Φc
(pq)(k)ck+

+
1

2
wmn

(
Kww

(mn)(mn) + Ñ(j)(mn)(mn)dj + N̂(k)(mn)(mn)ck +N(pq)(mn)(mn)Φpq

)
wmn+

+ wmnM
ww
(mn)(mn)ẅmn + wmnP

w
mn

(14)

Use is made here of the notation presented in Ref. [12], where vectors are denoted as ai = a, matrices as

A(i)(r) = A and arrays of matrices as A(i)(r)(m) = Ai. Note, the approximation of Π∗ as per Eq. (14)
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requires the evaluation of the surface integrals implied by Eq. (6), which are performed numerically via

Gauss integration. The explicit form of these terms is reported in the Appendix.

The Hamilton’s principle is imposed by taking the partial derivatives of Eq. (14) with respect to the Ritz

amplitudes ck, dj , Φpq and wmn, leading to the following system of ordinary differential equations in the

time variable: 

∂Π∗

∂d
: Sddd + Sdcc + SdΦΦ +

1

2
wTÑ jw = 0

∂Π∗

∂c
: Scdd + Sccc + ScΦΦ +

1

2
wTN̂ kw = 0

∂Π∗

∂Φ
: SΦdd + SΦcc + SΦΦΦ +

1

2
wTN pqw = 0

∂Π∗

∂w
: Mwwẅ + Kwww + dTÑmnw + cTN̂mnw + ΦTNmnw = Pw

(15)

The first three equations express the compatibility of membrane strains, while the fourth one is the dynamic

equilibrium along the out-of-plane direction. The differential problem of Eq. (15) holds for the case of in-

plane movable and immovable edges. When free in-plane edges are considered, the problem reduces to the

third and fourth equations, while the amplitudes ck, dj are identically zero.

3 Solution procedures

The nonlinear dynamic behavior of VS composite plates can be assessed in terms of frequency–amplitude

or time response by solving Eq. (15). In this section, four techniques, each characterized by with different

approximations, are proposed, i.e. the method of averaging, a perturbation procedure, an iterative method

and a direct time integration approach. The reason for developing various solution strategies is justified by

the practical need to have an analysis framework through which the designer can compare different methods

and make a choice on the most appropriate one for the specific application. Purpose of this work is providing

a systematic comparison of these solution procedures in terms of accuracy, complexity and computation cost,

in order to determine in which application field they are more suitable for. To this aim, different problems

concerning free and forced nonlinear vibrations of VS plate are illustrated in the successive sections.

3.1 Method of averaging

The first approach deals with the method of averaging. Before introducing the method, the governing

equations are re-organized in a more suitable way. Specifically, a static condensation is operated after

recalling that the in-plane inertia is neglected. It follows that the stress function amplitudes, i.e. d, c,

Φ, can be expressed as a function of the unknowns w by formal substitution of the first three of Eq. (15)

into the fourth one. One single differential equation, expressing the dynamic equilibrium in the out-of-plane

direction, is then obtained as:

Mwwẅ + Kww
L w + Kww

NL3
w = Pw (16)
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where the matrix KL denotes the linear stiffness matrix, while KNL3
is the stiffness matrix whose nonlin-

earities are due to the cubic terms in w.

A further reduction of order can be operated by expressing Eq. (16) in terms of modal coordinates. This

operation is of particular interest when the low-frequency response is of concern and few modes need to be

included in the expansion. By defining the transformation between the Ritz amplitudes and the first r modal

coordinates as w = Vrq, Eq. (16) transforms into:

q̈i + ciq̇i + kiqi +

r∑
j=1

r∑
k=1

r∑
s=1

bijksqjqkqs = pi for i = 1, 2, ...r (17)

where qi are the generalized modal coordinates; the coefficients ki, bijks and pi are the projection of Kww
L ,

Kww
NL3

and Pw onto the modal basis Vr. Note, viscous damping has been introduced in Eq. (17) in the form

of modal damping, i.e. ci = 2ξiωi, where ξi is the damping ratio here assumed equal for each mode r.

Starting from Eq. (17), the method of averaging allows to handle the time dependency through the application

of an averaging scheme. This operation permits a simplification of the set of Eq. (17) which can then be

solved with reduced effort. The method of averaging is developed by considering a two-mode approximation

of the solution. Extensions to larger modal basis can be operated with the same framework, while the

single-mode approach can be retrieved as a special case.

Recalling Eq. (17), and taking r = 2, one obtains:q̈1 + c1q̇1 + ω2
1q1 + β1111q

3
1 + β1112q

2
1q2 + β1122q1q

2
2 + β1222q

3
2 = p1 cos(ωt)

q̈2 + c2q̇2 + ω2
2q2 + β2111q

3
1 + β2112q

2
1q2 + β2122q1q

2
2 + β2222q

3
2 = p2 cos(ωt)

(18)

where β1111 = b1111, β1222 = b1222, β2111 = b2111, β2222 = b2222 and:

β1112 = b1112 + b1121 + b1211 β1122 = b1122 + b1221 + b1212

β2112 = b2112 + b2121 + b2211 β2122 = b2122 + b2221 + b2212 (19)

The averaged dynamics of the system is derived starting from an assumed solution in form:q1(t) = A1(t) cos(χ1(t))

q2(t) = A2(t) cos(χ2(t))
(20)

where χ1 = ωt + ψ1 and χ2 = ωt + ψ2. The method relies upon the assumption that the amplitudes and

phases are slowly varying function of time, i.e:q̇1(t) = −A1(t)ω sin(χ1(t))

q̇2(t) = −A2(t)ω sin(χ2(t))
(21)

The approximation above can be understood by observing that the linear counterpart of Eq. (18), i.e. the

equation obtained by dropping the nonlinear terms, admits solution in the form of Eq. (20), with Ai and ψi
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independent on time. The underlying idea of the method of averaging is that nonlinear terms will lead the

solution to slightly deviate from the linear one, thus resembling Eq. (20), but with amplitudes and phases

which are slowly varying functions of time.

Following the procedure described in Ref. [19, 44], it is possible to substitute Eqs. (20) and (21) into Eq. (18),

leading to four differential equations involving the unknowns Ai and ψi. Successive integration over one

period of the motion leads to the averaged equations:

ψ̇1 =
1

2A1ω
[−A1ω

2 +A1ω
2
1 +

3

4
A

3

1β1111 +
3

4
A

2

1A2β1112 cos(∆) +
3

4
A1A

2

2β1122 cos2(∆)+

+
3

4
A

3

2β1222 cos3(∆) +
1

4
A1A

2

2β1122 sin2(∆) +
3

4
A

3

2β1222 cos(∆) sin2(∆)− p1 cos(ψ1)]

Ȧ1 =
1

2ω
[−A1c1ω −

1

4
A

2

1A2β1112 sin(∆)− 1

4
A1A

2

2β1122 sin(2∆)− 3

4
A3

2β1222 cos2(∆) sin(∆)+

− 3

4
A3

2β1222 sin3(∆)− p1 sin(ψ1)]

