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Abstract We consider positive weak solutions to (−�)s u = f (x, u) in �\� under zero 
Dirichlet boundary condition. The domain � is bounded or is the whole space, and the 
solution has a singularity on the singular set �. Under suitable assumptions on f we prove 
symmetry and monotonicity properties of the solutions when the singular set � has zero s-
capacity.
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1 Introduction

In this paper we study the following nonlocal semilinear elliptic problem:

⎧
⎨

⎩

(−�)su = f (x, u) in �\�,

u > 0 in �\�,

u = 0 in R
N \�,

(1.1)
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where 0 < s < 1, N > 2s and � is a bounded domain with smooth boundary ∂�, or it is  
the whole space RN . Note that the equation is satisfied in �\�, where the set  � ⊂ �, which  
is referred to as the singular set, is compact and has zero s-capacity (see Sect. 2 below). 
We consider solutions belonging to W sloc

,2
(RN \�) ∩ L1(RN ) ∩ C(RN \�), and the equation 

is understood in the weak distributional sense, see Definition 2.2 below. As it is customary, 
in the case of a bounded domain �, the Dirichlet datum is expressed by the fact that u is 
identically zero outside �.

We study symmetry and monotonicity properties of solutions via the moving plane method 
that was introduced in [2,22], and in particular we refer to the celebrated papers [4,15]where it 
was firstly exploited to study symmetry and monotonicity properties of the solutions.

Here we deal with singular solutions in the nonlocal case; for the local case we refer to 
[6,21,23,28]. Symmetry results, when � = ∅, for equations involving the fractional 
Laplacian via the moving plane method, for more regular problems, can be found for 
instance in [3,12,16,17] and also  in [7,8,12,14,20]. Other works, for the case � 
= ∅ and in the  nonlocal framework, that study the symmetry of solutions using other 
techniques are, for example, [5,11,24].

In our results we shall assume in the case of a bounded domain � that the nonlinearity f 
is uniformly locally Lipschitz continuous far from the singular set �. More precisely we 
make the following assumption:

(A1
f ). For any 0 ≤ τ, t ≤ M and for any compact set K ⊂ �\�, there exists a positive 

constant C = C(K , M) such that

| f (x, τ )  − f (x, t)| ≤ C |τ − t | for any x ∈ K .

Furthermore, f (·, τ )  is nondecreasing in the x1-direction in � ∩ {x1 < 0} and symmetric 
with respect to the hyperplane {x1 = 0}.

In this setting our main result is the following

Theorem 1.1 Let u ∈ W sloc
,2

(RN \�) ∩ L1(RN ) ∩ C(RN \�) be a solution to (1.1) with f
fulfilling (A1

f ). Assume that the singular set � ⊂ � is compact and has zero s-capacity.

If � is convex and symmetric in the x1-direction and � ⊂ {x1 = 0}, then u is symmetric 
with respect to the hyperplane {x1 = 0} and increasing in the x1-direction in � ∩ {x1 < 0}.

If the domain is a ball and � is the center of the ball, then the solution is radial and 
radially decreasing about the center of the ball.

The proof exploits a new technique based also on some ideas introduced in [23] for  the 
local case. The nonlocal case exhibits many peculiarities related in particular to the notion 
of solution and to the fact that the critical set plays a role also far from it, because of the 
nonlocal nature of the operator.

In the second part of the paper we consider problem (1.1), with f = f (u) in the whole 
space RN , that is we consider

{
(−�)su = f (u) in R

N \�,

u > 0 in R
N \�,

(1.2)

with f (·) satisfying a critical growth assumption, namely:
(A2

f ) f is C1 and convex with f (0) = 0 and, for any t > 0

f ′(t) ≤ C f t2
∗
s −2,

for some C f > 0, where 2s
∗ = 2N/(N − 2s), N > 2s is the Sobolev critical exponent. We 

dropped the dependence of f on x to avoid further technicalities.



In this setting our main result is the following

Theorem 1.2 Let u ∈ W sloc
,2

(RN \�) ∩ L1(RN ) ∩ C(RN \�) be a solution to (1.2) with f
fulfilling (A2

f ). Assume that the singular set � ⊂ RN is compact and has zero s-capacity.

If for some R0 > 0, � ⊂ {x1 = 0} ∩  BR0 and u ∈ L2s
∗ 
(RN \BR0 ), then u is symmetric with 

respect to the hyperplane {x1 = 0} and increasing in the x1-direction in {x1 < 0}.
If u has only a nonremovable singularity at the origin, then the solution is radial and radially 
decreasing about the origin.

In the local case the problem in the whole space can be studied in a similar way as in the 
case of a bounded domain. This is not the case when considering nonlocal problems; indeed, 
a fine density argument and new estimates are required.

The paper is organized as follows: we collect some preliminary results in Sect. 2. The case 
of a bounded domain, namely Theorem 1.1, is studied in Sect. 3. In Sect. 4 we deal with the 
case of the whole space and we prove Theorem 1.2.

2 Notations and preliminary results

Let us recall that, given a function u in the Schwartz’s class S(RN ) we define for 0 < s < 1, 
the fractional Laplacian as

(̂−�)su(ξ) = |ξ |2s û(ξ), ξ ∈ R
N , (2.1)

where û ≡ F(u) is the Fourier transform of u. It is well known (see [18,27,29]) that this
operator can be also represented, for suitable functions, as a principal value of the form

(−�)su(x) := cN ,s P.V.

∫

RN

u(x) − u(y)

|x − y|N+2s
dy (2.2)

where

cN ,s :=
(∫

RN

1 − cos(ξ1)

|ξ |N+2s
dξ

)−1

= 4s�
( N
2 + s

)

−π
N
2 �(−s)

> 0, (2.3)

is a normalizing constant chosen to guarantee that (2.1) is satisfied (see [9,25,29]). From 
(2.2) one can check that

|(−�)sφ(x)| ≤ C

1 + |x |N+2s
, for every φ ∈ S(RN ). (2.4)

This motivates the introduction of the space

Ls(RN ) :=
{

u : R
N → R :

∫

RN

|u(x)|
1 + |x |N+2s

dx < ∞
}

,

endowed with the natural norm

‖u‖Ls (RN ) :=
∫

RN

|u(x)|
1 + |x |N+2s

dx .

Then, if u ∈ Ls(RN ) and φ ∈ S(RN ), using (2.4), we can formally define the duality product
〈(−�)su, φ〉 in the distributional sense as

〈(−�)su, φ〉 :=
∫

RN
u(−�)sφ dx .



We consider the Sobolev space

Hs(RN ) :=
{

u ∈ L2(RN ) : |ζ |s û ∈ L2(RN )
}

endowed with the norm

‖u‖Hs (RN ) := ‖û‖L2(RN ) + ‖ζ s û‖L2(RN ) .

We also consider the Hilbert spaceDs,2(RN ), which is the completion of C∞
c (RN ) w.r.t.

the norm

‖|ζ |s û‖L2(RN ) = 2

cN ,s
‖(−�)s/2u‖2L2(RN )

.

Furthermore, for any open subset � ⊆ R
N with smooth boundary ∂�, and for any p > 1

let W s,p(�) be the space of measurable functions u : � → R such that the norm

‖u‖p
W s,p(�) := ‖u‖p

L p(�) +
∫

�

∫

�

|u(x) − u(y)|p

|x − y|N+ps
dxdy

is finite. In addition, denote by W s,p
0 (�) the closure of C∞

c (�) with respect to the norm
‖ · ‖W s,p(�) . We set

Hs(�) ≡ W s,2(�) , Hs
0 (�) ≡ W s,2

0 (�) .

Moreover, we say that u ∈ W s,2
loc (�), if for every compact subset K ⊂ � we have that

u ∈ W s,2(K ) . We also set

Hs
0(�) :=

{
u ∈ Hs(�) : ũ ∈ Ds,2(RN )

}
,

where

ũ :=
{

u in �,

0 in R
N \� .

