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ABSTRACT

Effective tools for detection of violence are highly demanded,
specially when dealing with video streams. Such tools have a
wide range of applications, from forensics and law enforcement to
parental control over the ever increasing amount of videos available
online. Prior studies showed that deep learning has great potential
in detecting violence, but focuses on detecting violence in general,
or only specific cases of violent behavior. While the concept of vio-
lence is broad and highly subjective, simpler concepts such as fights,
explosions, and gunshots, convey the idea of violence while being
more objective. Even though different concepts relate to this same
broader idea of violence, they differ widely in relation to whether
or not they convey the idea of movement, the presence of a specific
object, or even if they generate distinctive sounds. In this study, we
propose to analyze different concepts related to violence and how to
better describe these concepts exploring visual and auditory cues in
order to reach a robust method to detect violence.

Index Terms— computer vision, violence classification, deep-
learning, multimodal classification, forensic computing

1. INTRODUCTION

Violence detection is an essential application for the issue of video
analysis in filtering sensitive media contents. It can provide a useful
tool to protect users from being exposed to undesired media from
various sources and, in conjunction with video surveillance systems,
to detect inappropriate behavior and aid law-enforcement in forensic
examination cases. Moreover, it can prevent content from being up-
loaded to social media, forums or educational platforms. In the same
way, it can be used to avoid violent material being shown in specific
places such as workplaces and schools. Indeed, early exposure to
violent media contents might not be suited for children.

Currently, hundreds of hours of video are uploaded every minute
through the Internet and different social media platforms. To handle
and analyze them is heavily time consuming. Moreover, the concept
of violence is considered very subjective to define and, as such, leads
to different interpretations. This makes the development of violent
detection methods even harder.

“Automatic” solutions in prior art have been developed to deter-
mine violence in videos (if any), and this task has definitely attracted
much attention. Proof of interest is also clear from the competi-
tion “MediaEval Affect Task”, which aims to identify violence in
movies [1]. In this paper, we aim at addressing the violence de-
tection task by breaking down the subjective concept of violence
into more objective concepts: Blood, Cold Arms, Explosions, Fights,

This work was funded by the São Paulo Research Foundation (FAPESP)
under grants #2017/12646-3 and #2018/05668-3 and the Brazilian Coordina-
tion for the Improvement of Higher Education Personnel (CAPES) under the
DeepEyes grant.

Fire, Firearms, Gunshots. Breaking down violence into different
subjects is a proxy to achieving more accurate and robust perfor-
mance [2]. This allows us to perform a better investigation on the
behavior of different subjects, as each subject of violence has differ-
ent characteristics over all others. We take into account the concept
of violence as a single high-level concept to analyze the behavior of
different integrating concepts, individually. We then perform a com-
bination of the concepts of violence to identify general violence, and
compare the performance on different setups.

The issue of violence detection in video scenes was firstly
addressed for the task of action recognition. In this vein, before
deep learning based methods, the Bag-of-Visual-Words (BoVW)
approaches [3, 4] were a cornerstone in the area. In [3], low-level
features obtained by an image descriptor such as Space-Time In-
terest Points (STIP) [5], were used to predict violence via Support
Vector Machines (SVM). In [4], local spatial-temporal features for
violence classification were investigated. Clarin et al. [6] addressed
the local interest-point approach to detect fights as subjective vio-
lence. A novel descriptor was proposed in [7] for real-time crowd
violence detection. After the first wave of methods exploiting
spatial-temporal interest points methods, deep learning techniques
paved the way for more complex solutions (and consequently also
better results) for violence detection [8, 9, 10, 11, 12, 13]. In [14],
a three-stream deep convolutional neural network (dCNN) approach
was proposed for detecting violence for the specific case of person-
to-person violence setup. To the best of our knowledge, most of the
above mentioned works rely on a specific concept of violence (i.e.,
fights) without considering the myriad of possible different concepts
for violence.

Following a different strategy from previous work in prior art,
this work extends upon our former works [15, 16] in terms of the
methodology on subjective violence detection. We aim at develop-
ing a fusion model over visual and audio feature representations.
In a typical detection setup, some concepts might convey the idea
of movement, while some have characteristic sounds associated to
them. Therefore, we analyze ways of combining various concepts
with different characteristics in order to detect the more complex
(and subjective) concept of violence.