ψ̇2 =
1

2A2ω
[−A2ω

2 +A2ω
2
2 +

3

4
A

3

1β2111 cos3(∆) +
3

4
A

3

1β2111 cos(∆) sin2(∆) +
3

4
A

2

1A2β2112 cos2(∆)+

+
1

4
A

2

1A2β2112 sin2(∆) +
3

4
A1A

2

2β2122 cos(∆) +
3

4
A

3

2β2222 − p2 cos(ψ2)]

Ȧ2 =
1

2ω
[−A2c2ω +

3

4
A

3

1β2111 cos2(∆) sin(∆) +
3

4
A

3

1β2111 sin3(∆) +
1

4
A

2

1A2β2112 sin(2∆)+

+
1

4
A1A

2

2β2122 sin(∆)− p2 sin(ψ2)]

(22)

where ∆ = ψ1−ψ2 is the offset between the two generalized coordinates, q1 and q2, and the overline denotes

the average value taken over one period. Note, the integrals leading to Eq. (22) are obtained by introducing

the approximation below: ∫ 2π

0

Ȧi dχ i ≈ Ȧi2π,
∫ 2π

0

ψ̇i dχ i ≈ ψ̇i2π (23)

which is motivated by the assumption introduced by Eq. (21): amplitudes and phases are slowly varying

functions of time, thus their integral over one period can be approximated with the average value.

The method of averaging allows the steady-state response to be evaluated by setting Ȧi and ψ̇i equal to zero

[19, 44]. In this case, a set of algebraic equations is obtained, whose solution is obtained via Newton-Raphson

iterations.

The free vibration problem can be recovered form Eq. (22) by setting to zero the damping and the forcing

contributions, i.e. ci and pi.

3.2 Perturbation procedure

The second strategy is a perturbation procedure, which is analogous to the well known Koiter’s initial

postbuckling theory [45] and corresponds to a similar procedure for nonlinear vibrations introduced by

Rehfield in Ref. [24]. This procedure is of interest due to its effectiveness in deriving simple closed-form
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solutions for describing the nonlinear response of the structure.

The method can be developed by referring to the variational principle of Eq. (6) and assuming a perturbation

expansion in the form:

w = ξw(1) + ξ2w(2) + . . .

F = ξF (1) + ξ2F (2) + . . . (24)

where ξ is a small perturbation parameter; the functions w(i) and F (i) of Eq. (24) are the solutions of the

i-th order problems obtained by substitution of Eq. (24) into Eq. (6) and by successive collection of terms

pre-multiplied by corresponding powers of ξ.

The perturbation expansion is conducted here up to the second-order terms. Furthermore, a single-mode

approximation is operated, meaning that vibration modes are assumed to be well-separated. This is generally

the case for the plate structures under investigation. The coexistence of multiple modes at the same frequency

falls beyond the capability of the present formulation.

Rather than developing the formulation at variational principle level, it is advantageous to perform the

expansion after the Ritz approximation is introduced [12]. In particular, the Ritz amplitudes are expressed

as:

d = ξd(1) + ξ2d(2) + . . .

c = ξc(1) + ξ2c(2) + . . .

Φ = ξΦ(1) + ξ2Φ(2) + . . .

w = ξw(1) + ξ2w(2) + . . .

(25)

The first-order problem is derived by substituting Eq. (25) into Eq. (15) and by collecting the linear terms

in ξ, leading to: 

Sddd(1) + Sdcc(1) + SdΦΦ(1) = 0

Scdd(1) + Sccc(1) + ScΦΦ(1) = 0

SΦdd(1) + SΦcc(1) + SΦΦΦ(1) = 0

Mwwẅ(1) + Kwww(1) = 0

(26)

The first three equations are identically satisfied by taking c(1) = d(1) = Φ(1) = 0, while the solution of the

fourth equation is sought in the form of w(1) = ŵ(1) cos(ωt). The first-order problem is therefore reduced

to: (
−ω2Mww + Kww

)
ŵ(1) = 0 (27)

which is an eigenvalue problem in a standard form. The eigenvector ŵ(1) is conveniently normalized with

respect to the thickness h, so that the perturbation parameter ξ can be understood as the nondimensional
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amplitude wmax/h.

The second-order problem is derived by collecting the quadratic terms in ξ and reads:

Sddd(2) + Sdcc(2) + SdΦΦ(2) = −1

2
w(1)TÑ jw

(1)

Scdd(2) + Sccc(2) + ScΦΦ(2) = −1

2
w(1)TN̂ kw

(1)

SΦdd(2) + SΦcc(2) + SΦΦΦ(2) = −1

2
w(1)TN pqw

(1)

Mwwẅ(2) + Kwww(2) = −
(

d(1)T
Ñmn + c(1)TN̂mn + Φ(1)T

Nmn

)
w(1)

(28)

The right-hand side of the first three of Eq. (28) shows that the Airy stress function coefficients can be ex-

pressed as {d(2), c(2),Φ(2)} = {d̂
(2)
, ĉ(2), Φ̂

(2)
} cos2 (ωt). Based on this observation, along with substitution

of the first-order field into Eq. (28), one obtains:

Sddd̂
(2)

+ Sdcĉ(2) + SdΦΦ̂
(2)

= −1

2
ŵ(1)TÑ jŵ

(1)

Scdd̂
(2)

+ Sccĉ(2) + ScΦΦ̂
(2)

= −1

2
ŵ(1)TN kŵ

(1)

SΦdd̂
(2)

+ SΦcĉ(2) + SΦΦΦ̂
(2)

= −1

2
ŵ(1)TN pqŵ

(1)

Mww ¨̂w(2) + Kwwŵ(2) = 0

(29)

which is a linear system in the unknowns d̂
(2)

, ĉ(2) and Φ̂
(2)

(from the last of Eq. (29), it is straightforward

to conclude that ŵ(2) = 0). Note, the nonlinear terms N are on the right-hand side of the expressions and

are multiplied by the Ritz amplitudes ŵ(1), available from the solution of the first-order field.

As outlined in the procedure above, the perturbation approach transforms a complex nonlinear problem into

a sequence of two linear problems to be solved, namely Eqs. (27) and (29), whose solution is computed with

small effort, thus allowing for a fast assessment of the nonlinear dynamic response of the plate.

Once the solutions of the first and second-order fields are available, one can derive the asymptotic relation

between the vibration frequency ω and the perturbation parameter ξ in a very compact form [24][46]:

ξ

(
1− ω2

ω2
L

)
+Adξ

2 +Bdξ
3 + ... = pφ0 (30)

where ωL is the linear natural frequency, and the non-dimensional coefficients Ad and Bd are the dynamic

”a-factor” and dynamic ”b-factor”, respectively, whose expressions read:

Ad =
1

ω2
L∆d

∫ 2π

0

3

2
F(1) · (w(1),w(1)) dτ

Bd =
1

ω2
L∆d

∫ 2π

0

[
2F(1) · (w(1),w(2)) + F(2) · (w(1),w(1))

]
dτ

(31)

and where use is made of the short notation due to Hutchinson and Frauenthal [47]:

A · (B,C) =

∫
S

(
A,yyB,xC,x +A,xxB,yC,y −A,xyB,xC,y −AxyB,yC,x

)
dS (32)

11



The term p of Eq. (30) defines the load amplitude, whilst φ0 is dependent on the shape of the external

pressure load and is expressed as:

φ0 =
1

ω2
L∆d

∫ 2π

0

q ·w(1) dτ (33)

with the nondimensional time variable defined as τ = ωt, while the constant ∆d is:

∆d =

∫ 2π

0

ẇ(1)TDẇ(1) dτ (34)

where:

D =
abhρ

4

∫
S

XmY nXmY n dS (35)

and

q =
ab

4

∫
S

XmY n dS (36)

The asymptotic relation for the case of free vibration can be readily obtained by dropping the external force

contribution in Eq. (30) and leading to:

ω2
NL

ω2
L

= 1 +Adξ +Bdξ
2 + ... (37)

where ωNL is the nonlinear natural frequency.