(2.5)

Hs
0(�), equipped with the norm

‖u‖2Hs
0(�) :=

∫

RN
|ζ |2s |F(ũ)|2dζ ,

is a Hilbert space. If � is bounded (see, for example, [13]), then there exists a constant
C = C(�) > 0 such that

C‖ũ‖Hs (RN ) ≤ ‖u‖Hs
0(�) ≤ ‖ũ‖Hs (RN ) for any u ∈ Hs

0(�) .

Thus,

Hs
0(�) =

{
u ∈ Hs(�) : ũ ∈ Hs(RN )

}
.

Moreover, C∞
c (�) is dense in Hs

0(�) .

In the following we will exploit the following well known Sobolev-type embedding The-
orem

Theorem 2.1 (See [1, Theorem7.58], [9, Theorem6.5], [19,26])Let 0 < s < 1 and N > 2s.
There exists a constant SN ,s such that, for any measurable and compactly supported function
u : R

N → R, we have

SN ,s‖u‖2
L2∗s (RN )

≤ 2

cN ,s
‖(−�)s/2u‖2L2(RN )

,



where

2∗
s = 2N

N − 2s
, (2.6)

is the Sobolev critical exponent.

Now we are in position to give the following

Definition 2.2 We say that u ∈ W s,2
loc (RN \�) ∩ L1(RN ) is a weak solution to (1.1) if

u = 0 in R
N \�

and

1

2
cN ,s

∫

RN

∫

RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy

=
∫

RN
f (x, u)ϕ dx ∀ϕ ∈ C∞

c (�\�) .

where cN ,s has been defined in (2.3).

For the reader’s convenience, in order to show that Definition 2.2 is well posed, we prove
the following

Proposition 2.3 Let u ∈ W s,2
loc (RN \�) ∩ L1(RN ). Then, for any ϕ ∈ C∞

c (�\�),

1

2
cN ,s

∫

RN

∫

RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy < ∞ .

Proof Let ϕ ∈ C∞
c (�\�) and let us denote Kϕ = supp(ϕ). Fix now a compact set K ⊂ �\�

such that Kϕ ⊂ K and use the decomposition

R
N × R

N = (
K ∪ K c)× (K ∪ K c) ,

where K c := R
N \K . Thus,

1

2
cN ,s

∫

RN

∫

RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy

= 1

2
cN ,s

∫

K

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy

+1

2
cN ,s

∫

K

∫

K c

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy

+1

2
cN ,s

∫

K c

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy, (2.7)

since

1

2
cN ,s

∫

K c

∫

K c

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy = 0.

We prove that all the three terms on the right-hand side of (2.7) are finites. In fact

1

2
cN ,s

∫

K

∫

K

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy < C, (2.8)

for some positive constant C , since by hypothesis u ∈ W s,2
loc (RN \�) and K ⊂ �\�. There-

fore, by Hölder inequality, (2.8) follows.



We can write the second term as

1

2
cN ,s

∫

K

∫

K c

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy

= 1

2
cN ,s

∫

Kϕ

∫

K c

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy. (2.9)

We observe that, for all points (x, y) ∈ Kϕ × K c, we have that |x − y| ≥ δ > 0, for some
positive constant δ = δ(K , Kϕ). We deduce

1

2
cN ,s

∫

Kϕ

∫

K c

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy ≤ C, (2.10)

with C = C(δ, K , Kϕ, ‖u‖L1(RN ), ‖ϕ‖L∞(Kϕ)) a positive constant. Here we have used the
fact that u ∈ L1(RN ) and ϕ ∈ C∞(Kϕ). From (2.9) and (2.10) we obtain

1

2
cN ,s

∫

K

∫

K c

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy ≤ C. (2.11)

For the third term we argue in the same way as in (2.9), (2.10) and (2.11). Finally, by (2.7)
we obtain the thesis. ��

For future use we point out the following

Lemma 2.4 Let u ∈ W s,2
loc (RN \�) ∩ L1(RN ) be a weak solution to (1.1), according to

Definition 2.2. Then,

1

2
cN ,s

∫

RN

∫

RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dx dy =

∫

RN
f (x, u)ϕ dx

for any ϕ ∈ W s,2
0 (�\�) with compact support in �\�.

Proof For any ϕ ∈ W s,2
0 (�\�) with compact support in �\�, by a convolution argument,

we can consider a sequence of functions ϕn with compact support still in �\� such that

ϕn ∈ C∞
c (�\�) and ϕn

W s,2
0 (�)→ ϕ.

Plugging ϕn as test function in (1.1) and passing to the limit we obtain the thesis. It is crucial
here the fact that, by the properties of the convolution, we can assume that the supports of
the functions involved remain bounded away from the singular set. ��

For any given compact subset � ⊂ � we define the relative s-capacity of � w.r.t. � as
follows (see, for example, [13]):

Cap�
s (�) := inf

φ∈C∞
c (�)

{‖φ‖2Hs
0(�) : φ ≥ 1 in a neighborhood of �

}
. (2.12)

Moreover, we define the s-capacity of � by

Caps(�) := inf
φ∈C∞

c (RN )

{‖φ‖2
Ds,2(RN )

: φ ≥ 1 in a neighborhood of �
}
. (2.13)

We have the next result.

Lemma 2.5 Let � ⊂ R
N be an open bounded subset; let � ⊂ � be a compact subset. Then,

there exists a constant K > 1 such that

Caps(�) ≤ Cap�
s (�) ≤ K Caps(�) . (2.14)



Note that an estimate similar to (2.14) is established in [30]; however, in [30] a slightly 
different definition of s-capacity is used. Moreover, the relation between the s-capacity and 
the Haussdorf measure is described also with various examples.

Proof In view of (2.12) and (2.13), clearly, we have that

Caps(�) ≤ Cap�
s (�). (2.15)

Note that, due to (2.13), for any ε > 0 there exists φε ∈ C∞
c (RN ) such that

‖φε‖2Ds,2(RN )
≤ Caps(�) + ε . (2.16)

We can select (see [9]) an open subset �′ ⊂⊂ � and a function ηε ∈ W 2,s(RN ) such that

ηε = φε in �′ , (2.17)

ηε = 0 in R
N \� . (2.18)

Moreover, we can find a constant C̃ = C̃(�′) > 0 such that

‖ηε‖W 2,s (RN ) ≤ C̃‖ηε‖W 2,s (�′) . (2.19)

Note that thanks to (2.18), we have that ηε ∈ Hs
0(�) . Using the fact that C∞

c (�) is dense in
Hs

0(�), (2.19), and Theorem 2.1, we can infer that

Cap�
s (�) ≤ ‖ηε‖2Ds,2(RN )

≤ ‖ηε‖2W s,2(RN )
≤ C̃2‖ηε‖2W s,2(�′)

≤ C
[‖φε‖2L2(�)

+ ‖φε‖2Ds,2(RN )

]

≤ C
[‖φε‖2L2∗s (�)

+ ‖φε‖2Ds,2(RN )

] ≤ C(Caps(�) + ε) ,

for some positive constant C independent of ε. Letting ε → 0+, we get

Cap�
s (�) ≤ Caps(�) .

This combined with (2.12) yields (2.14). The proof is complete.

We will use the following notations. For a real number λ ≤ 0 we set

�λ = {x ∈ � : x1 < λ} (2.20)

�λ = {x ∈ R
N : x1 < λ} (2.21)

Rλ(x) = xλ = (2λ − x1, x2, . . . , xn) (2.22)

which is the reflection trough the hyperplane Tλ and

uλ(x) = u(xλ) . (2.23)

Also we define
a = inf

x∈�
x1. (2.24)

Notation. Generic fixed and numerical constants will be denoted by C (with subscript in
some case), and they will be allowed to vary within a single line or formula. By |A| we will
denote the Lebesgue measure of a measurable set A.



