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Abstract: This work deals with circuit modeling of noise mode conversion due to system asymmetry
in a three-phase motor drive system. In fact, it is well-known that in case of system asymmetry (e.g.,
slightly asymmetrical LC filter parameters), differential-mode noise can convert into common-mode
noise, resulting in increased level of conducted electromagnetic interference. This phenomenon
has been observed with measurements and reported in previous works, but a clear and rigorous
analytical description is still a challenging point. The main novelty proposed in the paper is a
rigorous analytical description of differential-to-common-mode noise conversion based on the Clarke
transformation and the eigenvalue analysis. In particular, the magnitude and the frequency location
of the differential-mode resonances injected into the common-mode circuit are derived in closed
form. Moreover, since system asymmetry is usually uncontrolled (e.g., component tolerance and
parasitic elements), a statistical analysis is also presented by treating the parameters of the LC
filter as random variables. Thus, a second contribution proposed in the paper is the analytical
derivation in closed form of the probability density function, the mean value, and the standard
deviation of the random frequency location of the resonance peaks injected into the common-mode
circuit. The importance of the analytical results derived in the paper is two-fold. First, a deep
theoretical understanding of the phenomenon in terms of circuit theory concepts is achieved. Second,
the impact of differential-to-common-mode noise conversion is described in quantitative terms.
Thus, the obtained analytical results can be used to predict or explain the noise conversion impact
on the frequency-domain measurements of common-mode currents. Theoretical derivations are
validated through a time-domain Simulink implementation of a three-phase motor drive system, and
a frequency-domain analysis through the discrete Fourier transform.

Keywords: noise mode conversion; EMI modeling; common-mode current analysis; asymmetrical
three-phase systems; statistical analysis

1. Introduction

Technical literature concerning three-phase motor drive systems is very wide and rich in
contributions investigating several aspects related to that kind of systems. A first set of contributions
is related to functional issues such as, for example, the control strategies for three-phase inverters
(e.g., [1]). A second set of contributions is related to circuit modeling and measurement techniques of
conducted electromagnetic interference (EMI) [2–12]. This point is crucial in modern power systems
due to the widespread and pervasive use of power electronics. EMI modeling, indeed, is essential for
both analysis and EMI mitigation techniques.

Electronics 2020, 9, 1612; doi:10.3390/electronics9101612 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9899-0609
http://dx.doi.org/10.3390/electronics9101612
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/10/1612?type=check_update&version=2


Electronics 2020, 9, 1612 2 of 20

As far as the EMI issue is considered, several approaches have been used to model the
high-frequency behavior of power converters. Time-domain and frequency-domain approaches
have both several disadvantages, such as long computational time and system oversimplification,
respectively. Such drawbacks are potentially overcome by a further approach consisting in the
behavioral modeling of power converters, based on the extraction of Thevenin or Norton equivalents
from EMI measurements [6].

In all the approaches mentioned above, conducted EMI are modeled as the superposition of
differential-mode (DM) and common-mode (CM) noise. Such separation is essential in EMI modeling
and filter design [13–18]. It is well-known; however, that such sharp separation between DM and CM
noise is possible only under the assumption that the converter is perfectly symmetrical with respect to
the ground. In fact, system asymmetries lead to DM–CM noise transformation (i.e., noise conversion
between the two noise components) [6,19].

Several papers can be found about this point when single-phase converters are considered [19,20].
As an example, Figure 1 shows measured DM–CM noise transformation due to asymmetries in an
EMI filter [19]. As far as three-phase converters are studied, however, few analytical contributions are
available in the literature. Nevertheless, mode conversion in three-phase converters is well documented
by experiments. For example, the experimental results reported in [21] show clearly that the three-phase
LC filter is a critical component. In fact, in case of slight filter asymmetry, the DM resonances can be
measured as resonances in the CM current. As an example, Figure 2 shows the amplitude spectrum of
the measured CM current in the three-phase motor drive system reported in [21]. The blue curve was
measured without filter, whereas the green and the magenta curves were measured for two different
values of the DM inductances (i.e., 3.5 and 2.5 µH, respectively) of a DM–CM LC filter. The resonances
of the DM circuit (i.e., 380 and 450 kHz corresponding to the two values of the DM inductance, and 50
nF capacitance) were clearly measured in the spectrum of the CM current. This is a clear experimental
evidence of DM-to-CM noise conversion. Recognizing this point is crucial for a proper filter design. In
fact, if DM-to-CM noise conversion is not recognized, unnecessary overdesign of the CM filter could
be implemented.
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Figure 1. Measured S parameters of an EMI filter [19]. The transmission coefficient SCD21 (mixed-mode
S parameter) provides CM response with DM excitation and it is due to filter asymmetries. It is
compared with measured SCC21 with CM excitation and CM response. SCD21 is even higher than SCC21

above 13 MHz.
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Figure 2. Measured amplitude spectrum of AC-side CM current without filter (blue curve), CM LC
filter with 3.5 µH DM inductance (green curve) and with 2.5 µH DM inductance (magenta curve) [21].
The corresponding DM resonances, with 50 nF DM capacitance, are 380 and 450 kHz, respectively. The
DM resonances are clearly observed in the CM current spectrum due to DM-to-CM noise conversion.

