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MATERIALS T OR ENERGY AND ENVIRONMENT

INTRODUCTION AND AIM OF THE WORK

A fuel cell membrane serves as electrolyte between "*%g% As shown in previous works, graphene oxide (GO)
anode and cathode. Therefore, it has to exhibit a @ : :LEMEH appears to be an excellent candidate for making both
rigorous set of properties, referring to proton exchange Uttic Teasianding [3] and hybrid membranes (4], thanks to

membrane fuel cells [1]: high protonic conductivity;
low permeability to H, and O, gases: chemical,
mechanical and thermal stability; electrical insulation.

Even though Nafion® is currently the most widely used
electrolyte in PEMFC systems, some drawbacks induce

its good mechanical properties and to the presence of
oxygen-bearing functionalities that are likely to
improve water retention. Its properties may also be
enhanced by functionalization with some acid groups
more tightly bound to its skeleton, e.g. sulfonic acid

the need of finding feasible replacements [2]: severe
conductivity drop upon dehydration, limiting the
possibility of fuel cell operation in conditions of high
temperature and low relative humidity; swelling and
shrinkage, leading fo membrane deterioration at high
water content.

groups (-SO3H) analogous fo those of Nafion®.

Hence, this work presents an effective method for the
preparation of sulfenafed grephene oxide (SGO)
membranes, which have been evaluated as a viable
alternative to Nafion® for operation at low humidity
and high temperature.
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MEMBRANES PREPARATION
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The original recipe [5] has been adapted by testing o o :i“::;ﬁfj THICKNESS [um]
different sulfonation ratios (sulfuric acid-to-GO = 1; 20; iy &

200), identified by considering an empirical formula STIRRING w‘:c[m FILTRATION EIRTE DRYING $GO-1

that has been derived from the elemental analysis of ikl SGO-20 76
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MEMBRANES CHARACTERIZATION
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A preliminary test, carried out in a hydrogen-fed
fuel cell on a sample of SGO-1, revedled a
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F I - amas ] | | 2 promising mechanical resistance, even though
= ‘—5 a low open circuit voltage has been measured
= o3> >3] 3o (0.63 V) at 40 °C, due to possible hydrogen

crossover issues. A subsequent OM examination
of the active area showed the sporadic
presence of carbon residues left by the gas
diffusion electrode (typical problem for Nafion®),
confirming a better resistance of SGO-1 to this
kind of contamination. However, the results of
FTIR-ATR and SEM-EDX analyses suggest that
both anodic and cathodic surfaces of the
membrane suffered severe changes, ascribed

P f;g ‘C : 7 to the action of the fluxing gases.
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e Functionalization stability after water uptake tests

i Improved ion exchange capacity and water uptake
(at low T and RH) with respect to both GO and Nafion

i Promising mechanical resistance in the fuel cell

'# Reduction and amorphization of SGO structure
caused by functionalization process and fuel cell test
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