3.3 Iterative procedure

The third strategy relies upon the Harmonic Balance Method [48], which consists in expanding the solution

of Eq. (17) via truncated Fourier series as:

q(t) ≈ Q0 +

K∑
k=1

[
Qc−k cos(kωt) + Qs−k sin(kωt)

]
(38)

where q is the vector collecting the generalized modal coordinates. Based on a number of preliminary studies,

an expansion up to K=5 was found as adequate for most cases of interest. The expression of Eq. (38) can be

simplified when free vibrations are of concern. In this case, damping effects are not considered, so sine terms

can be removed. Further simplifications can be introduced upon inspection of the type of nonlinearity. For

the problems at hand, quadratic nonlinearities are identically zero, while cubic ones are not: it follows that

the plate response is expected to be symmetric, and the constant term and even harmonics do not provide,

in general, a relevant contribution [20, 31].

Upon substitution of Eq. (38) into Eq. (17) and successive balancing of the harmonics, a system of nonlinear

algebraic equations is obtained in the form:(
−ω2M̂ + ωĈ + K̂ + N̂

)
x̂ = P̂ (39)
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where ω is the frequency of the forcing term, and the vector of unknown amplitudes reads:

x̂ =
{

Qc−1, Qs−1, Qc−3, Qs−3, Qc−5, Qs−5

}T

(40)

The expression of the terms M̂, Ĉ, K̂ and P̂ is not reported here for the sake of conciseness, but is available

in the Appendix. The forced response of the plate can be addressed by solution of the nonlinear algebraic

equations of Eq. (39); a standard Newton-Raphson procedure can be used for this scope.

The nonlinear (undamped) free vibration problem can be recovered as a special case of Eq. (39), by setting

the forcing and the damping terms, i.e. P̂ and Ĉ, to zero. This operation leads to:(
−ω2

NL
ˆ̂
M +

ˆ̂
K +

ˆ̂
N

)
ˆ̂x = 0 (41)

where
ˆ̂
M,

ˆ̂
K,

ˆ̂
N and ˆ̂x are derived from Eq. (39) by deleting rows and columns corresponding to sine terms.

The problem of Eq. (41) is in the form of a nonlinear eigenvalue problem, where ωNL is the unknown natural

frequency to be determined and ˆ̂x is the corresponding modal shape.

Two procedures can be considered for solving Eq. (41). The first one consists in taking the vibration

amplitude as continuation parameter: after setting its value, an iterative scheme is pursued to obtain the

corresponding natural frequency, leading to the approach presented in Ref. [30]. The second approach

considers the frequency ωNL as continuation parameter, and the corresponding amplitude is obtained via

Newton-Raphson iterations.

The former approach is more suitable for structures whose type of nonlinear response is not known, whether

of pure softening, pure hardening or mixed, i.e. hardening-softening or softening-hardening. In these cases,

the solution branch can be followed in a more straightforward way using the vibration amplitude as a

continuation parameter. At the same time, this approach may suffer from convergence difficulties in the

presence of coincident vibration modes or bifurcation points [49]. For the problems investigated here, both

strategies can be successfully used as the responses are purely of hardening type.

3.4 Direct time integration

The last strategy is based on directly integrating the set of Eq. (17). The integration is performed numerically

using the Newmark-β method consisting in the following step-by-step procedure:

(a1 + a2ci + ki) q
(t+∆t)
i +bijksq

(t+∆t)
j q

(t+∆t)
k q(t+∆t)

s = p
(t)
i +(a1 + a2ci) q

(t)
i +(a3 − a4ci) q̇

(t)
i +(a5 − a6ci) q̈

(t)
i

(42)

with

q̈
(t+∆t)
i = a1

(
q

(t+∆t)
i − q(t)

i

)
− a3q̇

(t)
i − a5q̈

(t)
i

q̇
(t+∆t)
i = a2

(
q

(t+∆t)
i − q(t)

i

)
+ a4q̇

(t)
i + a6q̈

(t)
i (43)
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and

a1 =
1

β∆t2
, a2 =

γ

β∆t
, a3 =

1

β∆t
, a4 = 1− γ

β
, a5 =

1

2β
− 1, a6 = ∆t

(
1− γ

2β

)
(44)

where the time step ∆t is chosen equal T/100, where T is the period of vibration; the parameters β and γ

[50] are taken as 0.25 and 0.5, respectively.

In this work, frequency response (forced response) and backbone (free vibrations) curves are of concern,

therefore repeated analyses are needed when referring to a direct integration scheme. In particular, the

forced response is assessed by application of a load with frequency ω and integrating Eq. (42) until transient

effects are dissipated, and a steady-state solution is found. After recording the maximum deflection wmax,

the frequency ω is updated (increased or decreased depending on the followed solution branch) and the new

steady-state solution calculated. The procedure is repeated until the frequency range of interest is spanned.

As it concerns nonlinear free vibrations, backbone curves – reporting the nonlinear natural frequency ωNL

versus the amplitude of vibration wmax – are traced with a similar approach, which closely resembles the one

often used in experimental procedures [20]. Specifically, the backbone curve is obtained by computing the

damped response of the structure for different excitation levels, joinining then the peaks of the corresponding

frequency response curves. Note, slight amounts of damping are needed to eliminate transient effects when

shifting from one steady-state solution to the other.

4 Results

In this section, the results obtained by application of the four solution methods presented earlier are discussed.

A preliminary part is devoted to the comparison against reference results, aiming at verifying the correctness

of the formulations and their implementation.

Then, the semi-analytical strategies are exploited to perform parametric studies: the effect of different fiber

configurations is assessed along with the potential for improving the nonlinear response of VS plates through

elastic tailoring.

In the final part, a comparison is given between the four solution procedures in order to check their field of

employ and provide general guidelines in their use for a given application.

The mechanical properties of the materials considered in the next sections are summarized in Table 1.

4.1 Convergence analysis

A preliminary study is conducted to illustrate the convergence of the solution for increasing number of trial

functions. For this purpose, a VS composite plate is considered with geometry characterized by a/b = 1 and

a/h = 250. The mechanical properties are those of Material A, and the lamination sequence is
[
±〈45|90〉

]
2s

.

The boundary conditions are CSCS with in-plane immovable edges.
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The results of linear free vibration analyses are summarized in Table 2, where the nondimensional parameter

ΩL = ωLa
√
ρ/E22 is reported for an increasing number of functions M = N approximating the plate

deflection. Note, for linear vibrations, the out-of-plane behaviour is uncoupled from the in-plane one. Thus,

the only unknowns of the problem are the ones associated with the deflected pattern w.