Although the general idea of noise mode conversion due to three-phase asymmetry
is well established, to the Author’s knowledge a rigorous analytical description of
differential-to-common-mode noise conversion in three-phase systems is still a challenging point.
The main novelty introduced in this paper is the mathematical derivation and explanation of
differential-to-common-mode noise transformation in asymmetrical three-phase systems by resorting to
the Clarke transformation and the eigenvalue analysis. In particular, differential-to-common-mode noise
conversion due to a slightly asymmetrical LC filter will be investigated. The proposed methodology,
however, has general validity. Thus, the analytical results derived in the paper can be used to describe
the impact on the CM circuit of any three-phase asymmetry (e.g., asymmetrical cable parameters). It
will be shown that, in case of three-phase asymmetry, the CM circuit is affected by the DM circuit on
the whole frequency axis, but the main impact is due to the DM resonances injected into the CM circuit.
Thus, the spectral lines corresponding to the DM resonances appear in the amplitude spectrum of
the CM current with shifted frequency. The proposed analytical derivations provide the magnitude
and the frequency location of the CM current peaks due to noise conversion, as functions of the
filter asymmetry.

A second novelty introduced in the paper is a statistical analysis based on the assumption that,
due to component tolerances, the filter parameters can be treated as random variables. Randomness
in the filter parameters results in randomness in the frequency location of the CM current peaks
due to differential-to-common-mode noise conversion. A complete statistical characterization of the
frequency shift of the CM current peaks due to noise conversion is derived in terms of probability
density function, mean value, and variance.

The relevance of the analytical results derived in the paper can be summarized in two points. First,
the differential-to-common-mode noise conversion in an asymmetrical three-phase system is rigorously
described in terms of theoretical properties and circuit equivalents. Second, the derived models
allow quantitative prediction and explanation of the impact of noise conversion on frequency-domain
measurements of CM currents.

The paper is organized as follows. In Section 2 the Clarke transformation is recalled, and its
relationship with the well-known symmetrical component transformation in the frequency-domain
is clarified. In Section 3 the impact of asymmetrical parameters of the LC filter on the
differential-to-common-mode noise conversion in a three-phase motor drive system is described
in analytical terms. To this aim, the equations in terms of Clarke variables are decoupled through the



Electronics 2020, 9, 1612 4 of 20

eigenvalue analysis. The magnitude and frequency location of the CM current spectral lines due to
DM resonances are provided in closed form. In Section 4, specific three-phase motor drive system is
implemented in Simulink to provide numerical validation of the analytical results. Section 5 is devoted
to the statistical analysis of differential-to-common-mode noise conversion. In particular, by treating
the asymmetrical parameters of the LC filter as random variables, the probability density function, the
mean value, and the standard deviation of the frequency location of the CM current peaks from noise
conversion are derived in closed form. Finally, conclusions are drawn in Section 6.

2. The Clarke Transformation

The analytical derivations proposed in the next Sections are based on the well-known Clarke
transformation, which is a mathematical transformation broadly used in the analysis of three-phase
power converters [22]. In fact, under the common assumption of circuit symmetry between the three
phases, the Clarke transformation allows the introduction of voltage/current space vectors able to
provide a compact and meaningful description of the three-phase system.

The Clarke transformation operates on a triplet a, b, c, of time-domain phase variables (e.g., phase
voltages and currents) to obtain a triplet of transformed variables named α, β, and 0. For example, by
considering phase currents, the Clarke transformation operates as:

iα
iβ
i0

 = T


ia
ib
ic

 =

√
2
3


1 −1/2 −1/2
0

√
3/2 −

√
3/2

1/
√

2 1/
√

2 1/
√

2




ia
ib
ic

 (1)

It is worth noticing that the transformation defined in (1) is in its rational form (i.e., the
transformation matrix T is orthogonal (T−1 = Tt)). This property guarantees power conservation across
the transformation and allows consistent derivation of equivalent circuits in the transformed domain.

In case of circuit symmetry between the three phases, the transformation matrix T operates
diagonalization of parameter matrices. For example, by considering the inductance matrix L of a
three-phase component with symmetrical phases:

LT = TLT−1 = T


L M M
M L M
M M L

T−1 =


L−M 0 0

0 L−M 0
0 0 L + 2M

 =


Lα 0 0
0 Lβ 0
0 0 L0

. (2)

Similar results can be obtained for capacitance/resistance matrices. Matrix diagonalization is a
crucial point since it results in decoupled equations in the transformed variables. Notice that α and β
parameters in the transformed matrix take the same values (i.e., Lα = Lβ in (2)). This means that the α
and β equations have the same structure and the same parameters. Therefore, the α and β circuits can
be treated as a single circuit with the α and β variables combined to form complex space vectors. Each
space vector has a real part given by the α component and imaginary part given by the β component.
Thus, the current space vector corresponding to (1) is defined as:

i(t) = iα(t) + jiβ(t) (3)

where j =
√
−1. Notice that since the Clarke transformation operates in the time domain, it

can be used to analyze three-phase systems under transient conditions. However, when distorted
steady-state conditions are considered, the same transformation in (1) operates on the phasor quantities
at each frequency. In this case, the Clarke transformation can be put in relation with the well-known
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symmetrical component transformation [23]. The following relationship between phasors can be
readily derived: 

Iα
Iβ
I0

 =
1
√

2


1 1 0
− j j 0
0 0

√
2




Ip

In

I0s

 (4)

where Ip, In, and I0s are the positive, negative, and zero-sequence phasor components, respectively.
Notice that from (4) we obtain that the α component is proportional to the sum of the positive-sequence
and negative-sequence components, whereas the β component is proportional to the difference between
the same quantities. The zero-component I0 of the Clarke transformation equals the zero-sequence
component I0s. Thus, the α and β components can be identified as the common mode (CM) and the
differential mode (DM) of the pure three-phase system, respectively, whereas the zero-component can
be identified as the conventional CM resulting from the interconnection of a three-phase circuit with
a single-phase circuit. That is the usual condition of a three-phase inverter where the so-called CM
current circulates in a single-phase circuit consisting mainly in the system parasitic elements.

