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Abstract: The forecasting of solar irradiance in photovoltaic power generation is an important tool for
the integration of intermittent renewable energy sources (RES) in electrical utility grids. This study
evaluates two machine learning (ML) algorithms for intraday solar irradiance forecasting: multigene
genetic programming (MGGP) and the multilayer perceptron (MLP) artificial neural network (ANN).
MGGP is an evolutionary algorithm white-box method and is a novel approach in the field. Persistence,
MGGP and MLP were compared to forecast irradiance at six locations, within horizons from 15 to
120 min, in order to compare these methods based on a wide range of reliable results. The assessment of
exogenous inputs indicates that the use of additional weather variables improves irradiance forecastability,
resulting in improvements of 5.68% for mean absolute error (MAE) and 3.41% for root mean square
error (RMSE). It was also verified that iterative predictions improve MGGP accuracy. The obtained
results show that location, forecast horizon and error metric definition affect model accuracy dominance.
Both Haurwitz and Ineichen clear sky models have been implemented, and the results denoted a low
influence of these models in the prediction accuracy of multivariate ML forecasting. In a broad perspective,
MGGP presented more accurate and robust results in single prediction cases, providing faster solutions,
while ANN presented more accurate results for ensemble forecasting, although it presented higher
complexity and requires additional computational effort.

Keywords: solar irradiance forecasting; multigene genetic programming; multilayer perceptron; artificial
neural networks; short-term forecasting; intraday forecasting

1. Introduction

The increased penetration of renewable energy sources (RES) in power systems has created a complex
challenge from the point of view of electric grid management [1–3], mainly due to high intermittence energy
sources such as sun irradiation and wind [4,5]. Climatic variations instantly influence the electric power
generation of wind farms and photovoltaic (PV) systems and may put the balance between load demand
and power supply in the electrical power grid at risk. In this context, weather forecasting stands out as
an important tool to guide the operation of electric power utility grids in the presence of intermittent RES [6,7].

Solar energy forecasting is normally classified in terms of two different forecasting horizons, namely
intraday forecasting, from a few minutes to 6 h ahead, and day-ahead forecasting, where predictions are
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performed for the next day, as defined by the International Energy Agency (IEA) in their Solar Forecasting
State of the Art Report [8]. The IEA report also states that statistical techniques such as time-series machine
learning provide good results in the intraday context, while physical models based on numerical weather
prediction (NWP) provide good results in the day-ahead context.

Numerous contributions by different authors have reviewed the field of solar forecasting
research [9,10]. Recurrently, the performance of a given method varies depending on different
circumstances; a variety of machine learning (ML) and statistical methods have been studied for intraday
solar predictions. Currently, ML is probably the most employed approach [9]. Research specifically
done with ML techniques was reviewed by Voyant et al. [11] and has pointed out that the accuracy and
robustness of ML forecasts depend on the training method and the metric used to evaluate predictions [9].
Ranking these methods in the literature is a complex mission due to the influence of the distinct data sets
studied, time steps, forecasting horizons and performance indicators [11]. As a result, also considering
significant errors noticed in solar forecast results, this work addresses the investigation of additional ML
forecast methods at multiple locations in order to achieve further results to support the solar forecasting
research field [12].

Concerning ML methods applied to solar forecasting, artificial neural networks (ANN), support
vector machines (SVM), k-nearest neighbors (kNN), random forest (RF) and gradient boosted regression
(GBR) are the most employed techniques [13–19]. In particular, in short-term intraday solar forecasting
applications, autoregressive methods of the autoregressive integrated moving average (ARIMA) class
are also frequently used as statistical method to forecast normalized indexes of irradiance [20]; moreover,
frequency domain models are commonly used in solar irradiance forecasting [21].

Studies on intraday solar forecasting also differ from each other in terms of the category of data input.
The most frequent approaches are time-series point forecasts, where meteorological measurements are
used as input [13–15,17,21], sky imagers from satellite or from ground [22–24], experiments combining
multiple time-series based on spatio-temporal forecasts [25,26] and hybrid approaches combining different
statistical methods or multiple data acquisition systems [27].

This study proposes multigene genetic programming (MGGP) as a novel state-of-the-art ML method
applied to solar irradiance forecasting. A comparison between MGGP and the multilayer perceptron (MLP)
artificial neural network (ANN) is carried out on the same basis for intraday irradiance forecasting at
multiple locations. Forecasts are based on meteorological historical data to execute predictions in horizons
from 15 to 120 min ahead. The accuracy, robustness, advantages and disadvantages of each ML method
are highlighted in order to support future research in the field. The results used in the comparative study
were achieved by the implementation of both ML methods in the Matlab R© programming platform.

2. Databases

Six locations were evaluated in this study, as shown in Figure 1 and reported in the following
paragraphs.

2.1. Goiania, Brazil

The database from Goiania was acquired using a meteorological station setup at the Federal University
of Goias (UFG) in Goiania—the capital city of the State of Goias, Midwest Brazil—whose coordinates are
latitude −16.67◦ (Southern Hemisphere), longitude −9.24◦ (west); the station is located 749 m above sea
level [28]. The three-year-long database sampled each 60 s from August 2015 to July 2018 is available at the
webpage https://sites.google.com/site/sfvemcufg/weather-station [28]. The database has a rigorous data
quality control with monthly inspection of equipment, and data are acquired and stored in a datalogger.
Table 1 presents the configuration of the weather station setup for solar applications and research.

https://sites.google.com/site/sfvemcufg/weather-station
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Measured global horizontal irradiation values were, respectively, 1929 kWh/m2, 1913 kWh/m2 and
1924 kWh/m2 for each sequence of 12 months from August 2015 to July 2018.

Figure 1. Locations of the weather stations under analysis presented on a world map, adapted from [29].

Table 1. Description of the equipment used at the Federal University of Goias (UFG) weather station,
the parameters they measure and their accuracy and range of operation.

Equipment Parameter Measured Information

Pyranometer Hukseflux LP02 Global horizontal irradiance Second class ISO 9060: in-field uncertainty
calibrated of ±5%, calibration uncertainty < 1.8%
R. M. Young Wind 03002 Wind speed Range 0 to 50 m/s and accuracy of ±0.5 m/s

Wind direction Accuracy of ±5%
Texas Electronics TB-2012M Atmospheric pressure Calibration range 878 to 1080 mBars

Uncertainty of ±1.3 mBar
Texas Electronics TTH-1315 Ambient temperature Operating ranges −40 ◦C–+60 ◦C and 0–100%

Relative humidity Accuracy of ±0.3 ◦C and ±1.5% RH
Texas Electronics TR-525I Rainfall Accuracy of ±1%
Datalogger Campbell Scientific Automatic data acquisition
CR800X
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2.2. Milan, Italy

The database from Milan was acquired using a meteorological station setup installed at
the SolarTech Lab at the Politecnico di Milano in Milan, Italy, whose coordinates are latitude +45.50◦

(Northern Hemisphere), longitude +49.24◦ (east); the station is located 120 m above sea level [30].
A database was sampled each 60 s for 26 months from September 2016 to October 2018 with the station at
the SolarTech Lab [30].