The most related work to our method proposed herein was pro-
posed in [17], in which an approach based on visual and audio clues
addresses the issue of cross-modality to tackle the violence scene de-
tection in videos. The method consists on extracting audio features
by collecting bag-of-audio-words, and utilizing a dCNN technique
to obtain visual features. Both features are further concatenated in a
late-fusion stage. Finally, a standard classifier is also applied to de-
termine an occurred violence scene in video. Differently, our work
presents a distinct methodology on the fusion step in the late stage
to achieve more correlations between visual and auditory features on
violence concepts and also exploits tailored deep description meth-
ods for each sub-concept of interest.



This paper is organized as follows. In Sec. 2, we discuss our ap-
proach based on visual-auditory features for violence detection; we
also explain our methodology of fusing two independent feature sets
by utilizing different kinds of neural network techniques. In Sec. 3,
we evaluate the effectiveness of our method on MediaEval-2013-
VSD data set. Finally, we conclude the paper and discuss directions
for future work in Sec. 4.

2. PROPOSED METHODOLOGY

The solution we propose decomposes violence detection in first de-
tecting k more objective sub-concepts that convey the idea o vio-
lence. In our study, we use k = 7, more specifically, the concepts
of Blood, Cold Arms, Explosions, Fights, Fire, Firearms, and Gun-
shots. For each sub-concept, we train specific neural networks: first
to analyze its visual characteristics, then to analyze its auditory fea-
tures. Then, we combine both features to obtain a better understand-
ing of the sub-concept. We repeat this step for all k concepts. As
a final step, we use a fusion network to combine all concepts (de-
scribed through auditory and visual features) to detect the more gen-
eral concept of violence. Fig 1 illustrates this methodology pipeline.

2.1. Visual-based violence detection

We sought to capture specific features for each sub-concept integrat-
ing the broader concept of violence. Some concepts related to vio-
lence convey the idea of movement, such as fights and explosions.
In [15], we studied the difference between two convolutional net-
works that incorporate the concept of time in their formulation: C3D
and LSTMs, and used them to analyze the best way to detect each
sub-concept. In this work, we extend upon those early investiga-
tions and also consider using 2D networks with inputs that represent
movement, such as optical flow and optical acceleration.

Pre-processing. For each video, we extract all frames individ-
ually. To represent the movement, we calculate the optical flow be-
tween frames, as well as the Farneback optical acceleration, defined
in [18] as the difference between two consecutive optical flows be-
tween three adjacent frames. In this way we have three types of
visual inputs: raw frames, optical flow, and optical acceleration.

Convolutional Neural Networks. We extend upon the work
in [15] and used the architectures defined therein for the C3D and
the LSTM combined with a CNN approach to receive the types of
inputs discussed above. We also use Inception v4 [19] pre-trained
with Imagenet [20] and finetune it for the target dataset with all types
of inputs.

2.2. Audio-based violence detection

As the concept of violence is too subjective, some sub-concepts (e.g.,
fights) might benefit from an audio characterization other than just
visual. Typically, audio clips contain noise, i.e., background sound
and people talking. Therefore, we decided to extract features that
are robust to noise and background clutter, rather than processing
the raw audio waveform. In the following subsections, we describe
the adopted audio feature representation and prediction model for
the violence detection problem.

Feature extraction. For this task, we adopt a two-step ap-
proach. First, we generate feature vectors by leveraging four stan-
dard audio feature extractor methods. We then apply statistical meth-
ods on the features generated from the first step. This approach
showed to be more robust than directly using the raw input wave-

form in a neural network because of the clutter and noise mentioned
above.

Fig. 1. Pipeline of the proposed visual-auditory feature fusion net-
work. Videos are described using a dCNN, whereas audio features
are processed with a shallow one in early-stage. In this pipeline,
different sub-concepts (C1, . . . , Ck) are treated in parallel. Finally,
visual and audio features are combined into a feature vector and used
to train a fusion network responsible for the final answer.

