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Abstract 
A numerical tool is implemented to cope with the design of arcuated structures through funicular analysis. As 
investigated in the literature, the force density method can be conveniently implemented to cope with the equilibrium 
of funicular networks, using independent sets of branches in the case of networks with fixed plan geometry. In this 
contribution, the minimization of the horizontal thrusts of a spatial network with given plan geometry is formulated not 
only in terms of an independent set of force densities, but also in the vertical coordinates of the restrained nodes. 
Constraints are enforced on the height of the nodes, to prescribe the design domain, and on the stress regime in each 
truss. Due to its peculiar form, this problem can be efficiently solved through techniques of sequential convex 
programming that were originally conceived to handle multi-constrained formulations in structural optimization. 
Networks that are fully feasible with respect to the local enforcements on the height of the vertices are retrieved in a 
limited number of iterations, with no need to initialize the procedure with a feasible starting guess. The same algorithm 
applies to general networks with any type of geometry, restraints, and loads, including self-weight. 
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1. The numerical tool 
Funicular analysis is widely adopted to cope with the design of arcuated structures, see e.g. [1, 2, 3, 4]. Following this 
approach, spatial structures such as three-dimensional trusses and shells can be modelled as statically indeterminate 
networks of vertices and edges of given topology. Boundary supports are prescribed at the restrained nodes of the 
network; unrestrained ones are in equilibrium with the applied vertical and horizontal loads.  

The equilibrium of funicular networks can be conveniently handled through the force density method, i.e. writing the 
problem in terms of the ratio of force to length in each branch of the network [5]. As investigated in the literature for 
the case of vertical loads, independent sets of branches can be detected for networks with fixed plan geometry [3]. 
However, enforcing the nodes to lie within a prescribed range of heights (the design domain) is not a trivial task from a 
numerical point of view.  

To this goal, a multi-constrained minimization problem has been formulated in [6] to enforce bounds for the vertical 
coordinates of the vertices of the network.  

At first, the equations that link dependent and independent branches in the network with fixed plan projection are 
derived. The horizontal equilibrium of the nodes with coordinates 𝒙𝒙𝑠𝑠0 and 𝒚𝒚𝑠𝑠0, under general load conditions, reads: 

 �𝑪𝑪
𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑪𝑪𝑠𝑠𝒙𝒙𝑠𝑠0)

𝑪𝑪𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑪𝑪𝑠𝑠𝒚𝒚𝑠𝑠0)
� 𝒒𝒒 = �

𝒑𝒑𝑥𝑥
𝒑𝒑𝑦𝑦� . (1) 

In the above equations, 𝑪𝑪𝑠𝑠 is the connectivity matrix of the network and 𝑪𝑪 is its subset referring to unrestrained nodes; 
𝒑𝒑𝑥𝑥 and 𝒑𝒑𝑦𝑦 are the components along the cartesian axes x and y of the point loads applied at the unrestrained nodes; 𝒒𝒒 
the vector of the m force densities, where m is the number of branches in the network. Indeed, by applying Gauss-Jordan 
elimination to Eqn. (1), see also [3,4], the r dependent force densities 𝒒𝒒� may be re-written in terms of the m-r independent 
ones 𝒒𝒒� as: 

 𝒒𝒒� = 𝑩𝑩𝒒𝒒� + 𝒅𝒅,  (2) 

where 𝑩𝑩 and 𝒅𝒅 have known entries. 

The vertical equilibrium of the 𝑛𝑛 unrestrained nodes of the network reads: 
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 𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑸𝑸 + 𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑓𝑓𝑸𝑸𝑓𝑓 = 𝒑𝒑𝑧𝑧,  (3) 

where 𝑸𝑸 and 𝑸𝑸𝑓𝑓  gather the vertical coordinates of the unrestrained and restrained nodes, respectively, 𝑪𝑪𝑓𝑓 is the subset of 
𝑪𝑪 for the restrained nodes; 𝒑𝒑𝑧𝑧 are the vertical components of the point loads and 𝑸𝑸 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝒒𝒒). 

Hence, a multi-constrained optimization problem is formulated in terms of the independent force densities 𝒒𝒒� and the 
vertical coordinates of the restrained nodes 𝑸𝑸𝑓𝑓  as: 

 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

min
𝒒𝒒�,   𝑸𝑸𝑓𝑓

𝑓𝑓(𝒒𝒒�)

𝑠𝑠. 𝑡𝑡.    𝒒𝒒� = 𝑩𝑩𝒒𝒒� + 𝒅𝒅

𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑸𝑸 + 𝑪𝑪𝑇𝑇𝑸𝑸𝑪𝑪𝑓𝑓𝑸𝑸𝑓𝑓 = 𝒑𝒑𝑧𝑧
𝑧𝑧𝑗𝑗�𝒒𝒒�, 𝑸𝑸𝑓𝑓� ≥ 𝑧𝑧𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚               𝑗𝑗 = 1 …𝑛𝑛
𝑧𝑧𝑗𝑗�𝒒𝒒�, 𝑸𝑸𝑓𝑓� ≤ 𝑧𝑧𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥                𝑗𝑗 = 1 …𝑛𝑛
𝑞𝑞�𝑘𝑘 ≤ 0                                  𝑘𝑘 = 1 … 𝑟𝑟