2.3. SURFRAD-US

The other four databases were obtained from sites based in the United States of America and
collected from the USA National Oceanic and Atmospheric Administration (NOAA) Surface Radiation
Network (SURFRAD). The coordinates of these sites are as follows: Desert Rock, latitude +36.62◦ (north),
longitude −116.02◦ (west), altitude of 1007 m; Pennsylvania State University (PSU), latitude +40.72◦

(north), longitude −77.93◦ (west), altitude of 376 m; Bondville, latitude +40.05◦ (north), longitude −88.37◦

(west), altitude of 213 m; and Sioux Falls, latitude +43.73◦ (north), longitude −96.62◦ (west), altitude of
473 m. These databases are public domain and have also been analyzed in a previous study of irradiance
forecasting [21]. This study used weather data sets from NOAA’s SURFRAD averaged per minute from
January 2013 to December 2015. The quality control of measurements from such databases was performed
by the identification and removal of inconsistent values. The yearly global horizontal irradiations from the
weather stations from January 2013 to December 2015 were, respectively, 2025, 2055 and 1916 kWh/m2 for
Desert Rock; 1317, 1350 and 1366 kWh/m2 for PSU; 1438, 1458 and 1438 kWh/m2 for Bondville; and 1410,
1384 and 1437 kWh/m2 for Sioux Falls.

3. Data Processing

3.1. Normalization

Independent of whether forecasts are performed with the use of artificial intelligence methods or
classical regressions, the data processing strategy and input–output scheme play a key role in developing
improved forecasts. The first data processing strategy considered global horizontal irradiance (G) as
a target value, combining past values of irradiance and weather variables in addition to deterministic
variables (in order to capture temporal trends in datasets) [31].

The proposed approach was refined by adopting a data processing strategy that forecasts normalized
indexes in order to remove seasonality in solar data, yielding prompter ML algorithm convergence for
irradiance forecasting. Values measured at night and during solar elevations (h) less than 5◦ were neglected.
Normalization of solar data can be performed by the application of Equation (1), where k∗t is the so-called
clear sky index, G is the observed global horizontal plane irradiance (GHI) and Gclr is the theoretical clear
sky irradiance.

k∗t =
G

Gclr
(1)

Clear sky irradiance models used in the literature range from simple functions of extraterrestrial
irradiance models to complex approaches that take numerous measured atmospheric parameters into
account. It was found that Haurwitz clear sky irradiance and Ineichen–Perez models are simple and
sufficiently accurate models that were systematically employed to evaluate meteorological data from
a wide number of sites in the USA [32].

The Haurwitz clear sky irradiance model was developed in 1945 and is given by Equation (2), where θz

is the solar zenith angle (complementary to the solar elevation angle h). The constants 1098 and −0.057
were obtained by the least-squares method in order to fit measured cloudless sky irradiance data from
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a site in the USA to a theoretical curve based on a zenith angle exponential function. The exponential
function is decreased by a factor proportional to cos θz from sunrise to sunset.

Gclr = 1098 cos θz exp
−0.057
cos θz

(2)

The solar zenith angle is defined as the angle between the zenithal axis and the line to the sun. Thus,
this angle varies instantly, according to the rotation movement of the Earth. The cosine of the solar zenith
angle is obtained from Equation (3), where δ is the declination angle, φ is the latitude of the weather station
location, and ω is the sun hour angle. A detailed definition and calculation of solar geometry variables is
provided in [33].

cos θz = cos φ cos δ cos ω + sin φ sin δ (3)

Ineichen–Perez clear sky irradiance uses optical air mass ratio (AM), atmospheric turbidity and
altitude of location in clear sky irradiance modeling [34]. Ineichen–Perez Gclr is calculated by Equation (4),
where Go is the extraterrestrial irradiance, h is the solar elevation angle, a1, a2, fh1 and fh2 are constant
functions of local altitude, TL is the Linke turbidity factor and AM is the optical air mass ratio. The constants
in Equations (5) and 6 were added empirically by Ineichen and Perez to improve previous clear sky models
which were logarithmically dependent on the Linke turbidity factor and limited to specific location and
zenith angles. TL was obtained in this study from a map of monthly averaged values for each site [29].
In order to avoid discontinuities in TL and Gclr calculations, a daily fitness procedure was used as presented
in [35,36]. Figure 2 presents an example of daily TL fitness for Desert Rock.

Gclr = a1 · Go · sin h · exp[−a2 · AM · ( fh1 + fh2 − (TL − 1))] (4)

a1 = 5.09 · 10−5 · altitude + 0.868 (5)

a2 = 3.92 · 10−5 · altitude + 0.0387 (6)

Days
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Figure 2. Linke turbidity daily fitness (blue line) of monthly averaged values (red dots) for Desert Rock.

Figure 3 presents an example of the data normalization. It is possible to observe how the normalized
index removes daily and yearly seasonality and emphasizes the influence of both clouds and solar potential
instantaneous variabilities.
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Figure 3. Data normalization from yearly (left) and daily (right) perspectives for Goiania.

3.2. Data Statistics

A general overview of the solar variability and statistics of each site is presented in Table 2, achieved
by applying the Ineichen clear sky model for 15 min averaged point databases. Results in Table 2 show
that training, validation and testing datasets present similar mean and standard deviations for k∗t —an
important requirement to implement ML forecasting models. Results from Desert Rock present a behavior
with more clear sky conditions as opposed to other locations, thus presenting the highest mean k∗t with
lowest standard deviations, while results from Milan present the highest variabilities (σ).

Table 2. Data statistics of training, validation and test datasets for each location: Nsamp is the number of
samples of each dataset, µ is the average Ineichen k∗t and σ is the standard deviation of k∗t .

Training Validation Testing
Nsamp µ σ Nsamp µ σ Nsamp µ σ

Goiania 25,813 0.7379 0.3042 11367 0.7458 0.2983 11,163 0.7423 0.3022
Milan 17,828 0.8544 0.3843 7969 0.8069 0.3897 7944 0.7999 0.4194
Desert Rock 25,959 0.9139 0.2380 10,929 0.9133 0.2451 10,865 0.9025 0.2458
Pennsylvania 25,706 0.6741 0.3534 10,998 0.6260 0.3492 11,177 0.6604 0.3572
Bondville 25,935 0.7246 0.3593 10,818 0.6974 0.3660 11,005 0.7197 0.3478
Sioux Falls 25,839 0.7579 0.3455 10,898 0.7476 0.3594 10,708 0.7638 0.3353

3.3. Data Relations

The ML methods consists of a “multivariate” data structure of inputs, as defined in [17], to forecast k∗t
(single output), using relations among data based on output past values, past values of weather variables
and deterministic solar variables. Irradiances are then obtained by multiplying back the normalized index
outputs by respective clear sky irradiances.

The inputs are as follows:

- k∗t (-5). . . (-60): the 12 past values of k∗t in time windows of 5 min averages.
- Ta(-5). . . (-60): the 12 past values of ambient temperature in ◦C.
- Ws(-5). . . (-60): the 12 past values of wind speed in m/s.
- Hr(-5). . . (-60): the 12 past values of relative humidity in %.
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- pa(-5). . . (-60): the 12 past values of atmospheric pressure in mBar.
- h is the elevation angle of the forecast time window in radians, varying from around 0.0873 (5◦) to

1.5708 (90◦).
- ts is the time difference in respect to sunrise in minutes.
- ωs is the solar time angle in radians.
- “Day” is the day of forecast interval. The days of the year are counted starting one day after the

winter solstice and ending on the winter solstice of the next year. We decided to adopt this definition
to follow the solar cycle starting from the day of lowest irradiance levels, since the traditional day
counting does not have a direct mathematical relation to the evolution of solar variables throughout
the year.