From the results, the fast convergence of the solution can be clearly observed. In this example, frequencies

converge from above with monotonic behaviour, although this is not necessarily the case, as surface integrals

are carried out numerically. A number of functions equal to M = N = 6 suffices for reaching convergence

of the first frequency, whereas more terms are generally needed for higher-order modes as spatial halfwave-

lengths become smaller and smaller. In any case, a choice of M = N = 8 is enough to achieve convergence

of the first ten frequencies.

An assessment over the nonlinear frequency parameter ΩNL = ωNLa
√
ρ/E22 is provided in Table 3. The

results are presented by assuming a nondimensional deflection wmax/h equal to 1. The analyses are conducted

referring to the perturbation procedure, although the same conclusions reported next hold if the other

methods were used. Different runs are repeated by varying separately the number of terms describing the

Airy function, P = Q = S, and the out-of-plane displacement, M = N . It is interesting to observe that

the nonlinear frequency increases upon refinement of the approximation for the Airy function. In other

words, larger frequencies are obtained due to progressive reduction of the model compliance as the number

of functions P = Q = S is increased. With this regard, the force-based description of the in-plane behaviour

leads to an opposite convergence trend with respect to what observed for the out-of-plane displacements.

For the example at hand, convergence can be achieved by considering P = Q = S = 6, while less functions

are needed for M = N . This conclusion is not of general validity and is, in general, problem-dependent. In

the forthcoming sections, a number of functions M = N = P = Q = S = 8 will be retained, unless otherwise

specified; this choice proved to be adequate for handling all the test cases discussed.

4.2 Comparison against literature results

The comparison against reference results is presented now to give evidence of the correctness of the proposed

formulations. For this scope, two examples are presented for the case of nonlinear free vibrations, while

a third one deals with the forced response. For those methods relying upon a modal condensation, see

Eq. (17), a number of five modes is taken. This choice is motivated by a number of preliminary convergence

analyses, proving this choice to be a good compromise between accuracy and computational efficiency. The

only exception regards the method of averaging, which is developed by considering a two-mode solution, as

inherent in its derivation outlined in Section 3.1.
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Free vibrations

The first example is taken from Ref. [18]. The structure is a thin VS plate with geometry a/b = 1.5, a/h =

480, mechanical properties as per Material C, and stacking sequence
[
〈135|90〉, 〈−90| − 45〉, 〈90|45〉, 〈45|0〉

]
s
.

The boundary conditions are those of fully clamped with immovable edges, i.e. CCCC-immovable.

The nonlinear free vibration response is presented in terms of the backbone curve. Specifically, the nondi-

mensional frequency ratio ΩNL/ΩL – the subscripts L and NL stand for linear and nonlinear, respectively –

is plotted against the nondimensional vibration amplitude wmax/h. This latter corresponds to the maximum

deflection, which is observed at mid-point, i.e. (ξ, η) = (0, 0).

Results are generated using the four methods outlined in this paper. The comparison is presented in Figure 2

against numerical simulations conducted with the p-version FEM along with First-Order Shear Deformation

Theory (FSDT) [18]. The solution procedure adopted in the referenced work is based on the HBM and an

arc-length continuation method. Overall, good agreement is observed between the present and the reference

results. A slightly stiffer behaviour – nonlinear frequencies are larger for a given amplitude value – is as-

sociated with the results of Ref. [18]. This discrepancy is attributed to the handling of in-plane boundary

conditions: the displacement-based formulation of Ref. [18] allows in-plane immovable boundary conditions

to be enforced in strong-form; on the contrary, the mixed formulation presented here relies upon a definition

of in-plane conditions in an average sense. It follows that the four edges are not exactly fixed in the present

models, leading to a milder hardening response. In addition, minor differences can be ascribable to the

definition of the fiber orientation. Specifically, the FEM models of Ref. [18] consider the structure as an

assembly of finite elements, each characterized by a constant fiber orientation within the element domain.

On the contrary, the models developed here account for the fiber curvilinear path through the evaluation of

the fiber angles at the integration points.

Another example is presented to verify the correct definition and implementation of different sets of in-plane

boundary conditions. With this purpose, a straight fiber composite plate taken from Ref. [51] is considered.

The motivation for considering a straight fiber configuration is twofold: firstly, the availability of reference

results for VS plates under various boundary conditions is relatively limited; secondly, the capability of the

present methods to deal with VS configurations has been already shown in the previous test case, thus the

effect of boundary conditions can be assessed irrespective of the distribution of elastic properties.

The configuration under investigation is a cross-ply plate with geometry characterized by the nondimensional

ratios a/b = 1, a/h = 100 and made of Material B. The layup is
[
0/90/0/90/0

]
. The flexural boundary

conditions are those of simple-support, whilst the in-plane ones include immovable, movable and free edges.

The results are summarized in Table 4, where the nonlinear frequency ratios are reported for different values

of the maximum nondimensional amplitude wmax/h. As one may expect, the effect of constraining the in-

plane motion is that of increasing the nonlinear frequency for a given amplitude value. Immovable edges are

indeed associated with the largest nondimensional frequencies, while the smallest are achieved for free edges.
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This trend is correctly captured here and agrees with the results reported in Ref. [51], which are based on

the FEM and FSDT, and are obtained using the HBM and the iterative procedure described in [30]. The

percent differences between the present methods and the reference one are very small, reaching a maximum

value of 1%.

Forced response

A third example is taken from [52]. A VS plate is considered, whose geometry is defined by a/b = 1 and a/h =

50. The mechanical properties are those of Material D, and the stacking sequence is
[
〈90|45〉, 90〈90|45〉

]
s
.

The plate is constrained with CCCC-immovable conditions. The analysis deals now with the nonlinear forced

response of the plate. A uniform pressure of magnitude p = 2× 104N/m2 is considered, while the frequency

of excitation is taken in the neighborhood of the fundamental one.

The stable branch of the frequency response plot is presented in Figure 3 by reporting the maximum out-

of-plane displacement against the nondimensional frequency of excitation. The comparison regards the four

methods developed here and the results provided by Ref. [52], where a model based on the p-version FEM

and FSDT is used, whereas the Shooting method applied with HBM is adopted as solution procedure. No

damping is considered for all methods, i.e. ξi = 0, apart from the case of direct integration, requiring a

slight amount of damping, ξi = 5× 10−4, to allow transient effects to be dissipated over a sufficient number

of periods.

Very close agreement is observed between the semi-analytical methods and the reference results, further

demonstrating the correct implementation of the four methods also for forced vibration problems.

Note, the boundary conditions in Ref. [52] are expressed in terms of displacements, and not in average sense,

as for the present formulation. For this reason, the discrepancies are smaller in the regions characterized by

smaller values of wmax/h. Here, the coupling between in-plane and out-of-plane response is smaller and, in

turn, even the effect of approximate in-plane boundary conditions is less relevant.

