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ABSTRACT
To decide whether a digital video has been captured by a given de-
vice, multimedia forensic tools usually exploit characteristic noise
traces left by the camera sensor on the acquired frames. This analy-
sis requires that the noise pattern characterizing the camera and the
noise pattern extracted from video frames under analysis are geomet-
rically aligned. However, in many practical scenarios this does not
occur, thus a re-alignment or synchronization has to be performed.
Current solutions often require time consuming search of the re-
alignment transformation parameters. In this paper, we propose to
overcome this limitation by searching scaling and rotation parame-
ters in the frequency domain. The proposed algorithm tested on real
videos from a well-known state-of-the-art dataset shows promising
results.

Index Terms— Video forensics, sensor noise, Fourier-Mellin,
PRNU, video stabilization

1. INTRODUCTION

Multimedia forensics keeps developing technologies to identify the
camera originating a digital image or a digital video. Currently, the
most promising technique to achieve this task is based on the anal-
ysis of Sensor Pattern Noise (SPN) noise or Photo Response Non-
Uniformity (PRNU) , left by the acquisition device into the visual
content. This trace is useful to identify the video source since it is
universal (i.e., every camera sensor introduces one) and unique (i.e.,
PRNU from two different sensors are uncorrelated) [1, 2]. More-
over, PRNU is proved to be significantly robust to commonly used
processing, like JPEG compression [1], or uploading to social media
platforms [3, 4].

PRNU based source identification process consists in verifying
the match between a query image or video frame and a fingerprint
characterizing a reference camera. The strategy involves two main
steps: i) a reference fingerprint is derived from still images or videos
acquired by the source device; ii) the query fingerprint is estimated
from the investigated content and then compared with the reference
to verify the possible match, in form of a correlation. If the query
content was acquired by the reference camera, then a high correla-
tion is expected.
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The previous scheme works under the hypothesis of perfect ge-
ometrical alignment between the reference and test fingerprints. If
a geometrical transformation is applied to the query content, a pixel
grid misalignment between the query and the reference fingerprint
arises, thus hindering the detection. Such a case occurs in multiple
scenarios: when an image has been acquired with different resolu-
tion settings or it is cropped and resized due to the upload in a social
media; if a malicious user slightly distorts an image to remove the
sensor traces; when a query video is tested against a reference esti-
mated from still images; when a video has been created in presence
of electronic image stabilization. In all these cases, the PRNU ex-
tracted from the query is misaligned with the reference fingerprint,
and thus a geometric re-synchronization between them has to be car-
ried out before the matching operation.

The first solution to this problem was proposed in [5], where
the case of cropped and downscaled images was studied. The au-
thors show that it is possible to parameterize the Normalized Cross-
Correlation (NCC) between the reference fingerprint and the query
noise with respect to the scaling factor. The NCC peak position for
a given scaling factor provides an estimate of the shift. While the
NCC can be efficiently computed in the Fourier domain, a brute
force search is needed to determine the scaling factor. By follow-
ing the same rationale, more recent papers [6, 7, 8] extend the pro-
posed methodology also considering rotation and the more challeng-
ing scenario of video analysis. As a matter of fact, modern acqui-
sition pipelines usually include electronic stabilization that under-
mines PRNU-based attribution technique. In these cases, PRNU-
based techniques only work if geometric transformations are prop-
erly estimated and compensated for, which is a computational com-
plex operation.

In this paper, we focus on the problem of stabilized video se-
quences camera attribution based on PRNU. Specifically, we pro-
pose a method to align frame fingerprints with reference PRNU by
recovering the scaling, shift and rotation parameters introduced by
the electronic stabilization. We overcome the problem of computa-
tional complexity by searching for scaling and rotation parameters
in the frequency domain thanks to a modified version of the Fourier-
Mellin transform (FM). Results obtained on the well known Vision
dataset [9] show that the proposed method provides extremely effi-
cient results whenever rotation and scaling operations are applied to
video frames. When also shift is taken into account, the gain com-
pared against the state-of-the-art [8] depends on the video content.

2. BACKGROUND AND PROBLEM STATEMENT

In this section we introduce the background on Fourier-Mellin (FM)
transform and define the problem we are tackling in this paper.



Fourier-Mellin Transform. The FM transform enables to es-
timate scale, rotation and shift transformations between two images
in closed form [10].