Formally, given an audio clip x(t), we split it into a series of
I temporal windows from which we extract a set of feature vectors
by computing Mel-Frequency Cepstral Coefficients (MFCCs) [21],
Chroma Short-Time Fourier Transform (C-STFT) [22], Mel- Spec-
trogram (MS) [21], and Spectral Contrast (SC) [23] features as de-
fined in [24]. The feature set associated to the i-th time window is
defined as

fi = [fmfcc
i , f cstft

i , fms
i , f sc

i ], (1)

which is the concatenation of feature vectors obtained from different
extractors.

According to [25], to extract a more discriminant feature vector
that represents the overall audio excerpt x(t), we apply four tem-
poral statistics to the I extracted feature vectors fi. This provides
an additional set of information for the subsequent learning stage.
Given a set of I feature vectors fi, we compute the per-feature aver-
age, standard deviation, maximum, and minimum value as
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1

I
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fi, (2)
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where all operations are applied element-wise. The final feature
vector is presented by concatenating all the statistical features as

f tot = [fµi , f
σ
i , f

M
i , f

m
i ], (6)

where f tot represents a feature vector of 4 × 4 = 16 elements,
and is used as a compact feature representation over the four sets of
audio features adopted. The obtained feature vector can be used to
reduce both computational time and memory footprint.

Learning step. In order to learn violence concepts characteris-
tics, we train a supervised classifier based on a shallow neural net-
work fed with the extracted audio features.



Even though we experimented with different network designs
(including deep ones), we decided to adopt a shallow neural network
(NN) model to reduce complexity. Indeed, the designed NN has a
single hidden layer, in which the number of neurons is equivalent to
the length of the feature vector f tot. As a matter of fact, with such
a small feature vector (i.e., 16 elements), deeper networks did not
provide much better results.

The network is trained to detect a specific kind of violence (i.e.,
Blood, Cold Arms, Explosions, Fights, Fire, Firearms, Gunshots),
rather than general violence. In other words, we treat the audio vio-
lent detection problem as a 2-class classification problem by training
a different binary classifier for each violence concept. A Softmax
layer is deployed at the end of the network to determine whether
violence occurred within the audio clip or not.

2.3. Visual-Auditory fusion network

In [15], we designed a solution to learn spatial-temporal information
only on the subject of violence over different violence-related con-
cepts. We showed that the method can independently learn the final
decision from the output weights obtained from the binary classifi-
cation networks. Basically, the networks are used in a late stage, and
each network is trained independently on the presented feature vec-
tors. This solution allowed us to achieve a better trade-off between
efficiency and performance.

We use the same fusion network idea to leverage sub-concepts
related to violence but now including raw-based motion explorations
such as optical acceleration and optical flow as well as auditory fea-
tures not explored before. The network takes a feature vector as
input and outputs the probability for presence of violence within the
audio clip. The final feature representation is obtained by concate-
nation of the different visual and audio features. In other words, we
merge feature vectors obtained with audio-visual detectors trained
on specific kind of violence, in order to detect a general presence of
violence. We then pass the feature vector through a standard Min-
Max normalization step.

3. EXPERIMENTS

For the experiments, we selected the MediaEval-2013-VSD data-
set [26], a staple in the literature for this problem. This dataset con-
sists of 25 Hollywood movies and provides shot segmentation from
the movies, manually annotated on whether or not physical violence
occurred within scenes. The definition of violence used by the com-
petition is that a scene is violent if “one would not let an eight-year
old child see”. The training set includes 18 movies while the test
set comprises 7 movies. Among all scenes, 20% of them have been
annotated as violent. The data-set also provides annotations for sub-
concepts related to violence (e.g., blood, fights, etc.), though these
are only available for the training set.

For each concept, our experiments sought to find the best com-
bination of input and architecture to classify scenes as containing or
not the analyzed concept. For the visual aspect, we tested three neu-
ral network architectures: Inception v4, C3D, and a CNN-LSTM;
as well as three different types of inputs: raw frames, optical flow,
and optical acceleration. While the latter two architectures and in-
puts were chosen aiming at capturing movement through time for the
concepts that convey this type of information, Inception v4 and the
raw frames were chosen to both serve as a base-case and to classify
scenes where movement is not intrinsically involved, such as blood
and cold arms.