3 Proof of Theorem 1.1

For λ <  0 we introduce the following function

wλ(x) :=
{

(u − uλ)
+(x), if x ∈ �λ,

(u − uλ)
−(x), if x ∈ R

N \�λ,
(3.1)

where (u − uλ)
+ := max{u − uλ, 0} and (u − uλ)

− := min{u − uλ, 0}. We set

Sλ := supp wλ(x) ∩ �λ, Sc
λ := �λ\Sλ,

Dλ := supp wλ(x) ∩
(
R

N \�λ

)
, Dc

λ :=
(
R

N \�λ

)
\Dλ .

(3.2)

It is not difficult to see that
Dλ is the reflection of Sλ. (3.3)

Lemma 3.1 Under the assumptions of Theorem 1.1 and for a < λ < 0, we have that

∫

RN

∫

RN

(
wλ(x) − wλ(y)

)2

|x − y|N+2s
dx dy ≤ C( f, s, N , ‖u‖L∞(�λ)) . (3.4)

Consequently wλ ∈ Hs
0(�λ ∪ Rλ(�λ)).

Proof We start by exploiting the fact that the singular set � has zero s-capacity. For each
ε > 0, let

�λ
ε :=

{
x ∈ R

N | dist(x, Rλ(�)) < ε
}

.

In view of Lemma 2.5, we have that, for each ε > 0, Cap
�λ

ε
s (Rλ(�)) = 0. Hence, we can find

φε ∈ C∞
c (�λ

ε ) such that

∫

RN

∫

RN

(
φε(x) − φε(y)

)2

|x − y|N+2s
dx dy ≤ ε , (3.5)

with φε ≥ 1 on a neighborhood of Rλ(�). Via a truncation argument it follows that we can
assume 0 ≤ φε ≤ 1, φε ∈ Hs

0(�
λ
ε ). Let now

g(t) := min{1 ; max{0 ; 2t − 1}} t ∈ R ,

and consider

ϕλ
ε (x) :=

{
g(1 − φε(x)) in �λ

ε

1 in �λ\�λ
ε .

(3.6)

Moreover, we extend ϕλ
ε by even reflection in R

N \�λ, namely ϕλ
ε (x) = ϕλ

ε (xλ) for every
x ∈ R

n\�λ. In the following, for simplicity, we use the notation ϕλ
ε = ϕε . Then, we set

ϕ := wλϕ
2
ε .

It is easy to check that

(−�)suλ = f (xλ, uλ) in R
N \Rλ(�) , (3.7)



in the sense of Definition 2.2 . By density arguments (see Lemma 2.4), we can plug ϕ as 
test function in Eq. (1.1) fulfilled by u, and in Eq. (3.7) fulfilled by uλ. Arguing in this way 
and subtracting, we get

1

2
cN ,s

∫

RN

∫

RN

((u(x) − uλ(x)) − (u(y) − uλ(y)))
(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy

≤
∫

�λ

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λϕ

2
ε dx ,

(3.8)

where we also used the monotonicity properties of f (·, u).

Claim: Now we claim that

1

2
cN ,s

∫

RN

∫

RN

((u(x) − uλ(x)) − (u(y) − uλ(y)))
(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy

≥ 1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy

(3.9)

To prove this we follow closely the technique in [12] and we argue as follows. We have that

∫

RN

∫

RN

(
(u(x) − uλ(x)) − (u(y) − uλ(y))

) (
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy

=
∫

RN

∫

RN

(
wλ(x) − wλ(y)

) (
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy

+
∫

RN

∫

RN

((
u(x) − uλ(x)) − (u(y) − uλ(y)

)− (wλ(x) − wλ(y)
)) (

wλ(x)ϕ2
ε (x) − wλ(y)ϕ2

ε (y)
)

|x − y|N+2s
dx dy

=
∫

RN

∫

RN

(
wλ(x) − wλ(y)

) (
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy +

∫

RN

∫

RN

G(x, y)

|x − y|N+2s
dx dy,

(3.10)
where

G(x, y) :=
((

u(x) − uλ(x)) − (u(y) − uλ(y)
)− (wλ(x) − wλ(y)

)) (
wλ(x)ϕ2ε (x) − wλ(y)ϕ2ε (x)

)
.

Now, we prove that ∫

RN

∫

RN

G(x, y)

|x − y|N+2s
dx dy ≥ 0 . (3.11)

To check this, we use the decomposition

R
N × R

N = (Sλ ∪ Sc
λ ∪ Dλ ∪ Dc

λ

)× (Sλ ∪ Sc
λ ∪ Dλ ∪ Dc

λ

)
,

where Sλ, Sc
λ, Dλ and Dc

λ have been introduced in (3.2). By construction, it follows that

G(x, y) =
[

− (u(x) − uλ(x)
)
wλ(y)ϕ2

ε (y)
]

in
(Sc

λ × Sλ

)
,

G(x, y) =
[

− (u(x) − uλ(x)
)
wλ(y)ϕ2

ε (y)
]

in
(Sc

λ × Dλ

)
,

G(x, y) =
[

− (u(y) − uλ(y)
)
wλ(x)ϕ2

ε (x)
]

in
(Sλ × Sc

λ

)
,

G(x, y) =
[

− (u(y) − uλ(y)
)
wλ(x)ϕ2

ε (x)
]

in
(Sλ × Dc

λ

)
,

G(x, y) =
[

− (u(x) − uλ(x)
)
wλ(y)ϕ2

ε (y)
]

in
(Dc

λ × Sλ

)
,



G(x, y) =
[

− (u(x) − uλ(x)
)
wλ(y)ϕ2

ε (y)
]

in
(Dc

λ × Dλ

)
,

G(x, y) =
[

− (u(y) − uλ(y)
)
wλ(x)ϕ2

ε (x)
]

in
(Dλ × Sc

λ

)
,

G(x, y) =
[

− (u(y) − uλ(y)
)
wλ(x)ϕ2

ε (x)
]

in
(Dλ × Dc

λ

)

and G(x, y) = 0 elsewhere .

We have that
∫

Sc
λ

∫

Sλ

G(x, y)

|x − y|N+2s
dx dy +

∫

Sc
λ

∫

Dλ

G(x, y)

|x − y|N+2s
dx dy ≥ 0 . (3.12)

Indeed, note that, if x ∈ Sc
λ and y ∈ Sλ, then G(x, y) ≥ 0; moreover, G(x, y) = −G(x, yλ).

Also, we have that |x − y| ≤ |x − yλ| for all (x, y) ∈ Sc
λ × Sλ. Therefore, using also (3.3),

we have
∫

Sc
λ

∫

Sλ

G(x, y)

|x − y|N+2s
dx dy +

∫

Sc
λ

∫

Dλ

G(x, y)

|x − y|N+2s
dx dy

=
∫

Sc
λ

∫

Sλ

G(x, y)

|x − y|N+2s
dx dy +

∫

Sc
λ

∫

Sλ

G(x, yλ)

|x − yλ|N+2s
dx dy

=
∫

Sc
λ

∫

Sλ

G(x, y)

[
1

|x − y|N+2s
− 1

|x − yλ|N+2s

]

dx dy ≥ 0

which shows (3.12). Similarly, one can prove that
∫

Sλ

∫

Sc
λ

G(x, y)

|x − y|N+2s
dx dy +

∫

Sλ

∫

Dc
λ

G(x, y)

|x − y|N+2s
dx dy ≥ 0,

∫

Dc
λ

∫

Sλ

G(x, y)

|x − y|N+2s
dx dy +

∫

Dc
λ

∫

Dλ

G(x, y)

|x − y|N+2s
dx dy ≥ 0

and
∫

Dλ

∫

Sc
λ

G(x, y)

|x − y|N+2s
dx dy +

∫

Dλ

∫

Dc
λ

G(x, y)

|x − y|N+2s
dx dy ≥ 0.