Finally, it is worth highlighting that the diagonalization property (2) of the Clarke transformation
holds only in case of circuit symmetry between the three phases. In case of asymmetrical phases, the
straightforward use of (2) leads to a full matrix (i.e., to circuit coupling between the Clarke variables
α, β, 0) [24]. In particular, since the zero components correspond to the conventional CM variables,
asymmetrical phases result in injection of α and β component currents into the CM circuit. The
theoretical investigation of such phenomenon is presented in the next Sections where the spectral lines
of the CM current due to phase asymmetry are characterized in analytical and statistical terms.

3. Differential-to-Common-Mode Conversion Due to LC Filter Asymmetry

Let us consider the three-phase motor drive system represented in Figure 3 and consisting in
a dc-fed three-phase inverter, a line impedance stabilization network (LISN), a dc-link capacitor, a
CM/DM LC filter, a shielded cable, and an induction motor. The LC filter is realized by means of
a CM choke whose leakage inductance provides DM filtering, and three star-connected grounded
capacitors [21]. The following derivations, however, have general validity and can be readily adapted to
different filter realizations. The cable is represented by a lumped RLC circuit, whereas each motor phase
is represented by a series RL connection and a parallel capacitor to take into account high-frequency
effects of windings.
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Figure 3. The structure of the three-phase motor drive system, including the main parasitic elements,
analyzed in this paper.

The main parasitic elements are also included in the model, that is, the series resistance Rdc and
inductance Ldc of the link capacitor Cdc, the capacitances Cp and Cn from the dc-bus to the ground, the
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three capacitances C0 from each inverter phase to the ground, the motor input capacitances Cm, and
the capacitance Cg between motor windings and frame.

The following analysis considers the impact of asymmetrical values of the LC filter parameters
on the differential-to-common-mode noise conversion. The proposed methodology, however, can be
readily used to investigate the impact on noise conversion of other asymmetrical parameters (e.g., the
three-phase cable parameters).

3.1. Circuit Modeling and Analytical Derivations

The three-phase system depicted in Figure 3 can be analyzed through the Clarke transformation
recalled in Section 2. In case of ideal circuit symmetry between the three phases, the α and β circuits
show the same topology and the same parameter values (see Figure 4a). To this aim it is worth recalling
that the topology of α and β circuits follows the same rules as the positive- and negative-sequence
circuits for the symmetrical components, that is, a short circuit connects all the star centers of the
three-phase system (notice that the delta-connected capacitors Cm can be first transformed into star
connected capacitors 3Cm) [23]. As far as the zero-component circuit is considered, however, a
different circuit topology is obtained (see Figure 4b). In fact, by following the same rules valid for
the zero-sequence component in the symmetrical components framework, the interaction between
the three-phase and the single-phase parts of the system must be taken into account. In particular, in
previous works it was shown that a single-phase circuit connected to the star centers of a three-phase
circuit can be moved, with unchanged topology, to the three-phase side through a multiplication
by 3 of single-phase impedances and by

√
3 of single-phase voltage sources, and division by

√
3 of

single-phase current sources [23,24].
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Figure 4. Clarke equivalent circuits of the three-phase motor drive system represented in Figure 3. The
α and β circuits have the same topology (a), whereas the zero-component circuit (b) takes into account
the interconnection of the three-phase circuit with the single-phase part of the system.

In case of circuit symmetry between the three phases, the α, β, and zero circuits are uncoupled.
In particular, the resonances of the α and β circuits have no impact on the zero circuit. It can be
easily observed that the main resonance in the α and β circuits is given by the filter components. In
fact, the low-level impedance corresponding to the large filter capacitance C is only slightly affected
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by the high-level cable and motor impedances due to capacitances much smaller than C. Thus, the
differential-mode inductance Ldm of the filter can be approximately considered in series with the filter
capacitance C. The resulting series resonance is located at the frequency f0 = 1/2π

√
LdmC. In case of

asymmetrical filter components, it is expected that such resonance is injected into the zero-component
circuit (i.e., the CM circuit). The impact of asymmetry in filter capacitances and inductances on the CM
circuit is analyzed in the following Subsections.

3.1.1. Asymmetrical Filter Capacitors

As far as the filter capacitors C are considered, the simple case of a small perturbation δCa of the
capacitance connected to the phase a is first investigated. The voltage–current relationship for the
phasor Clarke components is given by [25]:

ICα
ICβ
IC0

 = jωT


C + δCa 0 0

0 C 0
0 0 C

T−1


VCα
VCβ
VC0

 (5)

After simple algebra the following equations can be obtained from (5):

ICα = jω
[(

C +
2
3
δCa

)
VCα +

√
2

3
δCaVC0

]
(6a)

ICβ = jωCVCβ (6b)

IC0 = jω
[ √

2
3
δCaVCα +

(
C +

1
3
δCa

)
VC0

]
(6c)

where it is apparent that the β circuit is not affected by the capacitance perturbation.
The interaction between α and 0 circuits can be investigated by introducing two reasonable

approximations in (6a) and (6c). First, under normal conditions the zero-component variables are much
smaller than the α and β variables. Moreover, the impact of α and β circuits on the zero-component
circuit is large around the resonances of α and β circuits. Therefore, in (6a) it is reasonable to assume
|VC0| � |VCα| (i.e., no feedback is assumed from the zero to the α circuit). Second, the small perturbation
assumption |δCa| � C allows for neglecting the term δCa/3 in (6c). Therefore, the approximate versions
of (6a)–(6c) are given by:

ICα � jω
(
C +

2
3
δCa

)
VCα (7a)

ICβ = jωCVCβ (7b)

IC0 � jω
[ √

2
3
δCaVCα + CVC0

]
(7c)

From (7a) we observe that the equivalent α capacitance is changed by the additive term 2δCa/3.
As a consequence, the resonance in the α circuit is shifted to the value

fα =
1

2π
√

Ldm
(
C + 2

3δCa
) � 1

2π
√

LdmC

(
1−

δCa

3C

)
(8)

Such resonance has impact on the zero-component circuit through (7c):

IC0 � jω


√

2
3
δCa

ICα

jω
(
C + 2

3δCa
) + CVC0

 �
√

2
3
δCa

C
ICα + jωCVC0. (9)
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Thus, the resonance in the α circuit is injected into the CM circuit. The frequency location of the
corresponding spectral line is given by (8), and both the frequency location shift and the magnitude of
the spectral line are proportional to the capacitance deviation δCa.

The above analytical results hold in the case of capacitance deviation of the phase a. It is expected
that similar results hold in case the capacitance deviation is placed on the phase b or c. By writing
(5) for δCb or δCc, however, the equations corresponding to (6a)–(6c) do not allow a straightforward
interpretation as in the case of δCa because a further coupling is introduced between α and β variables.
Moreover, from both theoretical and practical viewpoint, the general case of simultaneous deviation of
all the three parameters δCa, δCb, and δCc would be of interest. To this aim, a more general analytical
approach is derived.

In case of simultaneous deviation of the three capacitances with respect to the nominal value C,
the Clarke transformation:

ICα
ICβ
IC0

 = jωT


C + δCa 0 0

0 C + δCb 0
0 0 C + δCc

T−1


VCα
VCβ
VC0

 (10)

provides the three equations:

ICα = jω
[(

C +
2
3

(
δCa +

δCb + δCc

4

))
VCα +

−δCb + δCc

2
√

3
VCβ +

√
2

3

(
δCa −

δCb + δCc

2

)
VC0

]
(11a)

ICβ = jω
[
−δCb + δCc

2
√

3
VCα +

(
C +

δCb + δCc

2

)
VCβ +

√
3

2
√

2
(δCb − δCc)VC0

]
(11b)

IC0 = jω
[ √

2
3

(
δCa −

δCb + δCc

2

)
VCα +

√
3

2
√

2
(δCb − δCc)VCβ +

(
C +

δCa + δCb + δCc

3

)
VC0

]
. (11c)

By introducing the same approximation used above (i.e., negligible feedback from the
zero-component circuit to the α and β circuits), for the α and β variables we obtain the following
approximate expressions:

ICα � jω
[(

C +
2
3

(
δCa +

δCb + δCc

4

))
VCα +

−δCb + δCc

2
√

3
VCβ

]
(12a)

ICβ � jω
[
−δCb + δCc

2
√

3
VCα +

(
C +

δCb + δCc

2

)
VCβ

]
(12b)

In matrix form:[
ICα
ICβ

]
� jω


[

C 0
0 C

]
+

 2
3

(
δCa +

δCb+δCc
4

)
−δCb+δCc

2
√

3
−δCb+δCc

2
√

3
δCb+δCc

2



[

VCα
VCβ

]
(13)

Therefore, the problem can be reformulated as the diagonalization of a matrix:

A =

[
a c
c b

]
(14)

where:
a =

2
3

(
δCa +

δCb + δCc

4

)
, b =

δCb + δCc

2
, c =

−δCb + δCc

2
√

3
. (15)
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It can be readily shown that the eigenvalues of A are given by:

λ1,2 =
a + b±

√
(a− b)2

− 4c2

2
(16)

By substituting (15) into (16), after simple algebra we obtain the eigenvalues λC1,2 of the full
matrix in (13):

λC1,2 =
1
3
(δCa + δCb + δCc) ±

1

3
√

2

√
(δCa − δCb)

2 + (δCb − δCc)
2 + (δCc − δCa)

2 (17)

It is worth noticing that in (17) the term in the first bracket is the mean value of the
capacitance deviations, whereas the square-root term represents the root mean square value of
the capacitance deviations.

The matrix P of the eigenvectors, corresponding to the eigenvalues (17), when applied to (13)
leads to transformed variables:[

IC1

IC2

]
= P−1

[
ICα
ICβ

]
,
[

VC1

VC2

]
= P−1

[
VCα
VCβ

]
(18)

and matrix diagonalization:

P−1

 2
3

(
δCa +

δCb+δCc
4

)
−δCb+δCc

2
√

3
−δCb+δCc

2
√

3
δCb+δCc

2

P =

[
λC1 0

0 λC2

]
(19)

Therefore, we obtain decoupled equations in the transformed variables:[
IC1

IC2

]
= jω

[
C + λC1 0

0 C + λC2

][
VC1

VC2

]
(20)

The fundamental result in (20) provides two different shift values to the nominal capacitance
C in case of distinct eigenvalues (17). This means that under the general condition of two or three
capacitance deviations, two different resonances are generated in the α and β circuits, and they are
coupled into the zero-component circuit through (11c). The frequencies of the two resonances are
given by:

fC1,2 =
1

2π
√

Ldm(C + λC1,2)
�

1
2π
√

LdmC

(
1−

λC1,2

2C

)
(21)

Notice that in the special case of only one capacitance deviation (i.e., any phase, a, b, or c),
one of the two eigenvalues (17) is zero, whereas the second is given by 2δCa,b,c/3. Null eigenvalue
means no circuit interaction (i.e., only the resonance corresponding to 2δCa,b,c/3 is injected into the
zero-component circuit). Therefore, only one spectral line due to mode conversion is present in the
CM current in case of one capacitance deviation, whereas two spectral lines are expected in case of two
or three capacitance deviations.