Implementation details. All networks were implemented using
Keras DL library in Python and Tensorflow and ran on an NVIDIA
GeForce GTX 1080 Ti GPU. Each network was trained for a binary
classification of each individual concept, for both visual and audio
concepts. The C3D and CNN-LSTM models details were kept the
same as in [15]. For the Inception architecture, we used Root Mean
Square Propagation (RMSProp) algorithm to train, with batches of
64 images of size 299 × 299. Due to the large number of nega-
tive samples on the training dataset, we randomly selected a fraction
to match the number of positive samples for all our networks. The
optical flow experiments were done analyzing consecutive frames,
frames that are 5 frames apart, and 10 frames apart. The optical
acceleration experiments were done using consecutive optical flows
from consecutive frames and from frames that are 5 frames apart.
The audio for each video clip was extracted separately and we fol-
lowed the frame annotation to construct their respective labels for
time intervals. For classification, we used two different approaches:
a random forest classifier set up with 10 trees; and a shallow neural
network described in [15] with a softmax layer deployed at the end of
the network. For the loss function, we choose Binary Cross-entropy
while for optimizer, we adopted Adadelta [27].

Visual features results. We found out that each violence-
related sub-concept was better classified with varying types of
inputs, whereas Inception v4 performed better than C3D and CNN-
LSTM in all cases. In general, our results with optical flow were
better when calculated between one frame and the fifth next frame,
while the optical acceleration provided better results when com-
paring differences between two optical flows of three consecutive
frames. Table 1 shows results for these inputs with all network
architectures for comparison.

Optical acceleration was able to capture the concepts of firearms
better than the raw images, even if it is essentially a static object.
This concept close relation to gunshots can lead the network to better
classify firearms when analyzing its optical acceleration.

Another interesting result is the better classification accuracy for
explosions with raw frames rather than a motion-based input. Explo-
sion patterns can vary widely in a Hollywood movie setting. They
can be related not only to fire, but with dirt explosions, big and small
ones. The significant difference in expansion and impact, and the
visual cues for explosions can be better distinguished by the raw
frames approach rather than its optical flow or acceleration.

The optical flow still was the better descriptor for fights. As opti-
cal acceleration describes sudden changes in pixels between frames,
the relatively slower speed of fights could be better captured by the
optical flow alone.

The general concept of violence, though, had a better classifica-
tion accuracy when described by the optical acceleration. The better
performance of this descriptor on the firearms and gunshots concepts
may indicate that these concepts have a higher correlation with the
general concept of violence considered in this dataset.

We combined the best results for each concept through the de-
scribed fusion network to ultimately classify violence. As the best
results were all from the same network architecture (Inception), we
extracted the features from its last fully-connected layer, and used
them as inputs for the fusion network. In Figure 2, we have the best
results represented. The first bars indicate the best results with the
visual experiments for each concept and for the fusion. With the
proposed fusion method, we obtained a 6% increase in classification
accuracy compared to classifying the general concept of violence
(from 72.8% accuracy using only audio to 78.5%) when combining
visual and audio features, the best result for the adopted dataset to
date. The fusion of only visual concepts leads to 74.4%.



Raw Frames Optical Flow Optical Acceleration
Inception v4 C3D CNN-LSTM Inception v4 C3D CNN-LSTM Inception v4 C3D CNN-LSTM

Blood 74.2 58.0 57.2 68.3 59.2 60.2 58.2 60.2 58.2
Cold Arms 81.6 58.3 54.2 61.9 66.5 66.2 76.5 75.3 69.0
Explosions 79.4 77.1 61.4 77.8 66.4 64.8 70.6 73.0 68.1
Fights 73.1 70.5 53.7 77.2 68.0 66.9 74.3 65.4 61.7
Fire 70.1 60.2 55.6 68.1 60.3 61.3 71.2 64.9 61.9
Firearms 60.8 61.0 60.3 62.3 63.2 65.0 66.8 66.5 62.3
Gunshots 69.3 65.3 56.8 63.6 62.6 64.1 73.1 68.6 66.8
Violence 66.7 62.3 55.9 65.0 58.1 58.6 58.7 68.3 63.6
Fusion 74.4 67.3 63.3 68.2 67.2 64.8 72.8 69.2 64.2

Table 1. Classification accuracy for visual features. All values are indicated in accuracy percent. All seven concepts were trained and tested
with the same subsets of movies. The ‘violence’ concept refers to the MediaEval VSD definition of violent scene. ‘Fusion’ does not include
the ‘violence’ concept.