- “Month” is the month of the forecast interval, varying from 1 to 12.

Solar deterministic variables are calculated by deterministic mathematical models that represent the
solar time-based behavior of solar quantities. These variables are computed in solar time instead of legal
time and are directly proportional to the irradiance and its indexes. The data processing methods presented
in this section yielded the most accurate results when used by the authors for the analyzed databases.

4. Forecast Methods

4.1. Genetic Programming

Genetic programming (GP) is an artificial intelligence technique which was originally proposed by
Koza [37] in the evolutionary computation field; it is considered as an extension of genetic algorithms.
GP is inspired by population genetics and biological evolution at the population level [38] (Algorithm 1).
GP has proved to be competitive in time series forecasting in relation to other statistical techniques based
on artificial intelligence, such as ANN and the support vector machine (SVM) [39–41]. It has been applied
in numerous studies of predictions of natural resources—e.g., hydrology [42,43]—and has also been
applied to daily or monthly solar irradiance forecasting in PV power systems [44–46].

MGGP and MLP neural networks were analyzed in comparison to other different methods of
forecasting, considering that ANN comprises adjustable parameters that can be trained using optimization
techniques to solve classification and regression problems and GP is a stochastic optimization method.
When GP is used to build a mathematical model based on sampled data with the aim of predicting future
values, it is named symbolic regression (SR). GP models are typically described as in Equation (7), where y
is the observed output variable, ŷ is the predicted output, and x1. . . xn are the observed input variables.
In contrast to other soft computing methodologies, such as feed-forward ANNs and SVMs, trained GP
models are basic constitutive equations that can be implemented without a specific software environment
in any modern programming language.

ŷ = f (x1, ..., xn) (7)

GP models can be classified into three different categories according to their mathematical model
complexity: naive SR, when the model requires only one gene to relate input data with output data;
scaled SR, when the model employs one gene associated to a bias term to relate input and output data;
and multigene SR, when the GP uses multiple genes and a bias term to relate input and output data
(Figure 4).
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Figure 4. Example of a multigene symbolic regression (SR) model presented in a tree structure.

Algorithm 1: Genetic programming pseudocode

1 Input: Populationsize, Node f unctions, Maxgenerations, Maxgenes, Maxdepth, κ, pc, pm, pr, elitrate;
2 Output: Sbest
3 Population← InitializePopulation(Populationsize, Node f unctions, Maxgenerations, Maxgenes,
4 Maxdepth);
5 EvaluatePopulation(Population);
6 Sbest ← GetBestSolution(Population);
7 while StopCondition() do
8 Children← ∅;
9 while Size(Children) < Populationsize do

10 Operator← SelectGeneticOperator(pc, pm, pr)
11 if Operator = CrossoverOperator then
12 Parent1, Parent2 ← SelectParents(Population,Populationsize)
13 Child1, Child2 ← Crossover(Parent1, Parent2)
14 Children← Child1

15 Children← Child2

16 end
17 if Operator = MutationOperator then
18 Parent1 ← SelectParents(Population,Populationsize)
19 Child1 ←Mutate(Parent1)
20 Children← Child1

21 end
22 if Operator = ReproductionOperator then
23 Parent1 ← SelectParents(Population,Populationsize)
24 Child1 ← Reproduce(Parent1)
25 Children← Child1

26 end
27 end
28 EvaluatePopulation(Children);
29 Sbest ← GetBestSolution(Children,Sbest);
30 Population← Children;
31 end
32 return Sbest

Figure 4 illustrates a population individual and a multigene GP model, usning Equation (8), where a bias
term d0 is added to two genes with weights d1 and d2 in a tree structure. The terms “plus”, “times”, “square
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root” and “tanh” are known as node functions. Both weights and nodes are obtained in a GP training
procedure.

ŷ = d0 + d1(0.41x1 + tanh(x2x3)) + d2(0.45x3 +
√

x2) (8)

GP evolves a population of candidate solutions (population size) in multiple generations by the
application of genetic operators with a tournament selection of best individuals. A crossover operation
exchanges genes between individuals to assess possible structural improvements of individuals. Mutation
is a fine adjustment operation that changes pieces or entire genes into new, random ones to evaluate
a possible structural improvement in terms of fitness. Bias and gene weights of individuals are then
optimized in terms of least root mean square errors applied to training data according to Equation (9).
Applying an elitism strategy with a given elitism rate, a percentage of best fitness solutions is stored
over generations. Based on these procedures, GP evaluates thousands of possible regression structures
with optimized weights to relate inputs and outputs. Table 3 summarizes the parameters adopted in GP,
which are considered again in Section 6.

s∗ = min

√√√√∑
Nsamp
i=1 (yi − ŷi)2

Nsamp
(9)

Table 3. Summary of genetic programming (GP) simulation parameters.

Parameter Adopted Setting

Node functions +, −, ·, /, x2, tanh, exp√
x, exp−x, sin, cos

Population size 300
Maximum generations 150
Maximum number of genes 5
Maximum tree depth 4
Tournament size (κ) 6
Lexicographic selection True
Elitism fraction 0.3
Fitness function Root mean squared error (RMSE)
Crossover probability (pc) 0.88
Mutation probability (pm) 0.12
High-level crossover probability 0.5
Ephemeral random constants range from −10 to +10
ERC probability at creating nodes 0.2

The dynamics of GP solutions are characterized by generalization ability, providing both accurate
and robust solutions in training and for other datasets. On the other hand, ANN is highly influenced by
overfitting, which is usually controlled by a validation step named early stopping, while GP does not
require a validation step during the SR model training stage. Figure 5 presents the performance of the
best individuals which evolved over generations for GP forecasts. It is possible to observe the robustness
of solutions repeating from training to validation datasets. MGGP models were implemented on GPtips
2—an open-source GP platform for Matlab R© [47].
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Figure 5. Fitness of best GP solution s∗ measured by k∗t RMSE for training and validation datasets.

4.2. Artificial Neural Networks

A feed-forward multilayer perceptron neural network (MLP) architecture was applied to this analysis,
containing one hidden layer of 10 neurons using the hyperbolic tangent sigmoid transfer function.
The neural networks were trained with the Levenberg–Marquadt algorithm including early stopping
implemented in Matlab R© using the neural networks toolbox. The employed ANN set of attributes was
previously validated for intraday solar forecasting [14].

4.3. Ensemble Forecasts

Ensemble forecast models are convenient to build with multiple ML simulations and tend to improve
forecast accuracy [48]. The ensemble forecast is given by Equation (10), where Ntrial is the number of trials
by the given ML method. In this analysis, the internal parameters of GP and ANN do not vary in each trial,
and 10 trials were performed to produce each ensemble according to the methodology described in [48].

Ĝens =
∑Ntrial

i=1 Ĝi

Ntrial
(10)

4.4. Iterative Forecasts

Rana et al. [17] evaluated a forecast method where predictions of instant t+1 are iteratively added as
inputs to predictions of instant t+2. As a conclusion, the iterative method did not improve forecasts in
their study on PV power forecasting using ANN ensemble and SVM; however, the iterative GP method
was tested in this work and yielded improvements on forecasting results. Results comparable to [17]
were obtained, and no significant improvement was achieved by using iteration for ANNs. Therefore,
the results reported here were obtained using iterative predictions for MGGP.