  𝑞𝑞�𝑚𝑚 ≤ 0                           𝑑𝑑 = 1 …𝑚𝑚 − 𝑟𝑟 

𝑧𝑧𝑓𝑓ℎ𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑧𝑧𝑓𝑓ℎ ≤ 𝑧𝑧𝑓𝑓ℎ𝑚𝑚𝑚𝑚𝑥𝑥            ℎ = 1 …𝑛𝑛𝑓𝑓  

  

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

A norm of the horizontal thrusts is herein adopted as objective function, i.e. 𝑓𝑓(𝒒𝒒�) = ∑�𝑅𝑅𝑥𝑥ℎ2 + 𝑅𝑅𝑦𝑦ℎ2 , where 𝑅𝑅𝑥𝑥ℎ and 𝑅𝑅𝑦𝑦ℎ 

are the component of the reaction along the x and y direction, respectively, at the h-th of the 𝑛𝑛𝑓𝑓 restrained nodes. By 
using the vertical equilibrium in Eqn. (4.3) and Eqn. (4.2), the vertical coordinates of the unrestrained nodes may be 
written in terms of the minimization unkowns, i.e. 𝒒𝒒� and 𝑸𝑸𝑓𝑓; suitable constraints can be enforced to prescribe the limits 
of the design domain, see Eqn. (4.4) and (4.5). Side constraints on 𝑸𝑸𝑓𝑓 are used to enforce similar prescriptions on the 
restrained nodes, see Eqn. (4.8). Constraints on the sign / magnitude of the force density in each branch of the network 
may be accounted for: Eqns. (4.6) and (4.7) ask for a compression-only network. 

Due to its peculiar form, the optimization problem in Eqn. (4) can be efficiently solved through techniques of sequential 
convex programming that were originally conceived to handle large scale multi-constrained formulations of size 
optimization for elastic structures. In a stress-constrained minimum weight problem of truss design, the area of the 
sections is sought such that the volume is minimized, subject to strength limits. In a statically determinate truss, the 
objective function is linear in the unknowns, whereas the constrained stress may be written in terms of the inverse of 
the unknowns. In [6] Eqn. (4) is used to find the funicular polygon of an arch acted upon by vertical loads: it is shown 
that the thrust is linear in the independent force density 𝑞𝑞�, whereas the constrained vertical coordinates of the 
unrestrained nodes 𝑸𝑸 are linear in the vertical coordinate of the abutments 𝑧𝑧𝑓𝑓 and in the reciprocal variable 1 𝑞𝑞�⁄ . Methods 
of sequential convex programming are available that implement approximations of the objective functions and 
constraints in the direct or the reciprocal variable depending on the sign of the gradient [8]. These gradient-based 
methods can be conveneiently adopted to handle the minimization problem in Eqn. (4).  

Self-weight, i.e. a design-depend load case, can be straightforwardly included in the optimization, taking full advantage 
of the direct analytical method to compute sensitivities. 

2. A numerical simulation 
A preliminary assessment of the proposed tool for form-finding is shown, considering a bay whose four corners and the 
central point are fully restrained. Symmetry conditions are enforced along each external side of the grid, meaning that 
additional lateral restraints are prescribed in the relevant nodes. Self-weight is considered, along with constraints 
enforcing the nodes of the network to lie within a prescribe range of vertical coordinates and all the force densities to 
be negative. Restrained nodes are not coplanar, being the central node forced to lie at a lower height with respect to the 
external ones. 

Figure 1 shows the grid adopted to perform the optimization. The number of branches in the network is m=1248. The 
independent ones are only 52, the red segments in the figure, meaning that the number of unknowns for the optimization 
procedure is limited to 57, being 5 the restrained nodes where supports are given.  
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Figure 1. Grid used to investigate optimal networks.  

 

Two simulations are performed, adopting different objective functions. The achieved funicular networks are given in 
Figure 2. Crosses and circles stand for nodes whose heights match the prescribed upper and lower boundaries of the 
design domain, respectively. On the left, a network that minimizes the sum of the squared lateral reactions computed 
for each one of the restrained nodes is shown. On the right, the reactions considered in the objective function do not 
include the five nodes that are also vertically restrained.  

 

 
Figure 2. Minimization of the lateral reactions including (left) or excluding (right) the nodes that are also vertically restrained.  

 

Networks that are fully feasible with respect to the local enforcements on the height of the vertices are retrieved in a 
limited number of iterations, with no need to initialize the procedure with a feasible starting guess. It is remarked that 
the same algorithm applies to general networks with any type of geometry, loads and restraints. Indeed, applications of 
assessment are shown in [6] concerning arches, domes and vaults with given shape subject to vertical and horizontal 
(seismic) loads. The ongoing research on form finding is devoted to testing extensively grids of different topology and 
to endowing the minimization problem with additional constraints, see e.g. [9]. 
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