Finally, in case of equal capacitance deviations δCa = δCb = δCc from (17), we have one double
eigenvalue, but from (11c) there is no interaction with α and β circuits. This is consistent with the fact
that δCa = δCb = δCc means symmetrical capacitance values.

3.1.2. Asymmetrical Filter Inductors

A CM choke can be modeled as a coupled three-phase inductor according to (2). In the symmetrical
case the DM inductance is Ldm = L−M, and the CM inductance Lcm = L + 2M. Notice that small
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asymmetrical self-inductances L can result in large relative deviations of the DM inductance Ldm,
because usually L and M take close values.

By assuming simultaneous deviations of the three self-inductances with respect to the nominal
value L, the Clarke transformation:

VLα

VLβ

VL0

 = jωT


L + δLa M M

M L + δLb M
M M L + δLc

T−1


ILα

ILβ

IL0

 (22)

provides the following equations:

VLα = jω
[(

Ldm +
2
3

(
δLa +

δLb + δLc

4

))
ILα +

−δLb + δLc

2
√

3
ILβ+

√
2

3

(
δLa −

δLb + δLc

2

)
IL0

]
(23a)

VLβ = jω
[
−δLb + δLc

2
√

3
ILα +

(
Ldm +

δLb + δLc

2

)
ILβ +

√
3

2
√

2
(δLb − δLc)IL0

]
(23b)

VL0 = jω
[ √

2
3

(
δLa −

δLb + δLc

2

)
ILα +

√
3

2
√

2
(δLb − δLc)ILβ+

(
Lcm +

δLa + δLb + δLc

3

)
IL0

]
(23c)

By introducing the same approximation used in the previous Subsection (i.e., negligible feedback
from the zero circuit to the α and β circuits), for the α and β variables we obtain the following
approximate expressions in matrix form:

[
VLα

VLβ

]
� jω


[

Ldm 0
0 Ldm

]
+

 2
3

(
δLa +

δLb+δLc
4

)
−δLb+δLc

2
√

3
−δLb+δLc

2
√

3
δLb+δLc

2



[

ILα

ILβ

]
(24)

The full matrix in (24) has the same structure as (14). Therefore, the matrix diagonalization can be
obtained by using the same results already shown in Section 3.1.1. In particular, from (16) we obtain
the eigenvalues:

λL1,2 =
1
3
(δLa + δLb + δLc) ±

1

3
√

2

√
(δLa − δLb)

2 + (δLb − δLc)
2 + (δLc − δLa)

2 (25)

Thus, the corrected values of the inductance in the α and β circuits are given by Ldm + λL1 and
Ldm + λL2. The corresponding frequencies of the resonances injected into the zero-component circuit
are given by:

fL1,2 =
1

2π
√
(Ldm + λL1,2)C

�
1

2π
√

LdmC

(
1−

λL1,2

2Ldm

)
(26)

The same remarks already highlighted for (21) hold for (26). In particular, it is worth noticing that,
in general, two spectral lines are generated in the CM circuit, and the frequency displacement with
respect to the ideal location f0 = 1/2π

√
LdmC depends on λL1,2

Ldm
.

Finally, the case of asymmetrical mutual inductances M can be included into the above derivations.
Starting from the Clarke transformation of a completely asymmetrical inductance matrix:

VLα

VLβ

VL0

 = jωT


L + δLa M + δMab M + δMac

M + δMab L + δLb M + δMbc
M + δMac M + δMbc L + δLc

T−1


ILα

ILβ

IL0

 (27)

by simple algebra and by using the approximation of no-feedback from the zero-component circuit to
the α and β circuits we obtain:
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[
VLα

VLβ

]
� jω

([
Ldm 0

0 Ldm

]
+

 2
3

(
δLa +

δLb+δLc
4 −

(
δMab + δMac −

1
2δMbc

))
−δLb+δLc+2(δMab−δMbc)

2
√

3
−δLb+δLc+2(δMab−δMbc)

2
√

3
δLb+δLc

2 − δMbc



[

ILα

ILβ

]
. (28)

The eigenvalues λLM1,2 of the full matrix in (28) can be still evaluated through (16). Explicit
expressions are not reported here for the sake of simplicity. Also in this case the eigenvalues result, in
general, in two inductance shifts Ldm + λLM1 and Ldm + λLM2, and the related resonance frequencies
fLM1,2 = 1

2π
√
(Ldm+λLM1,2)C

injected into the zero-component circuit.