4.5. Persistence

Persistence forecasting is a common benchmark technique used to evaluate intraday solar forecasting.
Persistence forecasting can be computed by Equation (11), where Ĝ(t + ∆T) is the persistence forecast



Energies 2020, 13, 3005 11 of 28

and ∆T is the forecast horizon, which varies from 15 to 120 min; k∗t (t) is the present clear sky index;
and Gclr(t + ∆T) is the clear sky irradiance at the horizon of the forecast.

Ĝ(t + ∆T) = k∗t (t) · Gclr(t + ∆T) (11)

5. Error Metrics

Although there are many error metrics used in the field of solar forecasting, this study assumed the
most traditional metrics in the literature: the root mean squared error (RMSE) given by Equation (12),
the mean absolute error (MAE) computed by Equation (13) and the forecast skill given by Equation (14).

RMSE =

√√√√∑
Nsamp
i=1 (yi − ŷi)2

Nsamp
(12)

MAE =
∑

Nsamp
i=1 |(yi − ŷi)|

Nsamp
(13)

s = 1−
RMSE f orecast

RMSEpersistence
(14)

While MAE is a linear error metric, RMSE is a quadratic error metric that penalizes inaccurate forecast
values due to quadratic factors. RMSE is of particular interest when evaluating RES forecasting since ramp
behavior is a relevant issue in PV power system operation.

6. Results and Discussion

6.1. GP Tuning

Initial simulations were intended to analyze the influence of GP parameters in forecast accuracy
and robustness. The analysis of parametric influence is known as the parameter tuning of evolutionary
algorithms (EAs), as described in [49]. Parameter tuning is by nature an optimization task comprising
multiple variables (parameters). In current analyses of multiple horizon forecasts, each forecast horizon at
each location consists of a different problem to be tuned. In order to reduce the number of simulations to
assess GP parameters, this study considered prior knowledge from other studies to seek good parameter
choices to perform a lower number of simulations. Therefore, parameter assessment was carried out only
for one forecast horizon using the dataset from Goiania station. Thus, parameter settings from Goiania
were used in forecasting models for other sites.

Lima et al. [50] performed a systematic analysis of GP that indicated the population size, number
of generations and tree size as the main parameters which influence fitness, while genetic operators
have a lower influence. Increases in the size limit of regression functions tend to improve fitness;
however, when the size limit is excessively large, this leads to a bloat (function size growth without
fitness improvement) [51]. Bloat can be relieved by using realistic elitism rates [52]. In summary, lower
tournament sizes and lower elitism rates lead to a higher diversity of solutions.

According to the literature review and some former analyses of irradiance forecasting, the maximum
number of genes was set at 5, the tree depth at 4, the number of generations at 150 and population size at
300. These parameters presented a good trade-off between complexity and fitness improvement. Figure 6
presents the improvement of solution fitness in the validation dataset from Goiania station versus the
increase in complexity (increasing the maximum number of genes).
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Figure 6. Influence of maximum number of genes on the fitness of best solutions, evaluated for the Goiania
validation dataset.

Genetic operators were analyzed by multiple simulations for a forecast horizon of 90 min ahead,
as this is a demanding time window for prediction and consequently presents high variability in the
different algorithm simulations. The results for accuracy and robustness are given in Figure 7. The number
of generations was lowered to 50 during tests in order to obtain a higher variability of results. It is possible
to conclude that the best accuracy and robustness (standard deviation for multiple simulations) were those
accomplished using higher mutation rates, lower tournament sizes and lower elitism rates. Therefore,
we selected the setting with lowest RMSE: κ = 6, pm = 0.12 and elit = 0.30.

Figure 7. Influence of tournament size (κ), mutation rate (pm) and elitism rate (elit) on the accuracy and
robustness (RMSE standard deviation) of the validation dataset from the Goiania site.

6.2. Assessment of Exogenous Input

ANN and GP were executed for all formerly defined locations and forecast horizons both considering
and neglecting weather variables Hr, Ta, Ws and pa. The error improvement index, Improverror, was
defined in Equation (15) in order to assess the improvement yielded by the addition of weather variables
at a given error metric, where erroruniv is the forecast error obtained based on past values of k∗t with the
sole addition of deterministic variables, and errormultiv is the forecast error obtained by including weather
variables. It is worth highlighting that deterministic variables are able to improve forecasts based merely
on past values of k∗t .

Improverror =
(erroruniv − errormultiv)

erroruniv
· 100% (15)
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Improvements were calculated both in terms of MAE and RMSE, as described in Figure 8. The graphs
represent typical behaviors, where weather variables generally improve forecastability for all locations
by up to 5.68% in terms of MAE and 3.41% in terms of RMSE; in some locations, negative improvements
were obtained for shorter forecast horizons from 15 to 60 min. Mostly, the addition of weather variables
tends to improve forecastability for all locations; thus, the results obtained by the multivariate forecasts
are reported.
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Figure 8. Improvements (%) of multivariate forecasting using GP according to mean absolute error (MAE)
(dark red bars) and according to RMSE (dark blue bars), and improvements (%) of multivariate forecasting
using an artificial neural network (ANN) according to MAE (orange bars) and according to RMSE (light
blue bars).

6.3. Specific Results

Complete results for each forecast horizon and location are presented in Appendix A. The most accurate
results are in bold characters for both single and ensemble forecast comparisons. Model accuracy dominance
depends on the location, forecast horizon and error metric, as summarized in Figure 9. The accomplished
results point toward ANN as the most accurate for short horizons and GP as the most accurate for longer
horizons, which also predominantly improves robustness. Furthermore, location attributes have been proven
to affect model dominance. Figure 10 presents forecast accuracies for both methods applied to the Goiania
station, where the most accurate results were obtained by ANN, and Figure 11 displays the results for the
Desert Rock station, where the most accurate results were obtained by GP.

Both GP and ANN methods were consistently improved considering both error metrics by employing
an ensemble strategy for each forecast horizon and location. ANN presented more significant improvement
and superior accuracy using the ensemble strategy in most cases, as summarized for model accuracy
dominance in Figure 12 using ensemble forecasting. GPens led to the most accurate results in eight cases
out of 48, while ANNens yielded the most accurate results in 23 cases out of 48. GPens achieved the most
accurate results for the Milan station for horizons from 15 to 45 min and from 105 to 120 min using MAE
as a reference metric. At Desert Rock station, GPens attained the lowest RMSE for horizons from 30 to
120 min. At Bondville station, GPens accomplished the lowest RMSE for horizons from 90 to 120 min and
the lowest MAE for horizons from 75 to 120 min. At PSU station, GPens led to the lowest MAE and RMSE
for horizons from 105 to 120 min. At Sioux Falls station, GPens yielded the lowest RMSE for horizons from
105 to 120 min and the lowest MAE for horizons of 45 min and from 90 to 120 min.
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Figure 9. Model accuracy dominance by location and forecast horizon in single forecasts. GP/ANN
indicates cases in which accuracy dominance differs from the error metric evaluated.
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Figure 10. Accuracy of persistence, GP and ANN according to RMSE (left) and MAE (right) for Goiania,
showing the dominance of ANN.

ANNens has proved to be consistently effective in the forecasts carried out for Goiania weather station,
as expected, because the lower variations in sunshine duration along the year lead to a less biased dataset
in terms of overfitting, as night period points are excluded from the dataset during the processing stage.