Given an image I, the FM transform is expressed as the log-polar
mapping of the magnitude of the image Fourier transform, i.e.,

FM{I} = LP{|F|}, (1)

where LP{·} is the operator computing log-polar mapping, and |F|
is the magnitude of the Fourier transform.

Let us consider two images Ia and Ib that are linked through a
similarity transformation, i.e., Ia = Tab{Ib}, where Tab applies the
transformation identified by the matrix

Tab =

[
sab · cosαab, −sab · sinαab, cabx
sab · sinαab, sab · cosαab, caby

]
, (2)

where sab represents scaling, αab rotation and c = [cabx , caby ] hori-
zontal and vertical shift. In this scenario, it is possible to show that
FM{Ia} is a shifted version of FM{Ib}. More formally,

FM{Ia}(ρ, α) = FM{Ib}(ρ− log sab, α− αab), (3)

where ρ is the radial coordinate and α the rotational coordinate. It is
therefore possible to estimate scale sab and rotation αab by looking at
the peak position of the phase correlation function between FM{Ia}
and FM{Ib} [10] independently from shifts. Once sab and αab are
estimated, the two images can be realigned apart from translation.
The relative shift can then be estimated by looking at the peak po-
sition of the phase correlation computed between the two realigned
images in the pixel domain [10].

Problem formulation. PRNU is typically modeled as a multi-
plicative noise pattern introduced by any device in all acquired im-
ages or videos [1, 11]. In the field of forensics analysis, it is well
known that PRNU can be exploited for inferring whether an image
was shot by a certain device. For instance, given a test image I and
a device PRNU K, we can compute the Peak-to-Correlation Energy
(PCE) between the noise residual W extracted from the image and
the PRNU pixel-wise scaled by I, i.e., PCE(W,K · I). Indeed, PCE
measures the correlation between the noise traces left on I and the
device PRNU independently of potential shift misalignment, as the
correlation peak is searched over all possible mutual shifts between
them. If PCE is greater than a confidence threshold, we attribute I to
the device [1, 11].

The extension of PRNU-based strategies for attributing video
frames to a specific device suffers from some issues due, for in-
stance, to higher compression rates and lower pixel resolutions. As
a matter of fact, the previously described PCE test cannot be di-
rectly performed, being the PRNU resolution typically higher than
the size of the recorded video frames. Moreover, in-camera video
stabilization techniques, which are now becoming one of the must-
have device specifications, strongly hinder the traces left by PRNU,
as video frames may be warped by means of geometrical transfor-
mations (e.g., cropping, rotation, scaling, etc.) in order to generate a
stable video sequence [8, 12]. As a consequence, the attribution of
a video frame to a specific device can represent a much more chal-
lenging task than common image-camera attribution.

In this paper, we exploit PRNU-based traces to investigate the
problem of device attribution when testing in-camera stabilized
video frames. Specifically, given a device fingerprint K and a frame
I coming from a stabilized video sequence, we aim at exploiting the
PRNU traces left on I in order to detect whether it has been recorded
by the analyzed device. To do so, we assume that geometric trans-
formation can be approximated by similarities [7, 8] and we propose

a geometrical realignment strategy based on a modified version of
FM transform applied to both the device fingerprint and the frame
noise residual. Specifically, the proposed modified Fourier-Mellin
transform (MFM) enables comparing a device fingerprint and a
noise residual independently from scaling and rotation operations.
The next section provides all the details of the proposed method.

3. PROPOSED METHOD

In order to attribute a video frame I to a device whose reference
fingerprint is K, we follow a pipeline based on a few steps: (i) noise
extraction; (ii) geometric transformation estimation; (iii) geometric
compensation and matching. In the following, we illustrate all the
steps of the pipeline.

Noise extraction. As in common PRNU-based attribution algo-
rithm, we extract the noise residual W from frame I. This is done
using the common strategy proposed in [1, 11]: (i) noise is extracted
through wavelet-based denoising; (ii) a series of post-processing
steps (e.g., zero-averaging rows and columns, Wiener filtering, etc.)
are applied to further enhance the noise residual W.