It is interesting to note the different matching between results in the two branches depicted in Figure 3. In the

range Ω = 0.375−0.575 (upper branch), the displacements are under-predicted with respect to Ref. [52]; the

opposite holds true for the lower branch, see range Ω = 0.55−0.6. This behaviour is explained by noting two

main distinctions between the models and responsible for opposite effects. On one hand, the reference model

is inherently more compliant, as it is capable of accounting for shear deformability, while the present ones

do not. At the same time, the displacement-based approach of the reference model allows immovable edges

conditions to be satisfied exactly, thus providing extra-stiffness with respect to the weak-form description

implemented here.
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4.3 Parametric studies

In this section, the numerical methods developed herein are exploited to perform parametric studies requiring

thousands of repeated nonlinear analyses. This is indeed one of the most interesting features of semi-

analytical strategies; this aspect is even more important when VS configurations are of concern and larger

design spaces have to be handled. In addition, the availability of efficient methods is particularly useful

for gathering insight into the mechanical response of the structure, helping to shed light into the tailoring

potential offered by VS configurations.

In the following sections, VS plates are considered with planar dimensions given by a = b = 300 mm,

thickness h = 1.2 mm, and elastic properties as per Material A. The layup is given by the stacking of 8

plies oriented at
[
±〈T0|T1〉, 90± 〈T0|T1〉

]
s
, thus fulfilling typical requirements of symmetric and balanced

laminate.

Linear free vibrations

The first investigation focuses on the linear free vibration response. For this purpose, the contour plots of

the frequency parameter ΩL are reported in Figure 4 by varying the fiber angles T0 and T1 in the ranges

[0, 90] and [−90, 90], respectively. Each single point of the plot corresponds to one eigenvalue analysis.

Accordingly, the points lying on the diagonal are representative of a configuration with non-steered fibers.

Manufacturing constraints are considered by restricting the analysis to configurations exhibiting a maximum

curvature smaller or equal than 3.28 m−1 [32]. The assessment is conducted for three different sets of

boundary conditions, namely CCCC, CSCS and SSSS, inasmuch the constraints are found to affect both the

magnitude and the distribution of the frequency parameters in the design space T0 − T1.

As seen from Figure 4, the frequencies reach their maximum value for straight-fiber configurations, when

the plate is constrained with CSCS and SSSS boundary conditions. In particular, the maximum frequency

is achieved for the layups corresponding to T0 = T1 = 0 and T0 = T1 = 45, respectively. In these cases, no

advantages can be achieved through fiber steering. On the contrary, a fully clamped condition, i.e. CCCC,

can benefit from the tailoring of the laminate stiffnesses. Specifically, the maximum value is reached for

T0 = 72 and T1 = 37. This conclusion is not of general validity, as different patterns can be obtained if the

plate aspect ratio or the stacking sequence are taken into consideration [53].

Nonlinear free vibrations

When assessing the nonlinear response, one quantity of interest is the vibration frequency at a given ampli-

tude. In this regard, one may be interested in its absolute value, ΩNL, or the relative one, ΩNL/ΩL. The

former depends on the whole design – bending and membrane stiffnesses – and boundary conditions; the

latter highlights the effects of the nonlinear membrane stiffening on the plate response – the bending stiffness
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is indeed affecting both the linear and nonlinear behaviour. The two cases are investigated next.

Proceeding as done in the linear case, contour plots are generated for different combinations of the fiber angles

T0 and T1. A nondimensional vibration amplitude wmax/h equal to 1 is considered. The nonlinear frequency

ratio ΩNL/ΩL is reported in Figure 5, where missing regions are associated with non-manufacturable config-

urations.

The parametric study is conducted for fully-clamped conditions – shown earlier to allow for potential elastic

tailoring –, and different sets of in-plane conditions, i.e. free, movable and immovable edges. The perturba-

tion procedure is used for performing simulations, although the same conclusions could be drawn using the

other methods. For the study at hand, the advantages of a computationally efficient method are particularly

clear; each single plot requires more than 5,000 nonlinear analyses to be run and the total time required

by nonlinear FEM simulations would be of several hours. On the contrary, just few minutes were necessary

here for conducting the assessment, the single nonlinear analysis requiring 0.2 seconds, approximately, on a

laptop with Intel Core i7 and 32 GB of RAM.

A noticeable difference between the case of free edges, Figure 5(a), and the in-plane constrained ones, i.e.

Figures 5(b) and 5(c), can be observed by inspection of Figure 5. As a matter of fact, the presence of

in-plane constraints, whether they are movable or immovable, is responsible for an internal membrane force

distribution, whose effects on the plate response are similar. The larger values of ΩNL/ΩL in Figures 5(b) and

5(c) are indeed ascribed to beneficial tensile membrane forces promoting hardening response in the nonlinear

field. To further investigate this aspect, the results are reported in Table 5 in terms of maximum absolute and

relative nonlinear frequency. The corresponding fiber angles T0 and T1 are reported as well. The (absolute)

nonlinear frequency depends upon a combined effect of bending and membrane stiffnesses, the former being

independent on the in-plane boundary conditions. Therefore, it is not surprising that similar fiber steering

is observed in the three cases maximizing ΩNL. At the same time, the immovable condition allows a larger

value of frequency to be reached due to the constraint-induced membrane stress distribution.

The situation is different when the relative values ΩNL/ΩL are of concern, see second column of Table 5. The

fiber angles leading to the maximum are now different to each other depending on the in-plane conditions.

Indeed, both linear and nonlinear frequencies depend on the bending stiffness, so the ratio ΩNL/ΩL is a

measure of the amount of hardening due to the sole membrane response.

Effect of fiber steering

Further insight into the underlying mechanical behaviour of VS plates is provided by investigation of the

effects of fiber steering. Specifically, a parametric study is conducted by investigating the behaviour of a

plate with T1 = 30 and T0 ranging between 10 and 40 with steps of 10 degrees. The boundary conditions

are those of fully clamped plate with immovable edges. The backbone curve is reported in Figure 6(a) in

terms of nondimensional amplitude versus nondimensional frequency. The curves obtained for the three
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configurations do not intersect each other, so the contour patterns in the previous sections are expected not

to be altered by different amplitude values.

From Figure 6(a), it can be noted that the structural response is characterized by decreased hardening for

increased values of T0. As mentioned earlier, this effect depends on the internal load paths promoted by

different forms of fiber steering. Specifically, the nondimensional membrane resultant Nxx evaluated at ξ = 0

is reported in Figure 6(b), where:

Nxx = Nxx/Nxx,ref (45)

and Nxx,ref is the maximum membrane force obtained for the straight fiber plate with T0 = T1 = 30.

The plot of Figure 6(b) illustrates that the configuration with the highest degree of hardening is also the one

associated with the most intense tensile force redistribution towards the central portion of the plate. Given

the single-halfwave shape of the vibration mode, this region is also the one undergoing the largest deflec-

tions. This explains why tensile forces are particularly effective here for increasing the nonlinear frequency.

It is then concluded that fiber steering allows hardening effects to be shaped through appropriate tailoring

of stiffnesses. It is interesting to note the similarity with respect to buckling problems, where increased

bifurcation loads can be achieved through similar force redistribution mechanisms [2, 3].

Effect of boundary conditions

The role of in-plane conditions is investigated referring to a VS plate with layup (T0 = 15, T1 = −10). The

backbone curve is depicted in Figure 7(a) for fully clamped plates subjected to free, movable and immovable

conditions. As discussed earlier, the maximum and minimum hardening effects are achieved for immovable

and free edges conditions, respectively. The curves of Figure 7(a) allow this conclusion to be generalized

to different vibration amplitudes. Even in this case, the mechanical response can be understood by assess-

ment of the internal membrane force distribution. The nondimensional resultant Nxx, defined according to

Eq. (45), is plotted in Figure 7(b). The movable and immovable conditions lead to similar distributions, the

former characterized by null average value. In both cases, tensile forces are shifted towards the middle region,

which is beneficial from an hardening response perspective. Similarly, one can observe that the intensity of

the tensile load is the smallest when the edges are free.