4. Numerical Validation

The three-phase motor drive system represented in Figure 3 was implemented in Simulink.
The three-phase voltage source inverter (VSI) was controlled with pulse width modulation (PWM)
with 50 Hz modulating frequency and 1650 Hz carrier frequency (i.e., the frequency-modulation
ratio was 33), whereas the amplitude-modulation ratio m was 0.95. Vdc was 100 V, RLISN = 50 Ω,
and the dc-link capacitor was represented by a high-frequency equivalent circuit consisting in the
series connection of Cdc = 1 mF, Ldc = 10 nH, and Rdc = 10 mΩ. The VSI parasitic capacitors were
Cp = Cn = 1 nF and C0 = 0.1 nF. The LC filter was implemented by a CM choke with Ldm = 2.5 µH
and Lcm = 200 µH, and star-connected capacitors with C = 50 nF [21]. Thus, the DM and CM cutoff

frequencies were f0 = 450 kHz and fcm = 50 kHz, respectively. The shielded cable was represented
by a lumped equivalent circuit (see Figure 4) with Lcd = 1 µH, Lc0 = 2.8 µH, Ccd = Cc0 = 0.1 nF,
and Rcd = Rc0 = 10 mΩ. Thus, the DM and CM cable resonance frequencies were 15.9 and 9.5 MHz,
respectively. The motor phases were represented by RL = 1 kΩ, LL = 1 mH, and Cw = 0.1 nF, whereas
the motor parasitic capacitances were Cm = 10 pF and Cg = 3 nF.

The time-domain simulations were performed with sampling frequency fs = 100 MHz, and
the samples of the CM current (see Figure 3) were processed through the fast Fourier transform
(FFT) to obtain the amplitude spectrum within the [0, 50 MHz] frequency range. Figure 5 shows the
amplitude spectrum of the CM current (limited to 30 MHz, according to the conducted emissions
standards [21]) in case of filter symmetry. The impact of the CM filter with 50 kHz cutoff frequency
is clearly apparent. Moreover, no resonance frequencies can be identified (i.e., no peaks), even in
proximity of the DM resonance located at 450 kHz. This means that, according to the theory, in case of
symmetrical parameters there is no interaction between DM and CM circuits.
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Figure 6 shows the effect of a deviation δCa of the filter capacitance Ca with respect to its nominal
value C. According to (8), a negative deviation δCa results in a positive relative increase

∣∣∣ δCa
3C

∣∣∣ in the
resonance frequency of the α circuit. Moreover, according to (9) such resonance is injected into the
CM circuit with increasing magnitude with the deviation |δCa|. This is confirmed in Figure 6, where
three different percent values of δCa/C were selected (i.e., −5%, −10%, and −20%). The corresponding
shift in the DM resonance frequency (i.e., f0 = 450 kHz) are given by 7.5, 15, and 30 kHz, respectively.
According to the eigenvalue analysis derived in Section 3.1.1, similar results can be obtained when the
asymmetrical capacitance is either Cb or Cc.
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Figure 6. Resonance peaks in the CM current amplitude spectrum due to three different percent values
of δCa/C (i.e., −5%, −10%, and −20%). Negative deviations result in resonance peaks with increased
frequency with respect to the nominal value f0 = 450 kHz (i.e., the DM resonance frequency in case of
symmetrical filter, represented by the dashed vertical line).

Figure 7 shows the case of two simultaneous deviations δCa and δCb. The deviation δCb was
selected such that δCb = −δCa. According to (17) and (21), the two eigenvalues are λC1,2 = ± 1

√
3
|δCa|,

and the two resonance frequencies fC1,2 � f0
(
1± 1

2
√

3
|δCa |

C

)
. Thus, the two peaks have frequency

separation f0 1
√

3
|δCa |

C . Three different percent values were assumed for δCa/C (i.e., −5%, −10%, and
−20%). The corresponding frequency separation of each couple of peaks are 13 kHz, 26, kHz, and
52 kHz. This point is confirmed by Figure 7. Notice that for δCa

C = −20% the two peaks (blue line)

are not perfectly symmetrical with respect to f0. This is because the formula fC1,2 � f0
(
1± 1

2
√

3
|δCa |

C

)
is

approximate, and it provides better results for small values of |δCa |
C .

Figure 8 shows the case of simultaneous deviations of the inductances La and Lb. By selecting, as
in the previous case, δLb = −δLa, according to (25) and (26), the two eigenvalues are λL1,2 = ± 1

√
3
|δLa|,

and the two resonance frequencies fL1,2 � f0
(
1± 1

2
√

3
|δLa |
Ldm

)
. Thus, the two peaks have frequency

separation f0 1
√

3
|δLa |
Ldm

. Three different percent values were assumed for δLa/Ldm (i.e., −5%, −10%, and
−20%). The corresponding frequency separation of each couple of peaks are 13, 26, and 52 kHz. This
point is confirmed by Figure 8. The same remark mentioned in the previous case holds for the location
of peaks when δLa

Ldm
= −20%.
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Figure 9 shows the impact of simultaneous deviations of both filter inductances and 

capacitances. Two cases can be put into evidence. First, the deviations of components a (i.e., 𝐶𝑎 and 

𝐿𝑎) have the same sign (i.e., 
𝛿𝐿𝑎

𝐿𝑑𝑚
 =  

𝛿𝐶𝑎

𝐶
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𝛿𝐿𝑏
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Figure 8. Amplitude spectrum of the CM current in case of asymmetrical filter inductances La and Lb.
Opposite deviations between a and b were assumed (i.e., δLb = −δLa). Three different percent values
for the relative deviations were considered (i.e., δLa

Ldm
= −5%, −10%, and −20%).