Collecting the estimates above we obtain (3.11) that actually proves (3.9) and the claim.

By (3.9) it follows now that (3.8) provides

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy

≤
∫

�λ

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λϕ

2
ε dx

(3.13)

that we rewrite as

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2 ϕ2
ε (x)

|x − y|N+2s
dx dy

≤ 1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
ϕ2

ε (y) − ϕ2
ε (x)

)
wλ(y)

|x − y|N+2s
dx dy

+
∫

�λ

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λϕ

2
ε dx



≤ 1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
ϕ2

ε (y) − ϕ2
ε (x)

)
wλ(y)

|x − y|N+2s
dx dy

+ C( f, N , s, ‖u‖L∞(�λ))

∫

�λ

(wλ)
2ϕ2

ε dx . (3.14)

Observe now that, by a symmetry argument, we have

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
ϕ2

ε (x)dx dy

=
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x) + ϕ2
ε (y)

2
+ ϕ2

ε (x) − ϕ2
ε (y)

2

)

dx dy

=
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x) + ϕ2
ε (y)

2

)

dx dy .

(3.15)

On the other hand, using the Young inequality we have
∣
∣
∣
∣
∣

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
ϕ2

ε (y) − ϕ2
ε (x)

)
wλ(y)

|x − y|N+2s
dx dy

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

RN

∫

RN

(wλ(x) − wλ(y)) wλ(y)

|x − y|N+2s (ϕε(y) − ϕε(x)) (ϕε(x) + ϕε(y))

∣
∣
∣
∣

≤ ε

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s (ϕε(x) + ϕε(y))2

+C( f, N , s, ‖u‖L∞(�λ))

ε

∫

RN

∫

RN

(ϕε(x) − ϕε(y))2

|x − y|N+2s

≤ 2ε
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x) + ϕ2
ε (y)

)

+C( f, N , s, ‖u‖L∞(�λ))

ε

∫

RN

∫

RN

(ϕε(x) − ϕε(y))2

|x − y|N+2s
. (3.16)

In the following computations we set ε = 1
8cN ,s and, taking into account (3.14), by (3.15)

and (3.16), we arrive at

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x) + ϕ2
ε (y)

2

)

dx dy

≤ C( f, N , s, ‖u‖L∞(�λ))

∫

�λ

w2
λϕ

2
ε dx

+ C( f, N , s, ‖u‖L∞(�λ))

∫

RN

∫

RN

(ϕε(x) − ϕε(y))2

|x − y|N+2s

≤ C( f, N , s, ‖u‖L∞(�λ)) . (3.17)

In the final estimate we exploited the properties of the cutoff function provided by (3.6) and
the fact that 0 ≤ wλ ≤ u in �λ (together with a symmetry argument).

Then, since ϕε → 1 in R
N as ε → 0+, the inequality (3.4) follows by Fatou Lemma

letting ε → 0+ in (3.17).
To deduce that wλ ∈ Hs

0(�λ ∪ Rλ(�λ)) just note that wλ is bounded and then apply
standard arguments, see [9]. ��



Proof of Theorem 1.1 We start themoving plane procedure by showing that, recalling (2.24),
we can take a < λ < 0, with |λ − a| small, in such a way that u ≤ uλ in �λ\Rλ(�). In fact
using ϕ := wλϕ

2
ε in Eq. (1.1) fulfilled by u and in Eq. (3.7) fulfilled by uλ, subtracting we

get

1

2
cN ,s

∫

RN

∫

RN

((u(x) − uλ(x)) − (u(y) − uλ(y)))

|x − y|N+2s

(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)
dx dy

≤
∫

RN

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λϕ

2
ε dx

and then, as in (3.13) (see also (3.9)), we have

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)

|x − y|N+2s
dx dy

≤
∫

RN

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λϕ

2
ε dx .

(3.18)

Using that ϕ2
ε ≤ 1 in all R

N and that w ∈ L∞(RN ), it follows

∫

RN

∫

RN

(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)2

|x − y|N+2s
dx dy

≤ 2
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy

+ C
∫

RN

∫

RN

(ϕε(y) − ϕε(x))2

|x − y|N+2s
dx dy

and C = C(‖u‖L∞(�λ)) is a positive constant. Therefore, by Lemma 3.1, (3.5) and (3.6) we
deduce

∫

RN

∫

RN

(
wλ(x)ϕ2

ε (x) − wλ(y)ϕ2
ε (y)

)2

|x − y|N+2s
dx dy ≤ C, (3.19)

where C is a positive constant not depending on ε. Letting ε tend to zero, the l.h.s of (3.18)
by weak convergence goes to

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy.

By (A1
f ) and Lemma 3.1, the r.h.s of (3.18) goes to

∫

RN

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λ dx .

Hence, (3.18) becomes

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy ≤

∫

RN

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λ dx .

Using (A1
f ) and Hölder inequality, it follows

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy



≤
∫

RN

(
f (x, u) − f (x, uλ)

u − uλ

)

w2
λ dx

≤ 2C f |�λ|
2∗s −2
2∗s
(∫

�λ

w
2∗

s
λ dx

) 2
2∗s

≤ 4C f

SN ,scN ,s
|�λ|

2∗s −2
2∗s
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy, (3.20)

where the last inequality follows from Theorem 2.1. Recalling (2.24), for |λ − a| small, it
follows that

4C f

SN ,scN ,s
|�λ|

2∗s −2
2∗s <

1

4
cN ,s .

A contradiction occurs by (3.20) unless
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy = 0 ,

that is u ≤ uλ in �λ.

Let us now set

�0 = {a < λ < 0 : u ≤ ut in �t\Rt (�) for all t ∈ (a, λ]}
and

λ0 = sup �0.

that is well defined since we showed that �0 is not empty. To prove our result we have to
show that λ0 = 0.

To prove this we assume that λ0 < 0 and we reach a contradiction by proving that
u ≤ uλ0+τ in �λ0+τ\Rλ0+τ (�) for any 0 < τ < τ̄ for some small τ̄ > 0. By continuity
of u in �̄\�, we know that u ≤ uλ0 in �λ0\Rλ0(�). Actually it follows that u < uλ0 in
�λ0\Rλ0(�). To deduce this, just write down the equation fulfilled by u − uλ0 and exploit
Proposition 3.6 in [17].

Therefore, given a compact set K ⊂ �λ0\Rλ0(�), by a uniform continuity argument, we
can ensure that u < uλ0+τ in K for any 0 < τ < τ̄ for τ̄ > 0 small. Note that to do this we
implicitly assume, with no loss of generality, that Rλ0+τ (�) remains bounded away from K .
Arguing as in Lemma 3.1 we consider

ϕε = ϕλ0+τ
ε , 0 < τ < τ̄

with the same construction and we set

ϕ := wλ0+τ ϕ
2
ε .

In view of Lemma 3.1, we can choose ϕ as test function arguing exactly as in the proof of
Lemma 3.1 and again we arrive at the first inequality in (3.17), namely

∫

RN

∫

RN

(
wλ0+τ (x) − wλ0+τ (y)

)2

|x − y|N+2s

(
ϕ2

ε (x) + ϕ2
ε (y)

2

)

dx dy

≤ C( f, N , s, ‖u‖L∞(�λ0+τ̄ ))

∫

�λ0+τ

(wλ0+τ )
2ϕ2

ε dx



+ C( f, N , s, ‖u‖L∞(�λ0+τ̄ ))

∫

RN

∫

RN

(ϕε(x) − ϕε(y))2

|x − y|N+2s
.

By construction, see (3.6), it follows that

∫

RN

∫

RN

(ϕε(x) − ϕε(y))2

|x − y|N+2s
−→
ε→0

0.

Therefore, arguing as above, we pass to the limit as ε → 0 and, recalling Lemma 3.1, we
deduce that

∫

RN

∫

RN

(
wλ0+τ (x) − wλ0+τ (y)

)2

|x − y|N+2s
dx dy .