The effect of out-of-plane constraints is investigated in Figure 8(a), where the backbone curves are reported

for immovable in-plane conditions and different sets of flexural conditions, namely CCCC, CSCS and SSSS.

The results demonstrate that stiffer flexural constraints lead to smaller degrees of hardening. At a first

glance, this behaviour may seem counter-intuitive, and two aspects should be considered to motivate it.

Firstly, for a given vibration amplitude wmax/h, the membrane forces are relatively similar in the SSSS and

CCCC case, although the latter case is characterized by a much larger storage of bending energy; thus, the

relative effect of membrane forces is smaller. Secondly, the deflected pattern for clamped case is characterized
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by a shorter halfwave-length. The deflected portion is thus narrower under CCCC conditions with respect to

the SSSS case, so the effectiveness of membrane tensile forces to stiffen the structure is reduced to a smaller

region of the structure.

4.4 Comparison between methods

The four methods developed in this paper are now compared to furnish understanding into their rela-

tive advantages and disadvantages. For this scope, VS plates are considered with two different layups,[
±〈15| − 10〉, 90± 〈15| − 10〉

]
s

and
[
±〈60|40〉, 90± 〈60|40〉

]
s
. The two laminates were chosen after a prelim-

inary assessment, aiming at highlighting two different dynamic responses, with or without the contribution

of super-harmonics, respectively.

The forced vibration response is addressed by considering a uniform pressure with magnitude p = 10N/m2

and forcing frequency in the neighborhood of the fundamental natural frequency. The boundary conditions

adopted for the comparison are those of fully clamped plate with immovable edges. Damping is set to zero

apart from the direct integration method, where a small amount of damping (ξi = 5 × 10−4) is introduced

to dissipate transient effects and address the steady-state solution.

The results obtained for the first layup,
[
±〈15| − 10〉, 90± 〈15| − 10〉

]
s
, are summarized in Figure 9. Specif-

ically, the stable portion of the frequency response curve is reported in Figure 9(a); the steady-state solution

in the upper branch is presented in Figures 9(b) to 9(d) in terms of time response, phase diagram and

Fourier spectrum, by considering a forcing frequency Ω/ΩL = 1.1. The close agreement between the predic-

tions available from the four methods is quite clear. Apart from some minor discrepancies, all the curves

are nearly identical. By inspection of Figure 9(d), one can note that the response is governed by one single

harmonic contribution, which justifies the close matching mentioned earlier.

The same conclusions cannot be extended to those cases where the contribution of super-harmonics is rele-

vant. The following example aims at demonstrating this aspect. Specifically, the second layup,
[
±〈60|30〉, 90± 〈60|30〉

]
s
,

is now considered, and the results of the analyses are summarized in Figure 10.

Looking at the frequency response plot of Figure 10(a), good agreement between all the results can be noted

up to a forcing frequency Ω/ΩL = 1.04, approximately. As the frequency of excitation is further increased,

a divergence occurs between the iterative and direct integration methods on one hand, and the method of

averaging and the perturbation procedure on the other hand. In particular, the two former methods predict

a change of slope in the frequency-amplitude plot, which is not captured by the latter two methods. This

behaviour is further clarified by the inspection of Figures 10(b) and 10(c), where the time response and

the phase diagram are shown for Ω/ΩL = 1.1. As seen, the solutions available from the direct integration

and the iterative procedure account for the contribution of higher-order harmonics. In contrast to this, the

single mode perturbation method and the two-mode version of the method of averaging do not capture this

effect due to inherent assumptions introduced in their formulation. Interestingly, when Ω/ΩL = 1.04 the
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forcing frequency is close to one third of the natural frequency of the fifth mode, i.e. Ω w ΩL,5/3. This

excitation determines a super-harmonic resonance where two harmonics, the first and the third, provide a

contribution to the dynamic response of the plate. The deviation from a pure harmonic motion, which is

due to the presence of the third harmonic, can be clearly seen from Figures 10(b) and 10(c). The Fourier

spectrum of Figure 10(d) provides further evidence of this aspect, showing the non-negligible contribution

of the higher-order harmonics.

Some general consideration in terms of accuracy and range of applicability can be made from the two exam-

ples above.

As observed from the previous examples, the four methods are capable of providing accurate solutions when-

ever the response is characterized by a simple periodic motion. However, deviations from this state lead

to imprecision for the present single mode perturbation method and the two-mode version of the method

of averaging. These limitations are not inherent restrictions of these methods, but are a consequence of

their formulation. Considering the method of averaging, the problem could be addressed by changing the

expression of the assumed solution in Eq. (20) to account for harmonic contributions different from the exci-

tation one. However, such corrections would lead to a more cumbersome analytical results for the averaged

equations, Eq. (22). Regarding the perturbation procedure, the effect of higher harmonics could be captured

by adopting a higher order perturbation expansion in Eq. (25). This change would result in more dynamic

terms in the expansion of the nonlinear frequency Eq. (30), but also in more linear problems to be solved

with a consequent increase of the computational time.

Deviations from a pure harmonic motion do not affect the accuracy of the direct time integration and the

iterative procedure. Regarding these last two methods, the former does not introduce any restrictions on the

frequency content of the motion, as the governing equations are directly integrated in time. The formulation

of this solution procedure is very general and can predict accurately any type of response, irrespective of its

frequency spectrum. The latter relies upon aprioristic assumptions on the spectral distribution of the motion.

This implies that any deviation from the assumed spectral content would lead to errors proportional to the

importance of the harmonic contributions neglected. Therefore, the formulation of the iterative procedure

is somewhat problem-dependent: the Fourier expansion of the variables has to be chosen on the basis of the

problem at hand, which, in turn, leads to different nonlinear algebraic equations to be solved.

In addition to the considerations above, it is important to furnish insights into the computational resources

required by the four methods.

The most effective ones are found to be the perturbation procedure and the method of averaging. For the

problem at hand, the analysis time on a laptop with Intel i7 and 32 GB RAM is few fraction of seconds,

the former method being slightly faster than the latter. The improved time required by the perturbation

method is to be searched in the very few operations to be conducted numerically, as most of the governing

equations are derived in closed-form through analytical manipulation of the expressions, see Eqs. (30) and

22



(31). On the contrary, a numerical approach is required in the method of averaging for the solution of the

averaged equations of motion.

Regarding the direct time integration and the iterative procedure, the computational times are, in general,

one or two orders of magnitude higher than the two solution procedures mentioned earlier. Typical times for

a run range from few seconds to few minutes, depending on the number of vibration modes considered. In

particular, the computational cost of the iterative procedure depends also on the number of terms retained

in the Fourier expansion in Eq. (38), which affects the size of the algebraic problem in Eq. (39). Despite

the increased number of unknowns associated with the frequency domain representation of the problem,

the nonlinear algebraic problem arising from the iterative procedure can be solved faster than the ordinary

differential equations associated with the direct time integration method.