Fig. 2. Normalized accuracy for each of the best results in each
concept considered. The first column of each concept is the result
for the visual features, the second for the audio features, and the
third for the fusion of both feature sets.

Audio features results. Table 2 shows results for audio. Our
network achieved better results for all concepts, ranging from a 7.2%
increase in classification accuracy for firearms to 12.8% in explo-
sions. The baseline here is a random forest classifier (RF) receiving
the audio features directly with a setup of 10 trees. Audio features
by themselves are slightly inferior to visual features.

Computing statistics from each feature vector, to complement
their information, yields a significant increase in accuracy, reaching
a 5% increase with the concept of blood. This shows the importance
of aggregating more audio information in the feature vector along
with their extracted features.

We expected concepts related to loud and distinctive sounds to
perform better than their visual counterparts. Though with gun-
shots we had close results, up to 2% lower accuracy, every concept
performed worse on the audio alone, including explosions, which
is almost 11% lower in classification accuracy. Classifying vio-
lent scenes in general, on the other hand, had 3.4% better accuracy
with audio compared to the classifier for visual information, and
9.8% better accuracy than our concepts fusion. As we are working
with Hollywood movies, the sound cues for more violent and action
scenes are very characteristic and could explain why classifying the
general concept via audio is a better approach for this scenario.

Even so, in a video, the visual part also plays an important role in
determining a violent scene, so in order to explore how they comple-
ment each other, we used our same fusion network for the concepts
to classify violence combining visual and audio features.

We used our best results for each concept, both in visual and au-
dio. Best results for the visual part were obtained with the Inception
v4 architecture, and the best results for the audio part were obtained

Random Forest NN Statistics + NN
Blood 52.3 61.8 66.9
Cold Arms 51.7 59.2 61.9
Explosions 51.0 63.8 67.8
Fights 57.3 65.0 65.3
Fire 50.5 59.3 61.0
Firearms 53.3 60.5 62.4
Gunshots 58.0 70.0 70.7
Violence 57.4 71.6 72.8
Fusion 51.1 62.3 63.0

Table 2. Classification accuracy for audio. All values are indicated
in accuracy percent. All seven concepts were trained and tested with
the same subsets of movies. The ‘violence’ concept refers to the Me-
diaEval VSD definition of violent scene. ‘Fusion’ does not include
the ‘violence’ concept.

with the proposed shallow network classifier. We then extracted fea-
tures for each concept in the visual part and concatenated with its
respective feature in the audio part to feed as input for our fusion
network. A standard MinMax normalization step was performed to
keep both audio and visual features in the same range. With each
concept containing information from both the visual and audio part
of the video, we reached an accuracy of 78.46% with the fusion for
violence, compared to our best result of 72.08% accuracy for the
general concept – also achieved by joining visual and audio features.
This result is better than those obtained by using only visual or only
audio information, further suggesting that these are complementary
to each other.

4. CONCLUSIONS AND FUTURE WORK

Classifying violence in videos is a challenging problem. Not only
due to its own subjective nature, but also to the wide range of features
to analyze and how visual and audio interact to convey the concept
of violence. In some scenarios, audio may not be relevant (e.g., in
closed-circuit security cameras where no sound is captured). There
are some setups where not all kinds of concepts analyzed in this work
are relevant. However our method is robust and modular enough to
adapt to each case and try to better define what is a violent scene not
by defining violence itself, but capturing more objective concepts
related to violence and fusing them to better classify a scene.

In this vein, one important future work would be collecting spe-
cific datasets to train each individual concept. For example, if we
can train a solution to classify fights or any other violent concept
with a specialized dataset, we can plug the feature vectors from each
of these specific networks into the fusion network and have a more
general method to detect violence, that is even more robust and in-
dependent of datasets. Another important way forward is to explore
additional concepts related to violence.
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