≤ C( f, N , s, ‖u‖L∞(�λ0+τ̄ ))

∫

�λ0+τ

(wλ0+τ )
2 dx

= C( f, N , s, ‖u‖L∞(�λ0+τ̄ ))

∫

�λ0+τ \K
(wλ0+τ )

2 dx .

By the Sobolev inequality, see Theorem 2.1, we deduce that

∫

RN

∫

RN

(
wλ0+τ (x) − wλ0+τ (y)

)2

|x − y|N+2s
dx dy

≤ C( f, N , s, ‖u‖L∞(�λ0+τ̄ ))

∣
∣
∣(�λ0+τ \K )

∣
∣
∣

2∗s −2
2∗s
(∫

�λ0+τ \K
(wλ0+τ )2

∗
s dx

) 2
2∗s

≤ C( f, N , s, ‖u‖L∞(�λ0+τ̄ ))

∣
∣
∣(�λ0+τ \K )

∣
∣
∣

2∗s −2
2∗s
∫

RN

∫

RN

(
wλ0+τ (x) − wλ0+τ (y)

)2

|x − y|N+2s
dx dy

(3.21)

where the C(·) involves now the Sobolev constant. For K large and τ̄ small, we may assume
that

c( f, N , s, ‖u‖L∞(�λ0+τ̄ ))

∣
∣
∣(�λ0+τ\K )

∣
∣
∣

2∗s −2
2∗s < 1

so that, by (3.21), we deduce that

∫

RN

∫

RN

(
wλ0+τ (x) − wλ0+τ (y)

)2

|x − y|N+2s
dx dy = 0 .

This proves that u ≤ uλ0+τ in �λ0+τ\Rλ0+τ (�) for any 0 < τ < τ̄ and for some small
τ̄ > 0. Such a contradiction shows that

λ0 = 0 .

Since the moving plane procedure can be performed in the same way but in the opposite
direction, then this proves the desired symmetry result. The fact that the solution is increasing
in the x1-direction in {x1 < 0} is implicit in the moving plane procedure. If � is a ball and
u has only a nonremovable singularity at the origin, then the solution is radial and radially
decreasing about the center of the ball. This follows applying the moving plane procedure in
any direction ν ∈ S

1 of R
N . ��



4 Proof of Theorem 1.2

We start by proving the following

Lemma 4.1 Under the assumptions of Theorem 1.2, for  λ <  0, we have that

∫

RN

∫

RN

(
wλ(x) − wλ(y)

)2

|x − y|N+2s
dx dy ≤ C , (4.1)

where C = C( f, s, N , ‖u‖L2∗s (RN \BR0 )
, ‖u‖L∞(�λ∩BR0 )) is a positive constant.

Proof We start by exploiting the fact that the singular set � has zero s-capacity. For each
ε > 0, let

�λ
ε :=

{
x ∈ R

N | dist(x, Rλ(�)) < ε
}

.

Arguing as in the case of a bounded domain, thanks to Lemma 2.5, we have that, for each

ε > 0, Cap
�λ

ε
s (Rλ(�)) = 0. Therefore, there exists φε ∈ C∞

c (�λ
ε ) such that

∫

RN

∫

RN

(
φε(x) − φε(y)

)2

|x − y|N+2s
dx dy ≤ ε , (4.2)

with φε ≥ 1 on a neighborhood of Rλ(�). Via a truncation argument it follows that we can
assume 0 ≤ φε ≤ 1, φε ∈ Hs

0 (�λ
ε ). Let ϕλ

ε (x) be defined in �λ as in (3.6). Then, by even
reflection, we define ϕλ

ε (x) in all R
N putting ϕλ

ε (x) = ϕλ
ε (xλ) for every x ∈ R

n\�λ. Let
ϕ1,0 ∈ C∞(RN ) be a standard cutoff function such that ϕ1,0 = 1 in B1(0) and ϕ1,0 = 0
outside B2(0) and evenw.r.t the hyperplane T0, i.e., ϕ1,0(x) = ϕ1,0(x0) for every x ∈ R

n\�0.
Then, for a fixed point xC ∈ Tλ, let us set ϕR,xc = ϕ1,0((x − xC )/R). Recalling (3.1) we set

ϕ := wλϕ
2
ε ϕ2

R,xc
.

We point out that uλ (see (2.23)) solves

(−�)suλ = f (uλ) in R
N \Rλ(�) , (4.3)

in the sense of Definition 2.2. By density arguments (see Lemma 2.4), we can plug ϕ as test
function in Eq. (1.2) fulfilled by u and in equation (4.3) fulfilled by uλ. Subtracting, we get

1

2
cN ,s

∫

RN

∫

RN

((u(x) − uλ(x)) − (u(y) − uλ(y)))

|x − y|N+2s

× (
wλ(x)ϕ2

ε (x)ϕ2
R,xc

(x) − wλ(y)ϕ2
ε (y)ϕ2

R,xc
(y)
)
dx dy

≤
∫

RN

(
f (u) − f (uλ)

u − uλ

)

w2
λϕ

2
ε ϕ2

R,xc
dx . (4.4)

Arguing as in the proof of Lemma 3.1, following verbatim the computations from Eq. (3.9)
to equation (3.13), we obtain

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
wλ(x)ϕ2

ε (x)ϕ2
R,xc

(x) − wλ(y)ϕ2
ε (y)ϕ2

R,xc
(y)
)

|x − y|N+2s
dx dy

≤
∫

RN

(
f (u) − f (uλ)

u − uλ

)

w2
λϕ

2
ε ϕ2

R,xc
dx . (4.5)



We rewrite (4.5) as

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2 ϕ2
ε (x)ϕ2

R,xc
(x)

|x − y|N+2s
dx dy

≤ 1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
ϕ2

ε (y)ϕ2
R,xc

(y) − ϕ2
ε (x)ϕ2

R,xc
(x)
)

wλ(y)

|x − y|N+2s
dx dy

+
∫

RN

(
f (u) − f (uλ)

u − uλ

)

w2
λϕ

2
ε ϕ2

R,xc
dx .

(4.6)
Recalling (3.15) we have

∫

RN

∫

RN

(wλ(x) − wλ(y))2 ϕ2
ε (x)ϕ2

R,xc
(x)

|x − y|N+2s
dx dy

=
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x)ϕ2
R,xc

(x) + ϕ2
ε (y)ϕ2

R,xc
(y)

2

)

dx dy . (4.7)

On the other hand, using the Young inequality we have

∣
∣
∣
∣
∣
∣

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
ϕ2

ε (y)ϕ2
R,xc

(y) − ϕ2
ε (x)ϕ2

R,xc
(x)
)

wλ(y)

|x − y|N+2s
dx dy

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

RN

∫

RN

(wλ(x) − wλ(y)) wλ(y)

|x − y|N+2s

× (
ϕε(y)ϕR,xc (y) − ϕε(x)ϕR,xc (x)

) (
ϕε(x)ϕR,xc (x) + ϕε(y)ϕR,xc (y)

)
dx dy

∣
∣
∣
∣

≤ δ

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕε(x)ϕR,xc (x) + ϕε(y)ϕR,xc (y)

)2 dx dy

+1

δ

∫

RN

∫

RN

(
ϕε(x)ϕR,xc (x) − ϕε(y)ϕR,xc (y)

)2
w2(y)

|x − y|N+2s
dx dy

≤ 2δ
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x)ϕ2
R(x) + ϕ2

ε (y)ϕ2
R(y)

)
dx dy

+1

δ

∫

RN

∫

RN

(
ϕε(x)ϕR,xc (x) − ϕε(y)ϕR,xc (y)

)2
w2(y)

|x − y|N+2s
dx dy . (4.8)

Now we set δ = 1
8cN ,s and, taking into account (4.6), by (4.7) and (4.8) we obtain