Geometric transformation estimation. In order to match W
and the fingerprint K, we first need to search for the geometrical
transformation that might link them. In principle, assuming that
video frames warping can be approximated by a similarity trans-
formation [7, 8], aligning a noise residual and a reference device
fingerprint by means of Fourier-Mellin may seem straightforward.
In practice, differently from the Fourier-Mellin theory presented in
Section 2, the two terms to compare (i.e., W and K) are not exactly
one the transformed version (by means of a similarity transforma-
tion) of the other. First, the geometric transformation introduced by
stabilization is not necessarily a similarity, but can include perspec-
tive distortions (on the entire frame or a localized portion of it) as
well [12, 13]. Second, the noise residuals of video frames may con-
tain scene content and noise contributions which are not present in
the reference device fingerprint.

The primary consequence of this dissimilarity is that selecting
only the Fourier magnitudes for estimating scale and rotation be-
tween the two terms, as reported in (3), may be not precise. Indeed,
we verified that phase correlation between FM{K} and FM{W}
does not show a pronounced peak, thus leading to a strongly hin-
dered estimation of scale, rotation and shift. In order to overcome
this issue we modify the Fourier-Mellin pipeline in two ways.

First, we propose to embed the phase term of the Fourier trans-
form in addition to magnitude to the Fourier-Mellin pipeline. The
modified Fourier-Mellin transform of I can be thus defined as:

MFM{I} = LP{F}. (4)

On one hand, phase adds more information, which is very useful for
angle and scale estimation. On the other hand, this operation comes
with a cost. The natural drawback of this approach is that we cannot
isolate anymore the estimation of scale and rotation from the esti-
mation of the shift. Indeed, in this case, phase correlation does not
exclusively depends on scale and rotation transformations, but also
on translation between the two terms. The Fourier-Mellin pipeline
works only if W and K are almost perfectly aligned in terms of
translation, i.e., if their mutual shift is basically 0 pixels in both hor-
izontal and vertical directions. In other words, including the Fourier
phase term, we first have to correctly realign the PRNU traces left
on the noise residual with those on the reference fingerprint for what
concerns the relative shift, then we can convert the Fourier trans-
forms into log-polar domain and estimate the remaining parameters.
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Fig. 1: Scheme of the proposed method for similarity estimation between
noise residual W and reference device fingerprint K. The global optimizer
searches for shift candidates, while the proposed MFM∆ρ transform pro-
vides an estimate of scale and rotation for each shift.

The second proposed modification helps enabling faster compu-
tational times. It has been shown that a properly selected portion of
the PRNU frequency spectrum can be sufficient to achieve good at-
tribution performance (e.g., through subsampling [14]). In this vein,
notice that a 2D frequency band becomes a rectangular band if the
frequency spectrum is converted in log-polar domain. We propose to
literally cut the frequency content of K and W by cropping the log-
polar Fourier transform of ∆ρ samples along the ρ dimension. The
cropping center corresponds to the coordinate of the highest energy
peak of MFM{K} evaluated as a function of ρ. Despite this step
might seem irrelevant, this strongly reduces the amount of frequency
samples to be correlated, thus lowering the computational cost. We
define the modified Fourier-Mellin transform followed by cropping
as:

MFM∆ρ{I} = [LP{F}]∆ρ . (5)

By considering the added phase term and the frequency crop-
ping step, the best similarity parameters can be estimated solving a
maximization problem. Formally,

ŝ, α̂, ĉ = arg max
s∈S,α∈A,c∈C

Φ[MFM∆ρ{W},MFM∆ρ{K(x− c)}],

(6)
where Φ represents the phase correlation and vector x refers to hor-
izontal and vertical pixel coordinates.

Notice that, for each shift candidate value, scale and rotation
parameters can be very quickly estimated in closed form through
phase correlation. Therefore, we only need to optimize over different
shift values. However, gradient descent strategies to solve (6) suffer
from the non-convex behavior of the phase correlation as a function
of the shift. Especially in video sequences characterized by outdoor
scenarios or user motion, the actual peak value can be hard to find
with gradient descent algorithms. The maximization problem as a
function of the shift can be solved by resorting to global optimization
techniques. It is worth noting that the translation between W and K
can be assumed with slight approximation to imply integer shift in
horizontal and vertical directions, i.e., to represent a certain number
of pixels. We propose to exploit a global optimization algorithm
known as genetic algorithm that allows an efficient estimation of
integer parameters [15]. In a nutshell, the proposed method is shown
in Fig. 1.