From a comparison of the results obtained by Haurwitz and Ineichen for clear sky index forecasts,
it is possible to conclude that Ineichen k∗t persistence produces lower errors than results obtained by
Haurwitz for most of the locations and horizons of prediction. Nevertheless, as the AI methods used here
are improved by employing exogenous inputs, a trend of clear sky model dominance over results from GP
and ANN techniques was not achieved.
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Figure 11. Accuracy of persistence, GP and ANN according to RMSE (left) and MAE (right) for Desert
Rock, showing the dominance of GP.

Figure 12. Model accuracy dominance by location and forecast horizon in ensemble forecasts. GP/ANN
indicates cases in which accuracy dominance differs from the error metric evaluated.

6.4. Generic Results

The computation of averages based on multiple results is widely employed as a procedure to achieve
reliable generalized results according to Rana et al. [17], although the use of averages does not disregard
the importance of specific results. MAE and RMSE averages of all forecast horizons and locations were
calculated in order to carry out a generic evaluation of accuracy for GP and ANN, and the results are
presented in Figure 13. The average robustness of MAE and RMSE were similarly determined, and results
are presented in Figure 14. From the generalized results, it is possible to assume that GP presents
more accurate and robust forecast results in comparison to ANN for single forecasts; the ensemble
strategy improves ANN forecasts more significantly than GP; the ANN ensemble generally presents the
most accurate results; and both models produce similar forecastability, with little difference in terms
of accuracy, indicating that GP can provide faster, more reliable and accurate predictions with lower
computing complexity, while ANN can provide more accurate predictions using higher complexity and
a time-demanding strategy.
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Figure 13. General accuracies of GP, ANN, GP ensemble and ANN ensemble for all sites according to
RMSE values (left-hand graphs) and MAE values (right-hand graphs).
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Figure 14. Comparison of general robustness of GP and ANN single forecasts according to MAE and RMSE.

A general comparison of clear sky indexes from multiple sites is exhibited in Table 4. From the analysis
of results, it is possible to observe that the difference between Haurwitz k∗t and Ineichen k∗t forecast results is
negligible, showing the low influence of the clear sky model on the accuracy of multivariate forecast results.

Table 4. Generalized accuracies for Haurwitz k∗t and Ineichen k∗t forecasts.

RMSE σRMSE MAE σMAE

Haurwitz 111.87 0.44 70.22 0.54
Ineichen 111.93 0.47 70.33 0.55

6.5. Regression Functions

Equation (16) presents an example of a regression function developed to forecast k∗t (15), comprising
a combination of the deterministic variable ωs with previous values of k∗t and the weather variables Ta and
Hr. The algorithm has been proven to be efficient in selecting suitable variables to achieve accurate and
robust models with generalization ability. Selected variables to develop regressions for Goiania station are
expressed in Table 5.

k∗t (15) = 0.535 + 0.98 tanh k∗t (−5)− 0.0049[Ta(−45) + ωs · k∗t (−20)]− 0.142[e−k∗t (−35)·k∗t (−50) + cos k∗t (−20)]
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− 0.00141Hr(−5) + 0.0244[e−ωs − k∗t (−5)k∗t (−35)] + 0.00249ωsk∗t (−20)ee−ωs (16)

Table 5. Variables selected by GP regression models according to the forecast horizon for Goiania.

Forecast Horizon Variables Selected

15 min ωs, k∗t (−5,−20,−35,−50), Hr(−5), Ta(−40)
30 min ts, ωs, k̂∗t (15), k∗t (−5), pa(−25), Hr(−40)
45 min ωs, k̂∗t (30), Hr(−5,−35,−40), Ta(−20), pa(−60)
60 min ts, h, k̂∗t (15, 45), Hr(−15), Ta(−40), k∗t (−45)
75 min ωs, h, k̂∗t (60), pa(−5,−10,−20), Ta(−10,−55), Hr(−10,−15), Ws(−60)
90 min ωs, k̂∗t (30, 45, 75)
105 min ωs, k̂∗t (45, 60, 90)
120 min Month, k̂∗t (105), k∗t (−25), Hr(−30,−35), Ta(−40)

6.6. Comparison with the State-of-the-Art

A recent analysis of intraday solar irradiance forecasting at the SURFRAD weather stations has
been carried out using regression and frequency domain models [21]. A direct comparison of the results
obtained by regression, frequency domain and MGGP is presented in Table 6. Reikard et al. [21] analyzed
forecasts for the same years, based on the same historical data and datasets used here. Although pieces of
datasets used in each analysis are not guaranteed to be the same, a direct comparison of the results is able
to ensure the suitability of the results of GP prediction.

Table 6. Comparison of state-of-the-art methods applied to intraday solar irradiance forecasting for Surface
Radiation Network (SURFRAD) weather stations (best values in bold).

F.H. Method Desert Rock Pennsylv. SU Bondville Sioux Falls
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Regression 84.4 51.4 89.1 55.3 81.1 49.3 70.9 44.9
15 Freq. Domain 84.2 51.0 91.0 56.1 82.5 50.1 73.9 46.5

GPens 68.3 31.6 81.7 46.9 72.0 40.8 67.6 37.7

Regression 105.6 66.6 112.6 74.1 102.3 67.6 91.5 59.7
30 Freq. Domain 108.1 63.0 112.0 73.2 102.2 66.9 92.1 60.3

GPens 89.0 44.7 105.4 65.8 90.6 56.2 86.5 52.8

Regression 119.9 76.5 127.3 87.1 116.9 80.3 106.3 71.3
45 Freq. Domain 119.1 71.7 125.1 86.1 114.5 78.8 106.6 69.4

GPens 97.4 50.5 115.2 74.0 100.9 64.2 96.5 60.5

6.7. Machine Learning Algorithm Training Speed

Training machine learning algorithms to optimize results and accuracy is normally a time-consuming
task. Table 7 presents a comparison of the average training times (in minutes) assessed for Goiania station
according to each forecast horizon. Similar results were obtained for the other previously mentioned
stations. Although MGGP has been demonstrated to be more robust for single forecasts, the training speed
of this method is lower than that for ANN. Improvements of MGGP parameter tuning strategies should
be considered in future studies in order to increase the speed of MGGP training.
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Table 7. Comparison of training time required for each machine learning (ML) method, evaluated for the
Goiania dataset (best values in bold).

ML Method F.H.
15 30 45 60 75 90 105 120

GP 3.62 3.36 3.24 3.40 3.50 3.71 3.43 3.42
ANN 0.89 0.47 0.44 0.34 0.35 0.45 0.39 0.35

7. Conclusions

Machine learning algorithms are extensively adopted techniques for solar forecasting. This study
proposed and evaluated multigene genetic programming (MGGP) as a novel machine learning algorithm,
which is classified as a white box, with the aim of performing intraday solar irradiance forecasting. MGGP
derives analytical regression functions that can be implemented without a specific software environment in
any modern programming language using fundamental hardware. MGGP has been proven to consistently
possess data generalization ability, providing robust and reliable solutions. The MGGP algorithm and
another state-of-the-art MLP artificial neural network (ANN) algorithm were applied to datasets from six
different locations from three different countries in order to compare results for forecast horizons from 15
to 120 min.

Data processing strategies were carefully analyzed in terms of input and output alternatives. Initial
simulations were carried out for solar irradiance forecasting, using 15 minute time-windows as input data.
Five minute time-window data, Haurwitz and Ineichen clear sky indexes were considered and combined
with solar deterministic variables and weather variables in order to yield accurate forecast accuracies in
terms of the data processing strategy.