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x)ϕ2
R,xc

(x) + ϕ2
ε (y)ϕ2

R,xc
(y)

2

)

dx dy

≤ C
∫

RN

∫

RN

(
ϕε(x)ϕR,xc (x) − ϕε(y)ϕR,xc (y)

)2
w2

λ(y)

|x − y|N+2s
dx dy

+
∫

RN

(
f (u) − f (uλ)

u − uλ

)

w2
λϕ

2
ε ϕ2

R,xc
dx

:= I1 + I2, (4.9)



where C is a positive constant depending on s, N . Let us start by evaluating the term I1. First
of all we obtain

I1 ≤ C
∫

RN

∫

RN

|ϕR,xc (x) − ϕR,xc (y)|2ϕ2
ε (y)w2

λ(y)

|x − y|N+2s
dx dy

+C
∫

RN

∫

RN

|ϕε(x) − ϕε(y)|2ϕ2
R(x)w2

λ(y)

|x − y|N+2s
dx dy

≤ C
∫

RN

∫

RN

|ϕR,xc (x) − ϕR,xc (y)|2w2
λ(y)

|x − y|N+2s
dx dy

+ C
∫

RN

∫

RN

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy

:= I11 + I12. (4.10)

where we also used that ϕ2
R ≤ 1, ϕ2

ε ≤ 1 in a R
N . In the following we exploit some standard

arguments, see, for example, [10]. In our case such an application would be more easy in
the case of globally bounded solutions. Since we deal with the more general case of locally
bounded solutions, the computations are more involved.

To estimate the term I11, we define the following sets:

A0(xC ) :=
{
(x, y) ∈ R

N × R
N : |y − xC | ≥ 2|x − xC |

}
,

A1(xC ) :=
{
(x, y) ∈ R

N × R
N : |y − xC | < 2|x − xC | and |x − y| ≥ R

}
,

A2(xC ) :=
{
(x, y) ∈ R

N × R
N : |y − xC | < 2|x − xC | and |x − y| < R

}
, (4.11)

Therefore,

I11 = C
∫ ∫

A0(xC )

|ϕR,xc (x) − ϕR,xc (y)|2w2
λ(y)

|x − y|N+2s
dx dy

+ C
∫ ∫

A1(xC )

|ϕR,xc (x) − ϕR,xc (y)|2w2
λ(y)

|x − y|N+2s
dx dy

+ C
∫ ∫

A2(xC )

|ϕR,xc (x) − ϕR,xc (y)|2w2
λ(y)

|x − y|N+2s
dx dy

:=
2∑

k=0

I11k, (4.12)

Define σ0 = s and fix σ1 ∈ (0, s) and σ2 ∈ (s, 1). Let us write now, for k = 0, 1, 2,

|ϕR,xc (x) − ϕR,xc (y)|2w2
λ(y)

|x − y|N+2s
= |ϕR,xc (x) − ϕR,xc (y)|2

|x − y|2(s+σk )

w2
λ(y)

|x − y|N−2σk
.

By Hölder inequality, for k = {0, 1, 2}, we have

I11k ≤ C

⎛

⎝

∫ ∫

Ak (xC )

|ϕR,xc (x) − ϕR,xc (y)| N
s

|x − y|(s+σk ) N
s

dx dy

⎞

⎠

2s
N
⎛

⎝

∫ ∫

Ak (xC )

|w|2∗
s

λ (y)

|x − y|
N−2σk
N−2s N

dx dy

⎞

⎠

N−2s
N

.

(4.13)



The first integral on the r.h.s of (4.13), by the change of variable x̂ = (x − xC )/R can be
estimated as

∫ ∫

Ak (xC )

|ϕR,xc (x) − ϕR,xc (y)| N
s

|x − y|(s+σk ) N
s

dx dy

= R2N−(s+σk ) N
s

∫ ∫

Ak (0)

|ϕ1,0(x̂) − ϕ1,0(ŷ)| N
s

|x̂ − ŷ|(s+σk ) N
s

d x̂ d ŷ

= R(s−σk ) N
s

∫ ∫

Ak (0)

|ϕ1,0(x̂) − ϕ1,0(ŷ)| N
s

|x̂ − ŷ|N+σk
N
s

d x̂ d ŷ ≤ C R(s−σk ) N
s . (4.14)

For the second integral on the r.h.s of (4.13) we proceed decomposing it on the three
sets (4.11).

Let k = 0. When (x, y) ∈ A0(xC ) we have that |x − y| ≥ |y − xC | − |x − xC | ≥ |y − xC |/2
and therefore

∫ ∫

A0(xC )

|w|2∗
s

λ (y)

|x − y| N−2σ0
N−2s N

dx dy ≤ C
∫ ∫

A0(xC )

|w|2∗
s

λ (y)

|y − xC | N−2σ0
N−2s N

dx dy

≤ C
∫

RN

(∫ |y−xC |/2

0
ρN−1 dρ

) |w|2∗
s

λ (y)

|y − xC | N−2σ0
N−2s N

dy ≤ C
∫

RN
|w|2∗

s
λ (y) dy,

(4.15)

with C = C(N ) a positive constant and where we used the fact that σ0 = s.

Let k = 1. Recalling that σ1 ∈ (0, s), we obtain

∫ ∫

A1(xC )

|w|2∗
s

λ (y)

|x − y| N−2σ1
N−2s N

dx dy

≤
∫

RN

(∫

RN \BR(y)

1

|x − y| N−2σ1
N−2s N

dx

)

|w|2∗
s

λ (y) dy

=
∫

RN
|w|2∗

s
λ (y) dy ·

∫

RN \BR(0)

1

|x̂ |N+ 2N (s−σ1)

N−2s

dx

= C R
2N (σ1−s)

N−2s

∫

RN
|w|2∗

s
λ (y) dy, (4.16)

where in the last line we used the change of variable x̂ = x − y and where C = C(s, σ1, N )

is a positive constant.

Let k = 2. Recalling that σ2 ∈ (s, 1), we deduce

∫ ∫

A2(xC )

|w|2∗
s

λ (y)

|x − y| N−2σ2
N−2s N

dx dy

≤
∫

RN

(∫

BR(y)

1

|x − y| N−2σ2
N−2s N

dx

)

|w|2∗
s

λ (y) dy



=
∫

RN
|w|2∗

s
λ (y) dy ·

∫

BR(0)

1

|x̂ |N− 2N (σ2−s)
N−2s

dx

= C R
2N (σ2−s)

N−2s

∫

RN
|w|2∗

s
λ (y) dy,

(4.17)

where C = C(s, σ2, N ) is a positive constant.

Collecting (4.15), (4.16) and (4.17) we have that

∫ ∫

Ak (xC )

|w|2∗
s

λ (y)

|x − y| N−2σ2
N−2s N

dx dy ≤ C R
2N (σk −s)

N−2s

∫

RN
|w|2∗

s
λ (y) dy. (4.18)

From (4.13), using (4.14) and (4.18) it follows

I11k ≤ C R2(s−σk )

(

R
2N (σk −s)

N−2s

∫

RN
|w|2∗

s
λ (y) dy

) N−2s
N ≤ C

(∫

RN
|w|2∗

s
λ (y) dy

) N−2s
N

,

(4.19)
where C is a positive constant not depending on R. Finally from (4.12), we obtain

I11 ≤ C

(∫

RN
|w|2∗

s
λ (y) dy

) N−2s
N

= C

(∫

RN \BR0 (0)
|w|2∗

s
λ (y) dy +

∫

BR0 (0)
|w|2∗

s
λ (y) dy

) N−2s
N

≤ C11, (4.20)

with R0 given in the statement of Theorem 1.2 and where C11 is a positive constant that does
not depend on R (and on ε). We point out that, in the last line of (4.20) we used the fact that
wλ(x) ≤ u(x), u ∈ L2∗

s (RN \BR0) and that, by (3.1), wλ ∈ L∞(BR0). To estimate the term
I12 in (4.10), we fix a radius R̂ > R0 such that BR0 ∪ Rλ(BR0) ⊂ BR̂ . Therefore, using that
(see (3.6)) ϕλ