Geometric compensation and matching. After estimating the
similarity transformation Tŝα̂ĉ, last steps consist in: (i) applying
Tŝα̂ĉ to K in order to realign the PRNU traces left on K with those
of W; (ii) resorting to PCE as strategy for a correct source device
identification. We compute PMFM as

PMFM = PCE(W,Tŝα̂ĉ(K)). (7)

As in standard PRNU attribution tests, by thresholding PMFM it is

possible to detect whether the frame under analysis belongs to the
tested device. In case multiple frames are available, it is possible to
repeat the whole procedure and fuse results obtained with different
frames (e.g., maximum PCE picking, majority voting, etc.).

4. EXPERIMENTAL ANALYSIS

In this section we report all the details about the performed experi-
mental campaign and the achieved results.

Dataset. Our datasets have been extracted from Vision dataset,
which includes both images and videos from 11 major brand de-
vices [9]. For building the PRNU related to each device, we select
all the available images taken by the device depicting flat scenes
[11]. Then, each fingerprint K is built by scaling and cropping the
PRNU, using the image to video warping parameters reported in [8].
Regarding video frames, we select only devices with Full-HD video
resolution (i.e., 1920 × 1080 pixels). For the sake of clarity, we
make use of the same device nomenclature presented in [9], creating
two test datasets: a non-stabilized dataset, selecting non-stabilized
devices D03, D11, D17, D21, D24, which come from 5 different
brands, and a stabilized dataset, that includes all the 14 available
stabilized devices.

Notice that the considered video frames contain both static and
motion scenes, depicted as still, panrot, move in [9], and can include
almost flat content as well as significant texture presence, denoted as
flat, indoor, outdoor in [9]. In particular, we only make use of the I-
frames, as the PRNU traces left on them are likely to be more reliable
than inter-predicted frames [16, 6]. Furthermore, in light of past
investigations about the first I-frame of stabilized video sequences,
we always discard it from the experiments [8, 12].

MFM parameters. To compute the MFM transform, we eval-
uate the 2D Fourier transform over 4096× 4096 samples after zero-
padding residue and reference fingerprint in the pixel domain, in
order not to introduce undesired border effects. Then, we convert
both terms into log-polar domain, following the default parameters
provided by [17], ending up with MFM transforms having 2896 ρ-
samples and 2281 α-samples. We verified the chosen sampling grid
for ρ and α dimensions allows a correct estimation of scaling factor
and rotation angle. Eventually, we crop MFM transforms along ρ
dimension according to the chosen number of samples ∆ρ.

The exploited genetic algorithm mimics biological evolution to
find a reliable shift estimation. Precisely, it has the following pa-
rameter configuration: a population size of 50 individuals, which
iteratively update the cost function for a maximum of 50 iterations.
Remaining parameters are those defined in [15].

Performance in a controlled scenario. In order to assess the
accuracy in attributing video frames to the correct device, we in-
vestigate the proposed method in a controlled scenario. Specifi-
cally, considering the non-stabilized dataset, we randomly select 27
I-frames per device, taking care of equally distributing motion and
static scenes, as well as flat and textured content. We end up with
a total amount of 135 video frames. In particular, we select only
frames which report acceptable PCE values with the device finger-
print (i.e., PCE ≥ 60, as suggested in [18, 6, 8]). Then, we warp
each frame by means of a similarity transformation, randomly se-
lecting the parameters from some realistic ranges [12], namely S =
[0.9, 1.1], A = [−3, 3]deg, C = [−90, 90]pixels, related to scale,
rotation angle, horizontal and vertical shifts, respectively. We ver-
ified these ranges include the vast majority of possible similarity
transformations between stabilized video frames and reference fin-
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Fig. 2: Accuracy on synthetically warped non-stabilized video frames: (a)
only scale and rotation are applied; (b) a complete similarity is applied. The
proposed method (orange) can be tuned to used different amount of frequency
samples (∆ρ), thus becoming slower but more accurate.

gerprint.
We aim at estimating the applied transformation using the pro-

posed strategy, comparing the performance with the method pre-
sented in [8]. Specifically, we exploit the same parameter config-
uration for the particle swarm strategy [19, 15] as reported in [8],
which enables to estimate the similarity transformation returning the
highest PCE between W and K. For what regards the search bounds
of scale and rotation parameters, we suppose these to be known at
investigation side, thus they coincide with S and A. Notice that
method [8] does not need to fix bounds for the shift parameters as
these can be estimated without the need of optimization. Following
similar considerations, the proposed MFM strategy fixes the search
range for shift parameters exactly to C, while scale and rotation do
not require optimization.