All the considerations above can be extended to nonlinear free vibrations problems. However, two peculiar

aspects need to be mentioned for this case. Firstly, much larger time is required by use of the direct inte-

gration technique, as repeated analyses are needed to trace the backbone plot, as outlined in 3.4. Secondly,

the efficiency of the iterative procedure can, in this case, be improved as the contribution of sine terms is

null, see Eq. (41), and the set of equations to be solved is then smaller.

5 Conclusions

The work presented a semi-analytical approach for the nonlinear vibration analysis of variable-stiffness

plates. With this purpose, a mixed variational principle was successfully introduced for formulating the

problem. One advantage relies in the possibility of formulating the problem with less unknowns with respect

to a corresponding displacement-based counterpart. Furthermore, the expression of the functional does not

require derivatives of the elastic coefficients to be evaluated, resulting in a much simpler expression with

respect to a corresponding strong-form formulation. This principle is then believed to be a useful theoretical

tool in the field of variable-stiffness plates nonlinear dynamics. The Ritz method was proposed as the

approximation strategy for dealing with the spatial dependence, although other methods could be easily

employed. Four procedures were considered for solving the semi-discrete equations in terms of temporal

dependence.

The comparison with results from the literature, mainly based on finite element simulations, demonstrated

the quality of the semi-analytical predictions that, at the same time, require very small computational effort.

To illustrate the potential of the approach, studies were conducted for different curvilinear fiber paths and

boundary conditions, where thousands of nonlinear analyses were required. Although conclusions are, in most

cases, problem-dependent, the tailoring potential to shape the nonlinear response is clear. As observed, the

degree of hardening can be increased (reduced) through adequate design of the internal load paths, with

tensile (compressive) forces acting on the mostly deflected regions. In this context, the availability of semi-
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analytical methods can support the designer in selecting the fiber paths, as well as investigating the effect

of boundary conditions.

Among the four techniques for handling the temporal part, the direct integration technique was found to be

the most intensive one from a computational perspective, although it can be useful for generating reference

solutions. Therefore, it is not recommended when parametric studies are of concern. Quick studies can

be realized by using the perturbation technique, which is the fastest approach among those investigated

here and, for this reason, is the recommended one. Its formal elegance as well as the availability of simple

closed-form solutions to the problem are an additional advantage. Alternatively, the averaging method is a

viable strategy requiring similar computational resources. In the context of the formulations developed here,

one restriction of these two formulations relies in their inability to capture the potential contribution due

to super-harmonics. In a preliminary assessment, these effects can often be neglected. Whenever this is not

the case, and more precise results are needed, the iterative procedure should be employed.
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[5] A. Alhajahmad, M.M. Abdalla, and Z. Gürdal. “Design tailoring for pressure pillowing using tow-placed

steered fibers”. In: Journal of Aircraft 45.2 (2008), pp. 630–640.

[6] B. Coburn. Buckling of stiffened variable stiffness panels. Ph.D. Thesis. University of Bristol, 2015.

[7] A. Pagani and A.R. Sanchez-Majano. “Influence of fiber misalignments on buckling performance of

variable stiffness composites using layerwise models and random fields”. In: Mechanics of Advanced

Materials and Structures (2020), pp. 1–16.

[8] A. Pagani and A.R. Sanchez-Majano. “Stochastic stress analysis and failure onset of variable angle tow

laminates affected by spatial fibre variations”. In: Composites Part C: Open Access 4 (2021), pp. 1–12.
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Table 1: Mechanical properties of composite materials.

E11 E22 G12 ν12 ρ

Material (GPa) (GPa) (GPa) (-) (kg/m3)

A 131.70 9.86 4.21 0.28 1600

B 40.00 1.00 0.50 0.25 1000

C 120.50 9.63 3.58 0.32 1540

D 142.00 10.30 7.20 0.27 1580
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Table 2: Convergence study (M = N) on the fundamental linear frequency parameter ΩL = ωLa
√
ρ/E22 of

a plate with a/b = 1, a/h = 250, Material A, layup
[
±〈45|90〉

]
2s

, and boundary conditions CSCS.

ΩL × 10 = ωLa
√
ρ/E22 × 10

mode M = 4 M = 6 M = 8 M = 10

1 0.5953 0.5952 0.5952 0.5952

2 1.2090 1.2025 1.2024 1.2024

3 1.5035 1.4985 1.4984 1.4984

4 2.1124 2.0855 2.0821 2.0818

5 2.3233 2.3070 2.3049 2.3047

6 3.0849 3.0366 3.0356 3.0356

7 3.1041 3.0851 3.0724 3.0690

8 3.3695 3.3420 3.3198 3.3149

9 4.1301 4.0410 4.0340 4.0338

10 4.2886 4.2653 4.2322 4.2272
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Table 3: Convergence study (P = Q = S, M = N) for the nonlinear frequency parameter ΩNL =

ωNLa
√
ρ/E22 – VS plate with a/b = 1, a/h = 250, Material A, layup

[
±〈45|90〉

]
2s

and boundary con-

ditions CSCS with immovable edges.

ΩNL × 102 = ωNLa
√
ρ/E22 × 102

wmax/h = 1 P = 4 P = 6 P = 8 P = 10

M = 4 7.4129 7.4409 7.4428 7.4432

M = 5 7.4137 7.4418 7.4437 7.4440

M = 6 7.4134 7.4414 7.4433 7.4436

M = 7 7.4134 7.4414 7.4433 7.4436
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Table 4: Nonlinear frequency ratio ΩNL/ΩL for different vibration amplitudes wmax/h and boundary condi-

tions – Composite plate with a/b = 1, a/h = 100, Material B and layup
[
0/90/0/90/0

]
.

Method Perturbation Iterative Direct time Ref. [51]

of averaging procedure procedure integration

wmax/h

SSSS-Completely free

0.2 1.00104 1.00106 1.00104 1.00101 1.00121

0.4 1.00418 1.00424 1.00417 1.00381 1.00482

0.6 1.00937 1.00952 1.00936 1.00850 1.01079

0.8 1.01657 1.01686 1.01865 1.01521 1.01906

1.0 1.02574 1.02622 1.02567 1.02408 1.02952

SSSS-Movable

0.2 1.01055 1.01069 1.01054 1.01238 1.01057

0.4 1.04157 1.04210 1.04159 1.04232 1.04169

0.6 1.09139 1.09246 1.09147 1.08924 1.09167

0.8 1.15771 1.15929 1.15790 1.15256 1.15823

1.0 1.23805 1.23993 1.23839 1.23168 1.23885

SSSS-Immovable

0.2 1.03160 1.03199 1.03161 1.02948 1.03147

0.4 1.12141 1.12253 1.12151 1.11865 1.12099

0.6 1.25784 1.25905 1.25828 1.24369 1.25723

0.8 1.42858 1.42841 1.42973 1.41971 1.42805

1.0 1.62373 1.62036 1.62601 1.63309 1.62368
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Table 5: Optimal lamination configurations (T0, T1) for the nonlinear frequency parameter ΩNL and frequency

ratio ΩNL/ΩL for amplitude of vibration wmax/h = 1 considering different boundary conditions.