The computation of MAE and RMSE as error metrics showed that the location, forecast horizon
and error of evaluation impact the selection of the dominant model in terms of accuracy. MGGP and
ANN typically yielded similar and consistent results. MGGP’s utilization for single forecasts led to more
accurate and robust results as opposed to ANN. Predictions were significantly improved for MGGP and
ANN by adopting ensemble forecast, while the ensemble strategy improved ANN more extensively than
MGGP. Regarding ensemble forecasts, MGGP was more accurate for a lower number of locations and
evaluated forecast horizons in comparison to ANN, presenting the best forecast skills for Desert Rock
station. MGGP predominantly accomplished more accurate prediction results for longer forecast horizons
from 90 to 120 min ahead for different localities.

Based on a direct comparison with other state-of-the-art methods of forecasting applied to the same
locations in USA, MGGP presented a relevant reduction in error and was proven to be a reliable and
accurate approach for the analyzed localities.

The attributes of a locality have been proved to affect model dominance, showing that both MGGP
and ANN can be applied to different locations. As suggestions for future investigation, studies may
address hybridization strategies, ML algorithm improvement, advanced data processing strategies applied
to MGGP forecasting and improvements in parameter tuning in order to enhance MGGP’s training speed;
furthermore, additional analyses of other solar parameters with the aim of improving the accuracy and
performance of forecasting techniques could be undertaken.
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Appendix A. Errors Obtained for Each Location, ML Algorithm and Forecast Horizon

Table A1. Forecast errors for Goiania (best values in bold). Persist: persistence.

Haur. k∗
t Inei. k∗

t
FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 120.67 64.13 120.64 63.85
GP 14.51 103.16 0.28 60.32 0.29 14.29 103.40 0.37 60.09 0.62

15 ANN 15.46 102.02 0.27 59.97 0.44 15.08 102.45 0.37 60.19 0.45
GPens 14.90 102.68 59.89 14.53 103.12 59.83
ANNens 16.05 101.30 59.09 15.87 101.50 59.16

Persist 151.11 85.42 150.81 84.59
GP 13.75 130.34 0.52 82.36 0.61 13.56 130.36 0.29 82.31 0.37

30 ANN 14.87 128.64 0.59 80.49 0.72 14.49 128.95 0.39 81.02 0.90
GPens 14.11 129.79 81.84 13.94 129.78 81.81
ANNens 15.52 127.65 79.34 15.28 127.76 79.54

Persist 163.39 96.35 162.72 94.92
GP 15.46 138.13 0.31 90.12 0.36 14.93 138.43 0.44 90.94 0.28

45 ANN 15.65 137.82 0.37 89.29 0.40 15.03 138.26 0.50 89.86 0.65
GPens 15.56 137.96 89.67 15.06 138.21 90.56
ANNens 16.40 136.60 87.99 16.03 136.64 88.43

Persist 170.94 103.64 169.82 101.44
GP 16.13 143.36 0.40 96.00 0.42 15.92 142.78 0.26 95.69 0.46

60 ANN 16.21 143.22 0.75 93.98 1.21 15.77 143.04 0.50 94.52 0.69
GPens 16.45 142.82 95.61 16.07 142.53 95.44
ANNens 17.03 141.83 92.46 16.36 142.04 93.90

Persist 178.00 110.33 176.44 107.51
GP 17.36 147.11 0.45 99.50 0.41 16.70 146.98 0.25 99.56 0.41

75 ANN 17.34 147.15 0.66 98.45 0.79 16.42 147.47 0.52 98.81 0.50
GPens 17.62 146.65 98.97 16.80 146.79 99.35
ANNens 18.14 145.71 96.98 17.25 146.00 97.42

Persist 185.30 117.29 183.28 113.91
GP 18.86 150.35 0.40 102.47 0.45 18.18 149.96 0.40 102.16 0.63

90 ANN 19.08 149.95 0.43 101.11 0.68 18.03 150.23 0.28 101.49 0.88
GPens 19.09 149.91 102.13 18.35 149.65 101.73
ANNens 19.88 148.46 99.57 18.84 148.76 99.91

Persist 192.48 123.01 190.04 119.03
GP 20.71 152.61 0.35 104.21 0.53 19.91 152.21 0.36 104.13 0.35

105 ANN 20.79 152.45 0.50 102.52 0.56 19.45 153.09 0.81 103.82 1.30
GPens 20.94 152.16 103.84 20.07 151.91 103.82
ANNens 21.46 151.18 101.29 20.20 151.65 102.47

Persist 199.62 128.73 196.80 124.08
GP 22.65 154.40 0.27 106.04 0.32 21.58 154.33 0.37 105.85 0.49

120 ANN 22.27 155.17 0.92 105.71 1.01 21.12 155.24 0.77 106.49 1.00
GPens 22.80 154.10 105.79 21.77 153.96 105.50
ANNens 23.09 153.52 104.23 21.73 154.03 105.26
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Table A2. Forecast errors for Milan (best values in bold).

Haur. k∗
t Inei. k∗

t
FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 76.02 37.43 75.97 37.33
GP 11.63 67.18 0.63 34.22 0.38 11.35 67.34 0.63 34.06 0.30

15 ANN 12.54 66.48 1.09 35.11 0.31 12.06 66.80 1.04 36.11 0.25
GPens 12.23 66.72 33.84 11.95 66.89 33.69
ANNens 14.81 64.76 34.11 14.01 65.32 34.18

Persist 99.41 51.12 99.29 50.80
GP 10.80 88.67 0.32 48.95 0.44 9.62 89.74 0.35 50.18 0.38

30 ANN 10.86 88.61 0.71 50.23 0.51 9.24 90.12 1.80 51.49 1.09
GPens 11.12 88.36 48.65 10.12 89.24 49.73
ANNens 12.62 86.87 48.90 11.82 87.55 48.92

Persist 110.31 59.34 110.12 58.76
GP 10.70 98.50 0.20 56.46 0.42 9.18 100.01 0.38 56.92 0.52

45 ANN 10.40 98.83 0.64 58.27 0.64 8.51 100.75 0.81 59.04 0.65
GPens 10.87 98.32 56.25 9.46 99.70 56.63
ANNens 12.01 97.06 56.94 11.02 97.99 57.17

Persist 120.03 66.08 119.82 65.28
GP 11.58 106.12 0.22 62.04 0.49 11.09 106.52 0.35 62.78 0.39

60 ANN 11.55 106.16 0.61 63.80 0.79 10.48 107.27 0.78 63.56 0.47
GPens 11.83 105.83 61.75 11.52 106.02 62.70
ANNens 12.87 104.58 62.50 11.91 105.54 61.69

Persist 128.66 72.05 128.54 71.04
GP 12.80 112.18 0.34 67.43 0.32 12.36 112.66 0.65 67.20 0.50

75 ANN 12.67 112.36 0.90 67.97 0.72 11.76 113.42 1.48 69.28 1.15
GPens 12.44 112.65 67.22 12.50 112.47 67.03
ANNens 13.94 110.72 66.63 13.35 111.38 67.63

Persist 136.10 77.66 136.15 76.32
GP 13.60 117.59 0.40 70.97 0.29 13.93 117.18 0.66 71.16 0.49

90 ANN 13.52 117.69 0.53 72.62 1.02 13.39 117.91 0.85 72.66 1.37
GPens 13.87 117.22 70.78 14.35 116.61 70.86
ANNens 14.79 115.97 71.25 15.08 115.62 70.74

Persist 142.26 82.92 142.50 81.48
GP 14.60 121.49 0.52 74.05 0.35 14.60 121.69 0.44 74.92 0.45

105 ANN 13.64 122.85 2.41 76.34 1.21 14.16 122.33 0.89 76.22 0.70
GPens 14.77 121.26 73.85 14.77 121.46 74.71
ANNens 15.45 120.29 74.41 15.71 120.11 74.56

Persist 147.60 87.74 148.21 86.14
GP 15.70 124.43 0.36 76.90 0.28 15.95 124.58 0.36 78.46 1.07

120 ANN 15.03 125.42 1.21 79.81 1.64 15.57 125.14 1.01 79.72 1.26
GPens 15.83 124.24 76.73 16.13 124.30 78.28
ANNens 16.25 123.61 78.47 16.97 123.06 78.15
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Table A3. Forecast errors for Desert Rock (best values in bold).