ε (x) = 1 in R
N \BR̂

I12 ≤ C
∫

RN

∫

RN

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy

= C
∫

BR̂

∫

BR̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy

+
∫

RN \BR̂

∫

BR̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy

+
∫

BR̂

∫

RN \BR̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy

:=
2∑

k=0

I12k . (4.21)

By Definition (3.1) we have that wλ ∈ L∞(BR̂). Thus, using (4.2) we obtain

I120 ≤ C
∫

BR̂

∫

BR̂

|ϕε(x) − ϕε(y)|2
|x − y|N+2s

dx dy



≤ C
∫

RN

∫

RN

|φε(x) − φε(y)|2
|x − y|N+2s

dx dy ≤ Cε, (4.22)

where, AR̂ := Rλ(BR̂) and C = C(‖u‖L∞(AR̂)) is a positive constant. Similarly we also get

I121 ≤ Cε. (4.23)

For the last term of (4.21) we argue splitting it in two terms:

I122 =
∫

BR̂

∫

B2R̂\BR̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy

+
∫

BR̂

∫

RN \B2R̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy. (4.24)

For the first term, as we did in (4.22), we have

∫

BR̂

∫

B2R̂\BR̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy ≤ Cε,

with C = C(‖u‖L∞(A2R̂)). For the second term we use Hölder inequality deducing

∫

BR̂

∫

RN \B2R̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy

≤
∫

BR̂

⎛

⎝

(∫

RN \B2R̂

w
2∗

s
λ (y) dy

) N−2s
N
(∫

RN \B2R̂

|ϕε(x) − ϕε(y)| N
s

|x − y| (N+2s)N
2s

dy

) 2s
N
⎞

⎠ dx

≤ C

(∫

BR̂

∫

RN \B2R̂

|ϕε(x) − ϕε(y)| N
s

|x − y| (N+2s)N
2s

dy dx

) 2s
N

, (4.25)

with C = C(s, N , R̂, ‖u‖L2∗s (RN \B2R̂)
, ‖u‖L∞(A2R̂)). Since for all (x, y) ∈ BR̂ × R

N \B2R̂ ,

it follows that |x − y| ≥ δ > 0, from (4.25) we infer that

∫

BR̂

∫

RN \B2R̂

|ϕε(x) − ϕε(y)|2w2
λ(y)

|x − y|N+2s
dx dy ≤ C

∫ ∞

2R̂

1

ρ
N2+2s

2s

dρ < +∞ (4.26)

and C = C(s, N , R̂, ‖u‖L2∗s (RN \B2R̂)
, ‖u‖L∞(A2R̂)). Using (4.22), (4.23) and (4.26), from

(4.21) we deduce
I12 ≤ C12(1 + ε). (4.27)

Finally from (4.10), collecting (4.20) and (4.27) it follows

I1 ≤ C1(1 + ε), (4.28)

for some positive constant C1.



To estimate I2 in (4.9) we use the mean value theorem and (A2
f ). In fact

I2 =
∫

RN

(
f (u) − f (uλ)

u − uλ

)

(wλ)
2ϕ2

ε ϕ2
R,xc

dx

≤ 2
∫

�λ

f ′(ξλ)(wλ)
2ϕ2

ε ϕ2
R,xc

dx (for u < ξλ < uλ)

≤ 2
∫

�λ

f ′(u)w2
λϕ

2
ε ϕ2

R,xc
dx (since f (·) is convex)

≤ 2C f

∫

�λ

u2∗
dx ≤ C2,

(4.29)

where C2( f, ‖u‖L2∗s (RN \BR0 )
, ‖u‖L∞(�λ∩BR0 )). Using (4.28) and (4.29) and redefining the

constants, from (4.9) we have

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s

(
ϕ2

ε (x)ϕ2
R,xc

(x) + ϕ2
ε (y)ϕ2

R,xc
(y)

2

)

dx dy ≤ C(1 + ε).

The thesis follows now by Fatou Lemma as (first) ε tends to zero and (then) R tends to
infinity. ��

Proof of Theorem 1.2 We start the moving plane procedure by showing that for λ < 0 and
|λ| large, we obtain that u ≤ uλ in �λ\Rλ(�). In fact using ϕ := wλϕ

2
ε ϕ2

R,xc
in Eq. (1.2)

fulfilled by u and in Eq. (4.3) fulfilled by uλ, subtracting we get (see Eq. (4.4))

1

2
cN ,s

∫

RN

∫

RN

((u(x) − uλ(x)) − (u(y) − uλ(y)))

|x − y|N+2s

× (
wλ(x)ϕ2

ε (x)ϕ2
R,xc

(x) − wλ(y)ϕ2
ε (y)ϕ2

R,xc
(y)
)
dx dy

≤
∫

RN

(
f (u) − f (uλ)

u − uλ

)

(wλ)
2ϕ2

ε ϕ2
R,xc

dx

and then, as in (4.5), we have

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))
(
wλ(x)ϕ2

ε (x)ϕ2
R,xc

(x) − wλ(y)ϕ2
ε (y)ϕ2

R,xc
(y)
)

|x − y|N+2s
dx dy

≤
∫

RN

(
f (u) − f (uλ)

u − uλ

)

(wλ)
2ϕ2

ε ϕ2
R,xc

dx .

(4.30)

Using that ϕ2
ε ϕ2

R,xc
≤ 1 in all R

N , it follows

∫

RN

∫

RN

(
wλ(x)ϕ2

ε (x)ϕ2
R,xc

(x) − wλ(y)ϕ2
ε (y)ϕ2

R,xc
(y)
)2

|x − y|N+2s
dx dy

≤ 2
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy

+ 4
∫

RN

∫

RN

(
ϕε(y)ϕR,xc (y) − ϕε(x)ϕR,xc (x)

)2
w2

λ(y)

|x − y|N+2s
dx dy



and therefore, by Lemma 4.1, (4.9), (4.10) and (4.20)

∫

RN

∫

RN

(
wλ(x)ϕ2

ε (x)ϕ2
R,xc

(x) − wλ(y)ϕ2
ε (y)ϕ2

R,xc
(y)
)2

|x − y|N+2s
dx dy ≤ C, (4.31)

with C is a positive constant not depending on ε and R. Letting first ε to zero and then R to
infinity, using Lemma 4.1 and (4.31), the l.h.s of (4.30) by weak convergence goes to

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy

.

By (A2
f ) and Lemma 4.1, the r.h.s of (4.30), by the dominate convergence Theorem goes to

∫

RN

(
f (u) − f (uλ)

u − uλ

)

(wλ)
2 dx .

Hence, (4.30) becomes

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy ≤

∫

RN

(
f (u) − f (uλ)

u − uλ

)

w2
λ dx .

Using (A2
f ) and Hölder inequality, it follows

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy

≤
∫

RN

(
f (u) − f (uλ)

u − uλ

)

w2
λ dx

≤ 2C f

∫

�λ

u2∗
s −2w2

λ dx

≤ 2C f

(∫

�λ

u2∗
s dx

) 2∗s −2
2∗s
(∫

�λ

w
2∗

s
λ dx

) 2
2∗s

≤ 4C f

SN ,scN ,s

(∫

�λ

u2∗
s dx

) 2∗s −2
2∗s
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy, (4.32)

where the last inequality follows from Theorem 2.1. Recalling that u ∈ L2∗
s (RN \BR0), with

� ⊂ {x1 = 0} ∩ BR0 we deduce that we can take λ < 0, with |λ| large, in such a way that

4C f

SN ,scN ,s

(∫

�λ

u2∗
s dx

) 2∗s −2
2∗s

<
1

4
cN ,s .