Computational time and true positive attribution rate evaluated
for a PCE threshold of 60 (i.e., TPR[60]) are the chosen accuracy
metrics to compare the two strategies. The average time for estimat-
ing the similarity transformation on each frame with the method [8]
is 41s, while MFM strategy changes its temporal requirement de-
pending on ∆ρ (e.g, using ∆ρ = 200 requires only 21s on average).
Generally, the required time linearly grows with ∆ρ.

Fig. 2 shows results as a function of scene content of video
frames (i.e., flat, indoor and outdoor). Specifically, Fig. 2(a) re-
ports results where only scale-rotation transformations were applied.
The shift between noise residuals and K is assumed to be known.
Fig. 2(b) reports results where a complete similarity transformation
has been applied. It is worth noting that, in case the shift parameter is
known and only scale and rotation parameters should be estimated,
our proposal can be a viable solution for very fast identification.
Since scale and rotation can be estimated without the need of op-
timization, the computational time reduces to less than one second.
The more the selected ∆ρ samples, the better the accuracy of MFM
strategy, which overcomes results of [8]. Furthermore, in this case
there is no need for global optimizers, thus the potential optimization
error reduces to zero. In case (b), MFM shows better or basically
equivalent results to [8] for flat and indoor scenarios, while outdoor
frames seems to be more challenging for the proposed method.

Performance on stabilized videos. In order to show the poten-
tiality of MFM approach in dealing with source device identification
problem on real videos, we apply the proposed method to the stabi-

Fig. 3: ROC curves obtained testing 10 I-frames with the proposed strategy,
as a function of the number of used frequency samples, i.e., ∆ρ. Results are
compared to those of [8] evaluated using 10 I-frames.

Table 1: AUC and TPR@0.01 testing 10 random I-frames per video query,
together with average computational time per frame, evaluated with MFM
and [8] methods.

Method MFM∆ρ=200 MFM∆ρ=400 MFM∆ρ=600 MFM∆ρ=800 [8]

AUC 0.93 0.93 0.94 0.97 0.97

TPR@0.01 0.85 0.86 0.90 0.94 0.91

Time [s] 22 46 69 105 57

lized video sequences. Following previous considerations, we set as
search range for the mutual shift C = [−90, 90] both in horizontal
and vertical directions. For clarity’s sake, we use the very same ac-
curacy metrics presented in [8], i.e., the area-under-the-curve AUC
and TPR@0.01 of ROC curves, averaged over all devices. Precisely,
TPR@0.01 corresponds to the rate of correct attributions evaluated
when the false positive attribution rate is equal to 0.01.

We show the attribution results achieved by testing 10 random
I-frames per video query and picking the maximum value among the
computed PCEs. Specifically, we test different values for the num-
ber of used frequency samples (i.e., ∆ρ) and always report results
achieved by [8] over the same dataset. Fig. 3 draws the ROC curves
and Table 1 depicts the achieved AUC and TPR@0.01 as a function
of ∆ρ. Moreover, last row of Table 1 reports the average required
computational time [seconds] for testing one query frame accord-
ing to the chosen strategy, considering matching cases as well as
non-matching ones. It is worth noticing that the proposed approach
can overcome results of [8], provided that a sufficient amount of fre-
quency samples is selected. Furthermore, the MFM strategy enables
fast computations as well, at the expense of a slightly reduced accu-
racy, but still acceptable.

5. CONCLUSIONS

In this paper, we propose an alternative solution for solving the
source device identification problem on stabilized videos. Specifi-
cally, we re-synchronize video frames and device reference finger-
print by estimating the re-alignment transformation with a modified
version of the Fourier-Mellin transform. In doing so, we search the
scaling and rotation parameters in the frequency domain, whereas
unknown translation can be estimated leveraging global optimiza-
tion strategies. Moreover, we propose to use a reduced amount of
Fourier-Mellin transform samples to estimate the warping configu-
ration, thus enabling fast computations.

The experimental campaign is conducted on a publicly available
dataset. Results are promising and show enhanced performance with
respect to state-of-the-art. This is especially true in situations where
only scale and rotation parameters should be estimated: experiments
performed in a synthetic set-up reveal that the proposed method can
be much faster and accurate than existing methodologies.
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