Haur. k∗
t Inei. k∗

t
FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 78.00 34.46 77.90 33.59
GP 11.96 68.68 0.14 31.64 0.18 11.94 68.60 0.23 31.81 0.23

15 ANN 11.98 68.66 0.25 31.85 0.56 11.98 68.57 0.29 31.84 0.51
GPens 12.26 68.44 31.29 12.28 68.34 31.58
ANNens 13.24 67.68 31.02 12.96 67.81 31.27

Persist 101.32 47.74 101.05 45.88
GP 11.45 89.72 0.57 45.24 0.41 11.80 89.12 0.09 44.82 0.45

30 ANN 10.74 90.44 0.71 44.93 0.43 10.78 90.16 0.53 44.83 0.37
GPens 11.77 89.39 44.73 11.91 89.01 44.68
ANNens 11.60 89.57 44.15 11.62 89.31 44.33

Persist 111.75 55.36 111.24 52.51
GP 12.09 98.24 0.28 50.87 0.35 11.89 98.02 1.41 50.91 1.08

45 ANN 10.98 99.49 0.46 50.94 1.00 10.95 99.06 0.22 51.10 0.67
GPens 12.21 98.11 50.72 12.47 97.37 50.47
ANNens 11.85 98.51 50.00 11.53 98.41 50.51

Persist 118.32 61.63 117.51 57.80
GP 13.05 102.88 0.32 55.24 0.38 13.13 102.09 0.15 54.46 0.16

60 ANN 11.81 104.34 1.21 56.51 1.01 11.28 104.26 0.29 54.99 0.47
GPens 13.17 102.74 55.11 13.19 102.02 54.41
ANNens 12.77 103.20 55.35 11.90 103.53 54.47

Persist 124.48 67.03 123.35 62.16
GP 14.46 106.48 0.11 59.12 0.10 14.25 105.77 0.11 58.47 0.34

75 ANN 13.34 107.88 0.33 59.70 1.50 12.74 107.63 0.47 58.80 0.60
GPens 14.56 106.36 58.42 14.32 105.69 57.81
ANNens 14.06 106.98 58.31 13.41 106.81 57.42

Persist 129.33 71.66 127.87 65.93
GP 15.18 109.70 0.20 61.55 0.36 14.77 108.98 0.15 60.57 0.24

90 ANN 13.87 111.40 0.76 61.60 0.91 12.81 111.50 0.80 61.12 0.65
GPens 15.25 109.60 61.47 14.84 108.90 60.44
ANNens 14.72 110.30 60.67 13.55 110.55 59.99

Persist 133.39 75.55 131.57 68.98
GP 16.06 111.97 0.14 63.15 0.22 15.36 111.36 0.15 63.13 0.27

105 ANN 14.22 114.42 0.70 63.20 0.89 13.68 113.57 0.39 63.42 0.60
GPens 16.11 111.91 63.49 15.45 111.24 62.52
ANNens 14.99 113.40 62.11 14.34 112.70 62.02

Persist 137.62 79.56 135.42 72.19
GP 16.83 114.46 0.20 66.09 0.25 15.85 113.96 0.15 65.14 0.29

120 ANN 15.60 116.15 0.56 65.59 0.52 14.36 115.98 0.42 65.54 1.16
GPens 16.91 114.35 65.98 15.91 113.88 65.07
ANNens 16.24 115.27 64.86 15.07 115.01 64.83
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Table A4. Forecast errors for Pennsylvania State University (best values in bold).

Haur. k∗
t Inei. k∗

t
FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 94.43 51.76 94.37 51.49
GP 12.78 82.36 0.44 47.47 0.34 12.99 82.11 0.28 47.23 0.14

15 ANN 14.42 80.82 0.29 47.49 0.45 13.86 81.29 0.29 48.17 0.53
GPens 13.31 81.86 47.10 13.39 81.73 46.92
ANNens 14.98 80.28 47.00 14.49 80.69 47.57

Persist 118.31 68.46 118.13 67.85
GP 10.71 105.64 0.26 66.56 0.28 10.46 105.78 0.26 66.02 0.28

30 ANN 11.70 104.47 0.17 65.93 0.61 11.54 104.49 0.36 66.47 0.37
GPens 11.05 105.23 66.23 10.77 105.40 65.78
ANNens 12.34 103.72 65.28 12.29 103.62 65.66

Persist 131.38 78.48 131.05 77.51
GP 12.32 115.19 0.23 74.60 0.40 11.85 115.52 0.21 74.30 0.29

45 ANN 13.07 114.21 0.28 74.80 0.63 12.71 114.39 0.23 74.52 0.45
GPens 12.61 114.82 74.26 12.06 115.24 74.01
ANNens 13.76 113.30 74.07 13.44 113.44 73.69

Persist 138.63 84.75 138.19 83.45
GP 12.54 121.25 0.06 79.96 0.17 12.17 121.37 0.29 80.29 0.31

60 ANN 13.11 120.45 0.36 79.94 0.87 12.67 120.69 0.41 80.03 0.72
GPens 12.68 121.06 79.78 12.39 121.06 80.00
ANNens 13.68 119.66 79.28 13.42 119.64 79.17

Persist 144.19 90.43 143.68 88.84
GP 12.65 125.95 0.11 84.92 0.21 12.40 125.86 0.86 84.80 0.97

75 ANN 12.88 125.62 0.48 84.87 0.98 12.57 125.63 0.42 84.71 0.40
GPens 12.86 125.65 84.71 12.77 125.33 84.45
ANNens 13.57 124.63 84.10 13.27 124.61 83.81

Persist 150.58 96.09 150.03 94.27
GP 13.34 130.50 0.36 89.32 0.20 13.63 129.59 0.29 89.07 0.37

90 ANN 13.27 130.59 0.61 89.37 0.98 13.06 130.43 0.50 89.50 0.68
GPens 13.52 130.23 89.09 13.77 129.37 88.89
ANNens 14.13 129.30 88.42 13.89 129.19 88.57

Persist 156.99 101.08 156.42 99.04
GP 14.97 133.48 0.13 92.24 0.21 14.69 133.44 0.38 92.10 0.43

105 ANN 14.38 134.42 0.23 92.99 0.94 13.85 134.75 0.45 93.37 0.53
GPens 15.14 133.22 92.13 14.90 133.11 91.71
ANNens 15.08 133.31 92.23 14.67 133.46 92.44

Persist 164.37 106.50 163.82 104.31
GP 16.23 137.70 0.21 95.99 0.15 16.21 137.27 0.22 95.95 0.22

120 ANN 15.50 138.90 0.82 97.39 0.93 15.08 139.12 0.74 97.70 1.02
GPens 16.36 137.48 95.85 16.37 137.00 95.73
ANNens 16.25 137.66 96.57 15.91 137.75 96.73
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Table A5. Forecast errors for Bondville (best values in bold).