A contradiction occurs by (4.32) unless
∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy = 0 ,

that is u ≤ uλ in �λ. Let us now set

�0 = {λ < 0 : u ≤ ut in �t\Rt (�) for all t ∈ (−∞, λ]}
and

λ0 = sup �0.



that is well defined since we showed that �0 is not empty. To prove our result we have to
show that λ0 = 0. To prove this we assume that λ0 < 0 and we reach a contradiction by
proving that u ≤ uλ0+τ in �λ0+τ\Rλ0+τ (�) for any 0 < τ < τ̄ for some small τ̄ > 0. By
continuity of u in R

N \�, we know that u ≤ uλ0 in �λ0\Rλ0(�). By the strong maximum
principle ([17, Proposition 3.6]) we deduce that u < uλ0 in �λ0\Rλ0(�). Here we use that
a symmetry position before the limiting position (namely u = uλ0 in �λ0\Rλ0(�)) is not
possible, if λ0 < 0, since in this case u should be singular on Rλ0(�) . For δ > 0 that will be
chosen small later on, we consider a compact set Kδ ⊂ �λ0\Rλ0(�) such that

∫

�λ0+τ̄ \Kδ

u2∗
s ≤ δ.

By uniform continuity, we can take τ̄ small such that u < uλ0+τ in Kδ for any 0 < τ < τ̄ .
Now we repeat verbatim the arguments used at the beginning of this proof, using the test
function ϕ := wλ0+τ ϕ

2
ε ϕ2

R,xc
in Eq. (3.7) fulfilled by u and in Eq. (4.3) fulfilled by uλ.

Taking the limits, as in (4.32), we have

1

2
cN ,s

∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy

≤
∫

RN

(
f (u) − f (uλ)

u − uλ

)

w2
λ dx

≤ 2C f

∫

�λ0+τ \Kδ

u2∗
s −2w2

λ dx

≤ 2C f

(∫

�λ0+τ \Kδ

u2∗
s dx

) 2∗s −2
2∗s
(∫

�λ0+τ \Kδ

w
2∗

s
λ dx

) 2
2∗s

≤ 4C f

SN ,scN ,s

(∫

�λ0+τ \Kδ

u2∗
s dx

) 2∗s −2
2∗s ∫

RN

∫

RN

(wλ(x) − wλ(y))2

|x − y|N+2s
dx dy. (4.33)

Now we chose δ small in such a way that

4C f

SN ,scN ,s

(∫

�λ0+τ \Kδ

u2∗
s dx

) 2∗s −2
2∗s

≤ 4C f

SN ,scN ,s

(∫

�λ0+τ̄ \Kδ

u2∗
s dx

) 2∗s −2
2∗s

<
1

4
cN ,s,

obtaining the desired contradiction by (4.33) and showing that λ0 = 0. The symmetry of
the solution follows now performing the moving plane method in the opposite direction. The
monotonicity of the solution is implicit in the technique.

If u has only a nonremovable singularity at the origin, then the solution is radial and
radially decreasing about the origin. This follows applying the moving plane procedure in
any direction ν ∈ S

1 of R
N . ��

References

1. Adams, R.A.: Sobolev Spaces. Pure and Applied mathematics, vol. 65. Academics Press, New York
(1975)



2. Alexandrov, A.D.: A characteristic property of the spheres. Ann. Mat. Pura Appl. 58, 303–354 (1962)
3. Barrios, B., Montoro, L., Sciunzi, B.: On the moving plane method for nonlocal problems in bounded 

domains. J. Anal. Math. arXiv:1405.5402 (to appear)
4. Berestycki, H., Nirenberg, L.: On the method of moving planes and the sliding method. Bolletin Soc. 

Brasil. de Mat Nova Ser. 22, 1–37 (1991)
5. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative 

properties of solutions. Trans. Amer. Math. Soc. 367(2), 911–941 (2015)
6. Caffarelli, L., Li, Y.Y., Nirenberg, L.: Some remarks on singular solutions of nonlinear elliptic equations. 

II: symmetry and monotonicity via moving planes. Advances in geometric analysis, 97105, Adv. Lect. 
Math. (ALM), 21, Int. Press, Somerville, MA (2012)

7. Chen, W., Li, C., Ou, B.: Qualitative properties of solutions for an integral equation. Discrete Contin. 
Dyn. Syst. 12(2), 347–354 (2005)

8. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. 
Math. 59, 330–343 (2006)

9. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. 
Math. 136(5), 521–573 (2012)

10. Dipierro, S., Valdinoci, E.: A density property for fractional weighted Sobolev Spaces. Atti Accad. Naz. 
Lincei Rend. Lincei Mat. Appl. 26(4), 397–422 (2015)

11. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem 
involving the fractional Laplacian. Le Matematiche (Catania) 68(1), 201–216 (2013)

12. Dipierro, S., Montoro, L., Peral, I., Sciunzi, B.: Qualitative properties of positive solutions to nonlocal 
critical problems involving the Hardy-Leray potential. Calc. Var. Part. Differ. Equ. 55(4), 99 (2016)

13. Fall, M.M.: Semilinear elliptic equations for the fractional Laplacian with Hardy potential. 
arXiv:1109.5530v4 (preprint)

14. Felmer, P., Wang, Y.: Radial symmetry of positive solutions to equations involving the fractional Laplacian. 
Commun. Contemp. Math. 16(1), 1350023–1350024 (2014)

15. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. 
Math. Phys. 68, 209–243 (1979)

16. Jarohs, S., Weth, T.: Asymptotic symmetry for a class of nonlinear fractional reaction–diffusion equations. 
Discrete Contin. Dyn. Syst. 34(6), 2581–2615 (2014)

17. Jarohs, S., Weth, T.: Symmetry via antisymmetric maximum principles in nonlocal problems of variable 
order. Ann. Mat. Pura Appl. 195(1), 273–291 (2016)

18. Landkof, N.: Foundations of modern potential theory. Die Grundlehren der mathematischen Wis-
senschaften, vol. 180. Springer, New York (1972)

19. Lieb, E.: Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. Math. 118(2), 
349–374 (1983)

20. Ma, L., Chen, D.: Radial symmetry and monotonicity for an integral equation. J. Math. Anal. Appl. 342, 
943–949 (2008)

21. Merchán, S., Montoro, L., Peral, I., Sciunzi, B.: Existence and qualitative properties of solutions to 
a quasilinear elliptic equation involving the Hardy–Leray potential. Ann. Inst. H. Poincaré Anal. Non 
Linéaire 31(1), 1–22 (2014)

22. Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal 43(4), 304–318 (1971)
23. Sciunzi, B.: On the moving plane method for singular solutions to semilinear elliptic equations. J. Math. 

Pures Appl. 108(1), 111–123 (2017)
24. Sire, Y., Valdinoci, E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequal-

ity and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)
25. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. 

Pure Appl. Math. 60(1), 67–112 (2007)
26. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Math-

ematical Series Monographs in Harmonic Analysis III, vol. 43. Princeton University Press, Princeton 
(1993)

27. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical 
Series, vol. 30. Princeton University Press, Princeton (1970)

28. Terracini, S.: On positive entire solutions to a class of equations with a singular coefficient and critical 
exponent. Adv. Differ. Equ. 1, 241–264 (1996)

29. Valdinoci, E.: From the long jump random walk to the fractional Laplacian. Bol. Soc. Esp. Mat. Apl. 
SeMA 49, 33–44 (2009)

30. Warma, M.: The fractional relative capacity and the fractional Laplacian with Neumann and Robin 
boundary conditions on open sets. Potential Anal. 42, 499–547 (2015)

http://arxiv.org/abs/1405.5402
http://arxiv.org/abs/1109.5530v4

	Qualitative properties of singular solutions to nonlocal problems
	Abstract
	1 Introduction
	2 Notations and preliminary results
	3 Proof of Theorem 1.1
	4 Proof of Theorem 1.2
	References