Max ΩNL Max ΩNL/ΩL

Boundary condition (T0, T1) ΩNL (T0, T1) ΩNL/ΩL

CCCC-Completely free (83,44) 0.1122 (9,37) 1.0601

CCCC-Movable (86,46) 0.1130 (90,90) 1.0850

CCCC-Immovable (83,44) 0.1247 (14,-14) 1.1812
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(a) (b)

Figure 1: Fiber path, plate geometry and boundary conditions: (a) in-plane, (b) flexural.
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Figure 2: Backbone curves using different methods – a/b = 1.5, a/h = 480, Material C and layup[
〈135|90〉, 〈−90| − 45〉, 〈90|45〉, 〈45|0〉

]
s
.
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Figure 3: Frequency response plot using different methods – a/b = 1, a/h = 50, Material D, layup[
〈90|45〉, 90〈90|45〉

]
s
, boundary conditions CCCC-immovable, uniform pressure load load (p = 2× 104 Pa).
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(a) (b) (c)

Figure 4: Contour plots of the linear frequency parameter ΩL – a = b = 300 mm, h = 1.2 mm, Material A

and layup
[
0± 〈T0|T1〉, 90± 〈T0|T1〉

]
s
: (a) SSSS, (b) CSCS, (c) CCCC.
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(a) (b) (c)

Figure 5: Contour plots of the frequency ratio ΩNL/ΩL – a = b = 300 mm, h = 1.2 mm, Material A and

layup
[
0± 〈T0|T1〉, 90± 〈T0|T1〉

]
s
: (a) CCCC-completely free, (b) CCCC-movable, (c) CCCC-immovable.
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(a) (b)

Figure 6: Effect of the angle T0 on nonlinear free vibrations – a = b = 300 mm, h = 1.2 mm, Material

A, layup
[
0± 〈T0|T1〉, 90± 〈T0|T1〉

]
s

and CCCC-immovable boundary conditions: (a) backbone curve, (b)

in-plane resultant Nxx at ξ = 0.
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(a) (b)

Figure 7: Effect of in-plane boundary conditions on free vibrations – a = b = 300 mm, h = 1.2 mm, Material

A, layup
[
0± 〈15| − 10〉, 90± 〈15| − 10〉

]
s

and CCCC boundary conditions: (a) backbone curve, (b) in-plane

resultant Nxx at ξ = 0.
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(a) (b) (c)

Figure 8: Effect of out-plane boundary conditions on free vibrations – a = b = 300 mm, h = 1.2 mm,

Material A, layup
[
0± 〈15| − 10〉, 90± 〈15| − 10〉

]
s

and immovable edges: (a) backbone curve, (b) in-plane

resultant Nxx at ξ = 0, (c) in-plane resultant Nyy at η = 0.
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(a) (b)

(c) (d)

Figure 9: Comparison between methods – a = b = 300 mm, h = 1.2 mm, Material A, layup[
0± 〈15| − 10〉, 90± 〈15| − 10〉

]
s
, boundary conditions CCCC-immovable, uniform pressure load load (p=10

Pa): (a) frequency response curve, (b) time-domain response, (c) phase plane diagram and (d) Fourier

spectrum for forcing frequency Ω=1.1ΩL.
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(a) (b)

(c) (d)

Figure 10: Comparison between methods – a = b = 300 mm, h = 1.2 mm, Material A, layup[
0± 〈60|40〉, 90± 〈60|40〉

]
s
, boundary conditions CCCC-immovable, uniform pressure load (p=10 Pa): (a)

frequency response curve, (b) time domain response, (c) phase plane diagram and (d) Fourier spectrum for

forcing frequency Ω=1.1ΩL.
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7 Appendix

The full expression of the integrals of Eq. (6) is:

Sdd
(j)(j)

= Sdd = −
∫

S

a22LjLjdS (46)

Scc
(k)(k)

= Scc = −
∫

S

r4a11LkLkdS (47)

Sφφ(pq)(pq) = Sφφ = −
∫

S

[
r4a11XpY

′′
q XpY

′′
q + r2a12

(
X ′′p YqXpY

′′
q +XpY

′′
q X

′′
p Yq

)
+

+ a22X
′′
p YqX

′′
p Yq + r2a66X

′
pY
′
qX
′
pY
′
q − r3a16

(
XpY

′′
q X

′
pY
′
q +X ′pY

′
qXpY

′′
q

)
+

−ra26

(
X ′′p YqX

′
pY
′
q +X ′pY

′
qX
′′
p Yq

)]
dS (48)

Kww
(mn)(mn) = Kww = −

∫
S

[
D11X

′′
mY nX

′′
mY n + r2D12

(
X
′′
mY nXmY

′′
n +XmY

′′
nX
′′
mY n

)
+

+ r4D22XmY
′′
nXmY

′′
n + 4r2D66X

′
mY
′
nX
′
mY
′
n+

+ 2rD16

(
X
′′
mY nX

′
mY
′
n +X

′
mY
′
nX
′′
mY n

)
+

+ 2r3D26

(
XmY

′′
nX
′
mY
′
n +X

′
mY
′
nXmY

′′
n

)]
dS (49)

Scd(k)(j) = Scd = −
∫

S

r2a12LkLjdS (50)

SΦd
(pq)(j) = SΦd = −

∫
S

(
r2a12XpY

′′
q Lj + a22X

′′
p YqLj − ra26X

′
pY
′
qLj

)
dS (51)

SΦc
(pq)(k) = SΦc = −

∫
S

(
r4a11XpY

′′
q Lk + r2a12X

′′
p YqLk − r3a16X

′
pY
′
qLk

)
dS (52)

Ñ(j)(mn)(mn) = Ñ j = r2

∫
S

LjXmY
′
nXmY

′
ndS (53)

N̂(k)(mn)(mn) = N̂ k = r2

∫
S

LkX
′
mY nX

′
mY ndS (54)
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N(pq)(mn)(mn) = N pq = r2

∫
S

[
XpY

′′
q X

′
mY nX

′
mY n −

(
X ′pY

′
qX
′
mY nXmY

′
n +X ′pY

′
qXmY

′
nX
′
mY n

)
+

+ X ′′p YqXmY
′
nXmY

′
n

]
dS (55)

Mww
(mn)(mn) = Mww =

a4ρh

16

∫
S

XmY nX
′
mY
′
ndS (56)

Pw(mn) = Pw =
a4p

16

∫
S

XmY ndS (57)

The matrix expressions implied by Eq. (39) are defined as:

M̂ = diag(I, I, 9I, 9I, 25I, 25I)

K̂ = diag(KL, KL, KL, KL, KL, KL)

Ĉ =



0 C 0 0 0 0

−C 0 0 0 0 0

0 0 0 3C 0 0

0 0 −3C 0 0 0

0 0 0 0 0 5C

0 0 0 0 −5C 0



P̂ =
{

P, 0, 0, 0, 0, 0
}T

where I denotes the identity matrix, KL and C are diagonal matrices collecting the linear stiffness and the

damping coefficients, ki and ci, respectively; P is the vector collecting the forcing terms pi of Eq. (39).

The matrix N̂ is obtained after balancing the harmonics due to nonlinear contributions. The full is available

is Ref. [54] and is not reported here for the sake of brevity.
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