Haur. k∗
t Inei. k∗

t
FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 81.28 43.45 81.20 43.01
GP 10.43 72.81 0.77 41.51 0.35 10.85 72.39 0.41 41.05 0.15

15 ANN 11.74 71.74 0.49 40.87 0.59 11.10 72.18 0.41 41.26 0.34
GPens 11.31 72.09 41.05 11.30 72.02 40.84
ANNens 12.71 70.95 40.22 11.92 71.52 40.71

Persist 101.49 57.67 101.25 56.79
GP 9.97 91.37 0.47 56.08 0.56 10.23 90.89 0.28 56.38 0.29

30 ANN 10.16 91.18 0.48 55.92 0.73 9.57 91.56 0.29 56.50 0.21
GPens 10.35 90.98 55.75 10.52 90.61 56.15
ANNens 10.94 90.38 55.32 10.41 90.71 55.78

Persist 113.22 66.80 112.82 65.39
GP 9.83 102.09 0.52 64.38 0.48 10.28 101.22 0.42 64.37 0.53

45 ANN 10.61 101.20 0.32 63.27 0.68 9.82 101.74 0.89 64.49 1.34
GPens 10.26 101.60 63.92 10.56 100.91 64.15
ANNens 11.37 100.35 62.57 10.74 100.71 63.72

Persist 121.55 73.53 120.99 71.70
GP 11.65 107.39 0.35 69.37 0.42 11.16 107.48 0.46 69.76 0.79

60 ANN 11.38 107.73 0.33 69.37 0.48 10.72 108.02 0.37 69.98 0.54
GPens 12.06 106.90 68.94 11.58 106.97 69.30
ANNens 12.15 106.79 68.64 11.53 107.04 69.15

Persist 127.95 79.19 127.21 77.04
GP 12.01 112.58 0.11 73.78 0.20 11.19 112.97 0.30 73.98 0.32

75 ANN 11.52 113.21 0.49 74.30 0.83 10.62 113.71 1.01 74.83 1.01
GPens 12.22 112.31 73.47 11.43 112.67 73.70
ANNens 12.29 112.23 73.56 11.62 112.43 73.77

Persist 134.49 84.73 133.56 82.22
GP 13.22 116.71 0.19 77.69 0.21 12.15 117.33 0.22 78.67 0.28

90 ANN 12.24 118.03 0.51 78.32 0.74 11.40 118.33 0.71 78.93 0.48
GPens 13.37 116.51 77.49 12.29 117.14 78.49
ANNens 12.99 117.02 77.53 12.44 116.94 77.77

Persist 140.34 89.83 139.23 86.79
GP 13.52 121.37 0.32 81.88 0.39 12.21 122.23 0.22 82.32 0.45

105 ANN 12.56 122.71 0.69 82.06 0.52 11.90 122.66 0.55 82.70 0.45
GPens 13.87 120.87 81.01 12.43 121.93 82.10
ANNens 13.40 121.53 81.18 12.96 121.19 81.49

Persist 145.88 95.01 144.58 91.41
GP 14.42 124.84 0.35 85.95 0.31 12.96 125.85 0.72 86.30 0.55

120 ANN 13.31 126.46 0.77 86.47 1.35 12.54 126.46 0.55 86.82 0.76
GPens 14.59 124.59 85.07 13.25 125.42 85.79
ANNens 14.45 124.80 85.30 13.59 124.93 85.66
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Table A6. Forecast errors for Sioux Falls (best values in bold).

Haur. k∗
t Inei. k∗

t
FH Method s RMSE σRMSE MAE σMAE s RMSE σRMSE MAE σMAE

Persist 75.47 40.51 75.40 40.06
GP 10.09 67.85 0.30 38.17 0.24 10.13 67.76 0.23 37.82 0.19

15 ANN 12.25 66.23 0.20 38.02 0.18 11.70 66.58 1.04 38.41 0.25
GPens 10.46 67.58 37.91 10.32 67.61 37.70
ANNens 13.04 65.63 37.55 12.76 65.78 37.78

Persist 95.39 54.00 95.22 53.11
GP 9.22 86.60 0.10 52.86 0.17 8.71 86.93 0.28 52.97 0.25

30 ANN 9.51 86.32 0.45 53.15 0.51 9.17 86.49 0.26 52.82 0.42
GPens 9.31 86.51 52.77 9.20 86.46 52.77
ANNens 10.38 85.49 52.56 9.95 85.75 52.27

Persist 107.46 62.87 107.17 61.44
GP 9.56 97.18 0.21 60.86 0.42 9.72 96.75 0.09 60.69 0.42

45 ANN 9.84 96.89 0.51 61.69 0.69 9.57 96.91 0.30 61.03 0.48
GPens 9.79 96.94 60.61 10.00 96.45 60.46
ANNens 10.62 96.05 61.13 10.23 96.20 60.52

Persist 116.51 69.81 116.12 67.95
GP 10.59 104.17 0.11 66.92 0.23 10.42 104.03 0.17 67.09 0.30

60 ANN 10.16 104.68 0.38 67.47 0.33 10.20 104.27 0.45 67.05 0.46
GPens 10.72 104.02 66.80 10.52 103.90 66.96
ANNens 10.98 103.72 66.74 10.98 103.37 66.39

Persist 123.64 75.45 123.21 73.35
GP 11.18 109.82 0.20 71.76 0.33 11.01 109.64 0.14 71.93 0.39

75 ANN 10.92 110.14 0.58 72.21 0.86 10.76 109.95 0.33 71.58 0.67
GPens 11.37 109.58 71.56 11.18 109.43 71.73
ANNens 11.75 109.11 71.49 11.51 109.03 70.92

Persist 130.98 81.05 130.57 78.71
GP 12.47 114.65 0.19 75.83 0.15 12.31 114.49 0.11 75.46 0.35

90 ANN 11.84 115.48 0.42 76.45 1.00 11.60 115.42 0.27 76.37 0.76
GPens 12.65 114.42 75.62 12.42 114.35 75.33
ANNens 12.71 114.34 75.66 12.43 114.34 75.59

Persist 138.49 86.65 138.10 83.89
GP 13.92 119.20 0.15 79.62 0.34 13.70 119.18 0.25 79.31 0.21

105 ANN 12.90 120.62 0.20 80.50 0.59 12.99 120.17 0.50 80.39 0.79
GPens 14.12 118.94 79.41 13.94 118.85 79.10
ANNens 13.81 119.36 79.65 13.88 118.94 79.52

Persist 143.72 91.37 143.38 88.30
GP 14.59 122.75 0.32 82.76 0.20 13.98 123.34 0.92 83.06 1.03

120 ANN 13.71 124.02 0.63 84.05 0.48 13.34 124.26 0.60 83.99 0.81
GPens 14.76 122.50 82.52 14.34 122.82 82.70
ANNens 14.52 122.85 83.29 14.23 122.97 83.11
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