Figure 9 shows the impact of simultaneous deviations of both filter inductances and capacitances.
Two cases can be put into evidence. First, the deviations of components a (i.e., Ca and La) have the same
sign (i.e., δLa

Ldm
= δCa

C ), as well as the deviations of components b (i.e., δLb
Ldm

=
δCb
C ). In this case, the two

peaks are reinforced by the two filter components. In the second case, the deviations of components a
have opposite sign (i.e., δLa

Ldm
= − δCa

C ), as well as the deviations of components b (i.e., δLb
Ldm

= −
δCb
C ). In

this case, the action of the two filter components are in the opposite directions, resulting in a contrast to
the frequency shift of the peaks. To highlight this phenomenon, a first simulation was performed with
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δLa
Ldm

= δCa
C = −10% and δLb

Ldm
=

δCb
C = +10% (green curve). The effect of each deviation is doubled.

In particular, the frequency separation between the two peaks is doubled with respect to Figure 8. A
second simulation (blue curve) was performed by doubling the relative deviations (and keeping the
same signs as before). The frequency separation of the two peaks is doubled with respect to Figure 8.
Finally, a simulation with opposite sign was performed (red curve) (i.e., δLa

Ldm
= −

δCa
C = −10% and

δLb
Ldm

= −
δCb
C = +10%). Since the deviations of the two filter components act in opposite directions, the

result is only one peak with small magnitude and negligible frequency shift.Electronics 2020, 9, x FOR PEER REVIEW 14 of 19 
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Figure 9. Amplitude spectrum of the CM current in case of asymmetry in the filter inductances and
capacitances. The green and blue curves show the cases of deviations resulting in a decrease in La and
Ca, and increase in Lb and Cb. The red curve shows the case of La and Ca changing in the opposite
direction (same for Lb and Cb). In this case the asymmetries tend to compensate each other.

Figure 10 shows the amplitude spectrum of the cable CM current (see ICMcable in Figure 3) for
different deviations of the cable self-inductances. This set of simulations was performed to show how
the DM circuit can inject current into the CM circuit at any system asymmetry (i.e., not only the LC
filter). In case of cable asymmetry, the DM resonance involving the cable leads to current injection into
the cable CM circuit. According to Figure 4a, the cable is responsible of a DM resonance corresponding
to its DM inductance Lcd (i.e., the difference between the self and the mutual inductances) and the total
capacitance consisting in the sum of the cable capacitance Ccd and the parasitic capacitances 3Cm and Cw

(in fact, at high frequencies the branch RL −LL can be ignored). Thus, the frequency of the DM resonance
is given by fd0 = 1/

(
2π

√
Lcd(Ccd + 3Cm + Cw)

)
� 10.5 MHz. The self-inductance deviations were

selected such that δLcb = −δLca, and three different values were selected for δLca/Lcd(i.e., −5%, −10%,

and −20%). According to fL1,2 � fd0

(
1± 1

2
√

3
|δLca |
Lcd

)
, the corresponding frequency separation of each

couple of peaks were 300 kHz, 600 kHz, and 1.2 MHz. This is confirmed by Figure 10, where another
spectral line can be clearly seen at 6.9 MHz. Such spectral line is independent of cable asymmetry since it

is related to the resonance of the CM circuit (see Figure 4b): fc0 = 1/
(
2π

√
Lc0

(
Cc0 + Cwg

))
= 6.9 MHz,

where Cwg =
Cw

Cg
3

Cw+
Cg
3

.
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5. Statistical Analysis

Analytical results derived in Section 3 allow accurate evaluation of DM resonances injected into
the CM circuit in case of known asymmetrical values of the filter components. When we are interested
in the effects of component tolerance, however, a statistical approach is more suited to the objective.
The statistical analysis of the eigenvalues (17) and (25), and the related resonance frequencies (21) and
(26), will be derived in this Section by treating all the deviations δ (i.e., δCa,b,c and δLa,b,c) as random
variables. Two cases will be investigated, corresponding to two different statistical distributions for the
random variables δ: Gaussian and Uniform distributions. In order to obtain unitary and normalized
results, the following transformation of random variables will be investigated:

x1,2 =
1
3
(δa + δb + δc) ±

1

3
√

2

√
(δa− δb)2 + (δb− δc)2 + (δc− δa)2 = u± v (29)

where δa = δCa/C, δb = δCb/C, δc = δCc/C for capacitances, and δa = δLa/Ldm, δb = δLb/Ldm,
δc = δLc/Ldm for inductances. The corresponding normalized resonance frequencies are given by:

y1,2 =
f1,2

f0
=

1√
1 + x1,2

. (30)

5.1. Gaussian Distribution

Let us assume δa, δb, δc as uncorrelated Gaussian random variables with zero mean and variance
σ2
δ. The transformation (29) requires first the analysis of the random variable:

v = 1
3
√

2

√
(δa− δb)2 + (δb− δc)2 + (δc− δa)2

= 1
3

√
δa2 + δb2 + δc2 − δa δb− δb δc− δc δa = 1

3
√

w.
(31)
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By taking into account that E
{
δ2

}
= σ2

δ, for the mean value and the variance of w we obtain [26]:

µw = 3σ2
δ, σ

2
w = 9σ4

δ. (32)

Therefore, the mean value and the variance of v can be approximated as:

µv �
7
8

1
√

3
σδ, σ2

v �

(
1

6
√
µw

)2

σ2
w =

1
12
σ2
δ (33)

where the approximations through the first and second order derivatives were used (i.e., the Taylor
series approach) [26,27].

From (29) and (33) the mean values and the variance of x1,2 are given by:

µx1,2 = ±
7
8

1
√

3
σδ, σ2

x1,2
=

1
3
σ2
δ + σ2

v =
5

12
σ2
δ (34)

Notice that since x1 and x2 are defined as the sum of uncorrelated random variables, their
distribution can be approximated as a Gaussian distribution with mean values and variance given
by (34).

Finally, the mean value and variance of the normalized resonance frequencies (30) can be
approximated as:

µy1,2 �
1√

1± 7
8

1
√

3
σδ

, σ2
y1,2
�

1

4
(
1± 7

8
1
√

3
σδ

)3
5

12
σ2
δ. (35)

The probability density function (PDF) of (30) can be obtained through the theorem of the
transformation of random variables [26]. By taking into account that, as mentioned before, x1,2 can be
approximated by Gaussian random variables, the PDF of the two normalized resonance frequencies
are given by:

py1,2 =
2

y3
1,2

1
√

2πσx1,2

exp

−
[
1− y2

1,2

(
1 + µx1,2

)]2

2σ2
x1,2

y4
1,2

 (36)

where µx1,2 and σ2
x1,2

are given by (34).
Figure 11 shows the behavior of the two PDFs (36) for three values of σδ (i.e., 0.05, 0.10, and

0.20). The analytical curves corresponding to (36) (solid curves) are compared with numerical results
obtained by repeated run analysis (dotted curves). Notice that for each σδ the two PDFs show one peak
on the left and one peak on the right side of the normalized frequency 1. By increasing σδ, the two
peaks decrease in magnitude and move away from 1, whereas the PDF spread increases. For σδ = 0.05
the left resonance can decrease till about 0.94 f0, whereas the right resonance can increase till about
1.07 f0. For σδ = 0.10 the left resonance can decrease till about 0.90 f0, whereas the right resonance can
increase till about 1.15 f0. For σδ = 0.20, the left resonance can decrease till about 0.80 f0, whereas the
right resonance can increase till about 1.30 f0.
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Figure 11. Probability density functions of the normalized resonance frequencies y1,2 of the DM current
injected into the CM circuit. The normalized deviations of the filter parameters (i.e., capacitances or
self-inductances) are treated as random variables with zero-mean Gaussian distribution and normalized
standard deviation σδ equal to 0.05, 0.10, and 0.20. Analytical results (solid lines) are compared with
numerical repeated-run results (dotted lines).

5.2. Uniform Distribution

Let us assume δa, δb, δc as uncorrelated Uniform random variables with zero mean and variance
σ2
δ = ∆2/3, where 2∆ is the range of each random variable (i.e., the interval ±∆).

By taking into account that E
{
δ2

}
= σ2

δ, for the mean value and the variance of w we obtain:

µw = ∆2, σ2
w =

3
5

∆4 (37)

Therefore, the mean value and the variance of v can be approximated as:

µv �
37
120

∆, σ2
v �

(
1

6
√
µw

)2

σ2
w =

∆2

60
(38)

where the approximations through the first and second order derivatives were used [26,27].
From (29) and (33) the mean values and the variance of x1,2 are given by:

µx1,2 = ±
37
120

∆, σ2
x1,2

=
1
3

∆2

3
+

∆2

60
=

23
180

∆2 (39)

Notice that since x1 and x2 are defined as the sum of uncorrelated random variables, their
distribution can be approximated as a Gaussian distribution with mean values and variance given
by (39). In this case, however, a worse approximation is obtained with respect to the Gaussian case
because Uniform distributions have limited range.

Finally, the mean value and variance of the normalized resonance frequencies (30) can be
approximated as:

µy1,2 �
1√

1± 37
120 ∆

, σ2
y1,2
�

1

4
(
1± 37

120 ∆
)3

23
180

∆2. (40)
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Figure 12a,b shows the behavior of the mean value and the standard deviation of y1,2 as functions
of ∆ (red lines). Analytical results (40) (solid lines) are compared with numerical results obtained
through repeated runs (dashed lines). The same figure shows the behavior of the mean value and the
standard deviation of y1,2 in the Gaussian case (35) (blue lines) for σδ in the same range of ∆. Gaussian
distribution results clearly in larger spread of the resonance frequencies.
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Figure 12. Mean value (a) and standard deviation (b) of the normalized resonance frequencies y1,2 as
functions of σδ (Gaussian case) and ∆ (Uniform case) of the random deviations δ. Analytical results
(solid lines) are compared with numerical repeated-run results (dotted lines).

The PDF of (30) could be readily obtained through the theorem of the transformation of random
variables as in the Gaussian case. By taking into account that x1,2 can be approximated by Gaussian
random variables, the PDF of the two normalized resonance frequencies are given by (36), where µx1,2

and σ2
x1,2

are given by (40).

6. Conclusions

DM-to-CM-noise conversion in a three-phase system was investigated in the frequency-domain by
deriving in analytical form the interaction between theα, β, and zero circuits of the Clarke transformation
due to phase circuit asymmetries. In particular, the frequency location of DM resonances injected into
the CM circuit was derived in closed form as function of the asymmetry in the LC filter parameters.
Usually, engineers are aware about this phenomenon because it can be observed in frequency-domain
measurements of CM current, but a theoretical and quantitative description was still missing in the
literature concerning three-phase systems. Since circuit asymmetry is usually due to component
tolerances, a statistical analysis was also derived in the paper by treating the filter parameters as
random variables. Selection of proper probability distributions of input parameters can be made on
the basis of available information for the specific problem under analysis. The complete statistical
characterization of the frequency location of CM current peaks due to DM-to-CM noise conversion
was derived in analytical form in terms of probability density function, mean value, and standard
deviation. Future work will be devoted to the analysis of more general three-phase systems and the
related impact of further system asymmetries on noise conversion.
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